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Abstract
Very recently, Hussain and Kanwal (Trans A Razmadze Math Inst 172(3):481–490, 2018)
proved some (coupled) fixed point results in this setting for α − ψ-contractive mappings
on the setting of F-metric spaces that was initiated by Jleli and Samet (Fixed Point Theory
Appl 2018:128, 2018). In this note, we underline that the proof of Hussain and Kanwal
(Trans A Razmadze Math Inst 172(3):481–490, 2018) has a gap. We provide two examples
to illustrate our observation. We also correct the proof and improved the result by replacing
α-admissibility by orbital α-admissibility.
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1 Introduction and preliminaries

One of the trends in fixed point theory is to replace the metric space with a more general
abstract space [15,17,28–30]. Among them, we focus on the notion of F-metric spaces that
was proposed by Jleli and Samet [20]. For the sake of integrity of the note, we recollect the
notion as well as the fundamental properties of F-metric spaces.

Let F be the set of functions f : (0,∞) → R satisfying the following conditions:
(F1) f is non-decreasing, i.e., 0 < s < t implies f (s) ≤ f (t);
(F2) For every sequence {tn} ⊂ (0,+∞), we have

lim
n→+∞ tn = 0 if and only if lim

n→+∞ f (tn) = −∞.

The notion of an F-metric space is defined as follows.

Definition 1.1 [20] Let X be a nonempty set and D : X×X → [0,+∞) be a givenmapping.
Suppose that there exists ( f , a) ∈ F × [0,+∞) such that

(D1) (x, y) ∈ X × X , D(x, y) = 0 ⇔ x = y;
(D2) D(x, y) = D(y, x), for all (x, y) ∈ X × X;
(D3) For every (x, y) ∈ X × X , for every N ∈ N, N ≥ 2, and for every (ui )Ni=1 ⊂ X

with (u1, uN ) = (x, y), we have

D(x, y) > 0 implies f (D(x, y)) ≤ f

(
N−1∑
i=1

D(ui , ui+1)

)
+ a.

Then D is said to be an F-metric on X , and the pair (X , D) is said to be a F-metric space.

A sequence {xn}, in aF-metric space (X , D), isF-convergent to x ∈ X if {xn} is convergent
to x with respect to the F-metric D, that is

lim
n→∞ D(xn, x) = 0.

A sequence {xn}, in a F-metric space (X , D), is called F-Cauchy, if

lim
n,m→+∞ D(xn, xm) = 0.

We say that a F-metric space (X , D) is F-complete, if every F-Cauchy sequence in X is
F-convergent to a certain element in X .

On what follows, let � be the set of functions � : [0,∞) → [0,∞) such that

(ψ1) ψ is nondecreasing;
(ψ2)

∑∞
n=1 ψn(t) < ∞ for each t ∈ R

+, where ψn is the nth iterate of ψ .

Remark 1.1 It is easy to see that if ψ ∈ �, then ψ(0) = 0 and ψ(t) < t for any t > 0.

The notion of α-admissible mappings [32] and triangular α-admissible mappings [25] are
refined by Popescu [31] as follows:

Definition 1.2 [31] Let α : X × X → [0,∞) be a mapping and X 	= ∅. A self-mapping
T : X → X is said to be an α−orbital admissible if for all s ∈ X , we have

α(s, T s) ≥ 1 ⇒ α(T s, T 2s) ≥ 1. (1.1)

Furthermore, an α−orbital admissible mapping T is called triangular α-orbital admissible if
the following condition holds:
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(TO) α(s, t) ≥ 1 and α(t, T t) ≥ 1 implies that α(s, T t) ≥ 1, for all s, t ∈ X .

Each α−admissible mapping is an α-orbital admissible mapping. For more details and inter-
esting examples, see e.g. [1–9,11–14,16,19,21–23,26,27].

Very recently, Hussain and Kanwal [24] generalized the main result of Jleli and Samet
[20] in the class of F-metric spaces by considering α − ψ-contractive mappings.

Definition 1.3 [24] Let (X , D) be an F-metric space and T : X → X be a given mapping.
We say that T is a generalized α − ψ-contraction if there exist α : X × X → [0,∞) and
ψ ∈ � such that, for all x, y ∈ X , with α(x, y) ≥ 1, we have

D(T x, T y) ≤ ψ(M(x, y)) (1.2)

where

M(x, y) = max{D(x, y), D(x, T x), D(y, T y)}. (1.3)

Unfortunately, there is a gap in the statement of Theorem 2.1 in [24] and its proof. In this
paper, we provide counter-examples showing their gap and we give the corrected proofs.

2 Main results

The essential main result in [24] is the following theorem.

