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Abstract

In this paper, we have established some generalized Simpson type integral inequalities for
generalized fractional integral. The results presented here would provide some fractional
inequalities involving k-fractional integral and Riemann-Liouville type fractional operators.
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1 Introduction

The following inequality is well known in the literature as Simpson’s inequality.

Theorem1 Let f : [a,b] — R be a four times continuously differentiable mapping on
(a, b) and ||f(4) Hoo = sup |f(4) (x)| < 00. Then, the following inequality holds:

1 a+b 1 b
‘g[f(a)+4f<—2 >+f(b)]——b_a/a fx)dx

1
<— | @ H b—a).
= 2880 ”f )

For recent refinements, counterparts, generalizations and new Simpson’s type inequalities,
see [1-8], [10-14], [16-24].

In [3], Dragomir et. al. proved the following some recent developments on Simpson’s
inequality for which the remainder is expressed in terms of lower derivatives than the fourth.
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Theorem 2 Suppose f : [a; b] — R is an absolutely continuous mapping on [a, b] whose
derivative belongs to L|a, b]. Then, the following inequality holds,

‘ [f(a)+4f< >+f(b)]——/ £ () dx

1[2q+1+1
Ef -
63(g+1)

o
|"e-otis,
where%—i—%:l.

In [16], Sarikaya et. al. obtained inequalities for differentiable convex mappings which
are connected with Simpson’s inequality, and they used the following lemma to prove it.

Lemmal Let f : I C R — R be an absolutely continuous mapping on 1° such that
f' € Ly[a, b, wherea,b € I° witha < b, then the following equality holds:

[f(a)+4f( )+f(b)}—— f F@d
b—a ('T(t 1\ (14t 1—t
-5 [(5“§>f (‘5*b+‘7?*0
1t 1+t 1
GO

The main inequality in [16], pointed out for s = 1, as follows:

Theorem3 Let f : I C R — R be a differentiable mapping on 1° such that f' € Ly [a, b],
where a,b € I° witha < b. If |f’|q is a convex on [a,b], q > 1, then the following
inequality holds:

‘ [f(a)+4f< )+f(b)]——/ F)dx

<w—m<HJ“»P<ﬂf@V+WMW)q

=12 \Bp+D 4

+Cﬂwﬁzﬂway ,

1,1 __
wherep—i—q_l.

Also, the following inequality was obtained by using the following identity which is given
by Chen et. al in [2].
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Lemma2 Let f : I C R — R be an absolutely continuous mapping on I° where a,b € 1
with a < b. Then the following equality holds:

[f @ +4f (— +f (b))}
s (o2) (5]
) (e

+/01 (é . %) / (%a + %@) dt.i| (1.2)

The aim of this paper is to establish new Simpson’s type inequalities for the class of
functions whose derivatives in absolute value at certain powers are convex functions via
generalized fractional integral operators.

2 New generalized fractional integral operators
In this section we summarize the generalized fractional integrals defined by Sarikaya and

Ertugral in [15].
Let’s define a function ¢ : [0, c0) — [0, 0o) satisfiying the following conditions :

/ L(t)dt
0 t

We define the following left-sided and right-sided generalized fractional integral operators,
respectively, as follows:

et I, F () :/ =D rvdr, x> a, @2.1)
b Iy f(X) =f ‘pt(t Fde, x <b. 2.2)

The most important feature of generalized fractional integrals is that they generalize
some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-
Liouville fractional integral, Katugampola fractional integrals, conformable fractional
integral, Hadamard fractional integrals, etc. These important special cases of the integral
operators (2.1) and (2.2) are mentioned below.

(i) If we take ¢ () = t, the operator (2.1) and (2.2) reduce to the Riemann integral as
follows:

Ia+f(x):fxf(t)dt, X >a,
b
I)- f(x) = / fdt, x <b.
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(i) If we take ¢ (1) = ¢ (a) , the operator (2.1) and (2.2) reduce to the Riemann-Liouville
fractional integral as follows:

1 X

I:i fx) = m/ (x —l)o‘_1 f@)dt, x > a,
1 b

[ f(x) = W/ (t —x)* ! f()dt, x <b.

(iii) If we take ¢ (t) = mt%, the operator (2.1) and (2.2) reduce to the k-Riemann-
Liouville fractional integral as follows:

SO = ( )/ x =0t fydr, x> a,
I @) = 1 = )/ -0t fyde, x <b
where
Tt (a)zfooot“—le—%dr, R(a) > 0
and

Ty (@) = k1T (%) R@) > 0:k > 0

are given by Mubeen and Habibullah in [9].