Theorem 2.1 [24] Let (X , D) be an F-complete F-metric space and T : X → X be an
α-admissible generalized α − ψ-contraction mapping. If there exists x0 ∈ X such that
α(x0, T x0) ≥ 1, then T has a fixed point in X.

Theorem2.1 contains a gap. The following examples explain this fact. In fact,wewill consider
self-mappings satisfying all hypotheses of Theorem 2.1, but having no fixed point.

Example 2.1 Consider X = R. Define D : X × X → [0,∞) as

D(x, y) = |x − y|, x, y ∈ X .

Note that D is an F-metric with f (t) = ln t and a = 0. Consider

T x =
{

x−1
2 if x > −1

0 otherwise,

and

α(x, y) =
{
1 if x, y ∈ (−1,∞)

0 otherwise.

Choose ψ(t) = t
2 for t ≥ 0. How is it T ((−1,∞)) = (−1,∞), we obtain that T is α-

admissible. For x0 = 1, we have α(x0, T x0) ≥ 1. We shall show that T is a generalized
α − ψ-contraction. Let x, y ∈ X such that α(x, y) ≥ 1, so x, y ∈ (−1,∞). Here,

D(T x, T y) = 1

2
D(x, y) ≤ 1

2
M(x, y) = ψ(M(x, y)).

So, all hypotheses of Theorem 2.1 hold, but T has no fixed point.
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Example 2.2 Consider X = R. Define D : X × X → [0,∞) as

D(x, y) =
{
e|x−y| if x 	= y

0 if x = y.

Note that D is an F-complete F-metric with f (t) = − 1
t and a = 1. Consider

T x =
{

2x−1
3 if x ∈ (−1,∞)

0, otherwise.

and

α(x, y) =
{
1, if x, y ∈ (−1,∞) with x 	= y

0, otherwise.

Choose

ψ(t) =
{

2
3 t, if t < 1

t
2
3 , if t ≥ 1.

Now using the fact that T ((−1,∞) = (−1,∞), we obtain that T is α-admissible. For
x0 = 1, we have α(x0, T x0) ≥ 1. We shall show that T is a generalized α − ψ-contraction.
Let x, y ∈ X such that α(x, y) ≥ 1, so x, y ∈ (−1,∞) and x 	= y. Here, M(x, y) ≥
D(x, y) ≥ 1. Thus,

D(T x, T y) = (D(x, y))
2
3 ≤ (M(x, y))

2
3 = ψ(M(x, y)).

All hypotheses of Theorem 2.1 are verified, but T has no fixed point.

Remark 2.1 Note that Example 2.2 in [24] is incorrect. Indeed, the authors consideredψ(t) =√
t . For t ∈ (0, 1), we have ψ(t) > t , and so ψ /∈ �. There is also gap in [24]. In fact,

the authors used the hypothesis (H) (stated below) without mentioning it in their theorem.
Moreover, to show that the map T has a fixed point, there is a gap because the authors [24]
passed to the limit as n → ∞ in the three given cases, which are only true for some n.

Now, we give the corrected and improved version of Theorem 2.1 together with its appro-
priate proof. For the corrected version, we need the following condition:

(H) Let (X , D) be anF-metric space. The function f ∈ F verifying (D3) is assumed to be
continuous. Also,ψ is chosen to be continuous and to satisfy that f (u) > f (ψ(u))+a
for all u ∈ (0,∞), where a is also given in (D3).

Theorem 2.2 Let (X , D) be a an F-complete F-metric space and T : X → X be a gener-
alized α − ψ-contraction. Suppose that

(i) T is orbital α-admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iiia) either, T is continuous,
(iiib) or (H) holds.

Then T has a fixed point.
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Proof By (i i), there is x0 such that α(x0, T x0) ≥ 1. Define {xn} by xn+1 = T xn = T n+1x0
for n = 0, 1, 2, . . .. Regarding that T is orbital α-admissible, we derive that

α(x0, T x0) ≥ 1 yields α(T x0, T
2x0) = α(x1, x2) ≥ 1.

Recursively, we have

α(xn, xn+1) ≥ 1 for each n ∈ N.

After then, we can follow the proof of Theorem 2.1 in [24], and we conclude that

lim
n→∞ D(xn, xn+1) = 0. (2.1)

Also, {xn} is an F-Cauchy sequence. Since (X , D) is F-complete, there exists some point
z ∈ X such that

lim
n→∞ D(xn, z) = 0. (2.2)

We have two cases.
Case (i i ia). Suppose that T continuous.
We have that

z = lim
n→∞ xn+1 = lim

n→∞ T xn = T ( lim
n→∞ xn) = T z.

That is, z is a fixed point of T .
Case (i i ib). We argue by contradiction. Suppose that D(T z, z) > 0. Using (1.2), we have

f (D(z, T z)) ≤ f (D(z, T xn) + D(T xn, T z)) + a

≤ f (α(xn, z)D(T xn, T z) + D(z, T xn)) + a

≤ f (ψ(max{D(xn, z), D(z, T z), D(xn, T xn)})
+D(z, xn+1)) + a

= f (ψ(max{D(xn, z), D(z, T z), D(xn, xn+1)})
+D(z, xn+1)) + a

Letting k → ∞ and using (2.1) and (2.2) together with continuity of f and ψ , we get

f (D(z, T z)) ≤ f (ψ(D(z, T z))) + a.

which is a contradiction with respect to f (u) > f (ψ(u)) + a for all u ∈ (0,∞). Hence, we
obtain D(T z, z) = 0, so z = T z, that is, z is a fixed point of T . 
�
Example 2.3 Consider X = R. Define D : X × X → [0,∞) as

D(x, y) = |x − y|, x, y ∈ X .

Note that D is an F-metric with f (t) = ln t and a = 0. Consider

T (x) = x + 2

2

and

α(x, y) =
{

3
2 , if x, y ∈ [1,∞)

0, otherwise.
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Choose ψ(t) = 3t
4 for t ≥ 0. Using the fact that T ([1,∞)) = [ 32 ,∞) ⊂ [1,∞), we can

conclude that T is triangular α-admissible. For x0 = 2, we have α(x0, T x0) ≥ 1. We shall
show that T is a generalized α − ψ-contraction. Let x, y ∈ X such that α(x, y) ≥ 1. Then
x, y ∈ [1,∞), so we have

D(T x, T y) ≤ 3

4
D(x, y) ≤ 3

4
M(x, y) = ψ(M(x, y)).

So, all hypotheses of Theorem 2.2 hold. It can be seen that x = 2 is a fixed point of T .

Remark 2.2 Note that the second part of condition (i i ib)) in Theorem 2.2 is not superfluous.
To be clear, we have the following.

1. Following Example 2.1 in [20], consider D : X × X → [0,∞) defined as

D(x, y) =
{

(x − y)2 if (x, y) ∈ [0, 3] × [0, 3]
|x − y| if (x, y) /∈ [0, 3] × [0, 3].

where X = {0, 1, 2, . . .}. Such D is a F-metric with f (t) = ln(t), t > 0, and a = ln(3).
Note that f is continuous on (0,∞) and the condition on ψ , which is, f (u) > f (ψ(u)) + a
for all u > 0, becomes ln(u) − ln(ψ(u)) > ln(3), that is, ψ is chosen to be continuous such
that

ψ(u) <
1

3
u.

2. Following Example 2.4 in [20], consider the F-metric D : X × X → [0,∞) given as

D(x, y) =
{
e|x−y| if x 	= y

0 if x = y.

where X = {0, 1, 2, . . .}, f (t) = − 1
t for t > 0, and a = 1. Note that f is continuous on

(0,∞) and the condition on ψ , which is, f (u) > f (ψ(u)) + a for all u > 0, becomes
− 1

u > 1
ψ(u)

> 1, that is, ψ is chosen to be continuous such that

ψ(u) <
u

u + 1
.

A simple consequence of Theorem 2.2 is stated as follows.

Corollary 2.1 Let (X , D) be a an F-complete F-metric space and T : X → X be a given
mapping such that

α(x, y)D(T x, T y) ≤ ψ(M(x, y)),

for all x, y ∈ X, where ψ ∈ � and M(x, y) was defined by (1.3). Suppose that

(i) T is orbital α-admissible;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;

(iiia) either, T is continuous,
(iiib) or (H) holds.

Then T has a fixed point.

Following [31], we consider the following condition in order to get a uniqueness fixed point
result.

(K ) For all x, y ∈ X , there exists v ∈ X such thatα(x, v) ≥ 1,α(y, v) ≥ 1 andα(v, T v) ≥ 1.
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Theorem 2.3 Adding to the hypotheses of Theorem 2.2:

(A) condition (K );
(B) for all x and {xn} in X such that {xn} converging to some h ∈ X, we have f (D(x, h) >

f (ψ(lim supn→∞ D(x, xn)) + a with lim supn→∞ D(x, xn) > 0,

then the fixed point of T is unique.

Proof From Theorem 2.2, T has a fixed point. Suppose on the contrary that there are two
fixed points of T , say ρ and ζ with ρ 	= ζ . Then by condition (K ), there exists v ∈ X such
that α(ρ, v) ≥ 1, α(ζ, v) ≥ 1 and α(v, T v) ≥ 1. The triangular α-orbital admissibility of T
implies that

α(ρ, T nv) ≥ 1 and α(ζ, T nv) ≥ 1 for all n ≥ 1.

By Theorem 2.2, the sequence {T nv} converges to a fixed point of T , say σ . Assume that
ρ 	= σ . Then using (D3), (1.2) and the fact that α(ρ, T nv) ≥ 1, one writes

f (D(ρ, σ )) ≤ f (D(ρ, T n+1v) + D(T n+1v, σ )) + a

= f (D(Tρ, T (T nv)) + D(T n+1v, σ )) + a

≤ f (ψ(max{D(ρ, T nv), D(ρ, Tρ), D(T nv, T n+1v)})
+D(T n+1v, σ )) + a

= f (ψ(max{D(ρ, T nv), D(T nv, T n+1v)}) + D(T n+1v, σ )) + a.

Letting n → ∞ and using (2.1), (2.2) and continuity of f and ψ , we find that

f (D(ρ, σ )) ≤ f (ψ(lim sup
n→∞

D(ρ, T nv)) + a. (2.3)

Necessarily, lim supn→∞ D(ρ, T nv) > 0. The inequality (2.3) is a contradictionwith respect
to condition (B). Thus, ρ = σ . Similarly, we obtain that ζ = σ , so ρ = ζ , which is again a
contradiction. Therefore, there is a unique fixed point of T . 
�

3 Conclusion

In this note, we correct and improve the recently reported results in [24]. We also want to
underline that the given results have a number of consequences in different structures, see
e.g. [27]. For example, if we take α(x, y) = 1 for all x, y ∈ X , we observe an analog of
Corollary 2.1 in the setting of standard F-metric spaces. On the other hand, it is easy to get
the analog of these results in the setting of a partially ordered F-metric space, by choosing
α(x, y) properly as,

α(x, y) =
{
1 if x � y or x � y,
0 otherwise.

Thus, the following theorem is an apparent consequence of Corollary 2.1.

Theorem 3.1 Let � be a partial order on X that is equipped with an F-metric D. Assume
that (X , D) is F-complete. Suppose that T : X → X is a nondecreasing mapping with
respect to � such that

D(T x, T y) ≤ ψ(M(x, y)),

for all x, y ∈ X with x � y, where ψ ∈ � and M(x, y) was defined by (1.3). Moreover, we
suppose that
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(I) there exists x0 ∈ X such that x0 � T x0;
(IIa) either, T is continuous,
(IIb) or (H)holds.Moreover, the function f ∈ F verifying (D3) is assumed to be continuous.

Also, ψ is chosen to be continuous and to satisfy that f (u) > f (ψ(u)) + a for all
u ∈ (0,∞), where a is also given in (D3).

Then T has a fixed point.

In a similar way, we can transfer the main results of this paper to setting of cyclic mappings
by letting α(x, y) as

α(x, y) =
{
1 if (x, y) ∈ (A1 × A2) ∪ (A2 × A1),

0 otherwise.

Theorem 3.2 Let {Ai }2i=1 be nonempty closed subsets of a F-complete F-metric space and
T : Y → Y be a given mapping, where Y = A1 ∪ A2. Suppose that the following conditions
hold:

(I) T (A1) ⊆ A2 and T (A2) ⊆ A1;
(II) there exists ψ ∈ � such that

D(T x, T y) ≤ ψ(M(x, y)), for all (x, y) ∈ A1 × A2,

where M(x, y) was defined by (1.3);
(III) either, T is continuous,
(IIb) or the function f ∈ F verifying (D3) is assumed to be continuous. Also, ψ is chosen

to be continuous and to satisfy that f (u) > f (ψ(u)) + a for all u ∈ (0,∞), where
a is also given in (D3).

Then T has a fixed point that belongs to A1 ∩ A2.

We refer to [27] for more explicit details on proofs of Theorems 3.1 and 3.2.
Finally, it is clear that various corollaries can be added when replacing the generalized

α − ψ-contraction by

(a) D(T x, T y) ≤ ψ(D(x, y))
(b) D(T x, T y) ≤ ψ(max{D(x, T x), D(y, T y)})
(c) D(T x, T y) ≤ ψ(

D(x,T x)+D(y,T y)
2 )

and more by letting ψ(t) = kt , where k ∈ [0, 1),
(a) D(T x, T y) ≤ kD(x, y)
(b) D(T x, T y) ≤ kmax{D(x, T x), D(y, T y)}
(c) D(T x, T y) ≤ k D(x,T x)+D(y,T y)

2 ,

in the setting of Corollary 2.1, Theorems 3.1 and 3.2.
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