3 Main results

Throughout this study, for brevity, we define

(b—a)u) 1o ((b;a)u)
du < oo, A(y) :/ ——du < o0.
y u

ye
am= [ o (*5%)
0 u

In this section, using generalized fractional integral operators, we begin by the following
theorem:

Lemma3 Let f : I — R be an absoltely continuous mapping on 1° such that [’ €
L1 ([a, b]), where a, b € I1° with a < b. Then the following equality holds:

1 a+b
5 |:f (a)+4f <T> +f(b)]
1 a+b a+b
T2A(D [“”"’f( 2 ) “’f< )]
_b—a (Y(A@) AD)Y (11—t 1+t
_2/\(1)0(2 B 3>f(2“+ 2b)d’

b—a [Y[(A1) A®\ ,[(1+1t 1—1t
+2A(1) 0( T )f( e+ — b)dt. (3.1)
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Proof Tt suffices to note that
(YA ADY L, (1t 1+t
P [ (A A0) (s
LA A@®) 1+1
+/0 (—3 - >f( > +—b)dt
=1+ D. (3.2)
Integrating by parts, we obtain
(YA AD)Y (1t 1+1
he [ (A0 A (1 1),
(A A 1—t 141t 2 |
_< E )Jc(zajL 2b>b—a0
1 (e (55%) (1—t 1+t
_b—a/o . f( > a+ > b)dt
2 Al Al b
Ao+ A0 (5]
—a
1 b gO(X_a-‘v-b)
_b_aﬁb o £ () dx
A a+b B 1 a+b
=50 [2f()+f< )} —b_a(bfl(p)f( ; ) (3.3)
and similarly we get,
VAN A@YN L, (141t 1—1t
pe [ (AR ALY (1 ),
A +b 1 a+b
_6(b [2f(a)+4f< )]—m(u+l¢)f( > ) (3.4)

By adding Eq. (3.3) and (3.4), we have

b— a+b 1 a+b
2A(1)(l+ 2)—*|:f(fl)+4f<T>+f(b)i|—m|:a+<pf< )

b
st s (“37))]

that is desired result.

Remark 1 In Lemma 3 if we take ¢ () = ¢, then we have obtain the identity (1.1).

Remark 2 In Lemma 3, if we take ¢ (t) = %,

then we obtain the equality (1.2).
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@

Corollary 1 Under assumption of Lemma 3 with ¢ (1) = #"m, we have the following
equality
1 a+b
| f@+af(—— )+ /b
6 2
2]_’(b—a)k f a+b f a+b
Iy (O{+k) a*k —k
b—a (Y| [tF 1\ (1=t 141
= —_— - —b
2 /0[<2 3)f<2“+ 2 )
1ot (141 1—1
- - — —>b ) |ds.
+(3 2>f< 2 ‘T )}
Theorem4 Let f : I = [a,b] C R — R be an absolutely continuous mapping on I° such

that f' € Ly ([a, b]), wherea,b € I° witha < b. If the mapping }f/| is convex on |a, b],
then we have the following inequality

1 b
%[fwruv(“+)+fwﬂ
1 a+b a+b
_mun[ wf( >+”%f< 2)”

(b

< 2A(1) K O[|f @|+|f ®)] (3.5
where
Ao A
K (1) _fo > 3 dt. (3.6)

Proof From Lemma 3 and | f | is convex on [a, b] ,we get

1 a+b 1 a+b a+b
oo (420) o] o (5) e (422)]

—

b—a ('TIA@ AM||,, (11—t 1+t
§2A(1) ' > T3 < 3 a+ 2 b)’
A0 A0 /(ma+1_tb)ﬂdt
3 2 2 2
b—a ['|A@®) A1
A |2~ ( fl@ )|+ |f (b)l)dt
b—a ['[AMD)  AM|(1+1
tam T3 T2 ( |f' (@ )|+i|f (b)l)dt
b= A A
521\(1) [|f (a)|+|f (b)|]/ T_T dt
< 7 @+ | K
where K (¢) is defined in (3.6).This completes the proof. 0
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Remark 3 Under assumption of Theorem 4 with ¢ () = ¢, then Theorem 4 reduce to Corol-
lary 1in [16].

Corollary 2 Under assumption of Theorem 4 with ¢ (t) = ﬁf(a)’ we have the following
inequalities

1 a—+b
‘6 |:f (@) +4f (T) +f(b):|

21_%(17—51)% o a+b o a+b
Frtarn s () s (50)]

b —
<A@ b [|f @+ ®)].

wen = (3 (1) i -
*B=\3 <_k+(x 2@tk 3

o

Proof In Theorem 4, if we take ¢ (¢) = % we write

where

1 a+b
‘8 |:f (@) +4f <T) +f(b)]

2E b —a)E T, a+b o a+b
Frern e (50) - (5]

b— 1
<" @]+ |f <b>|]/0

a
2

and by simply compuations we get

2\t k k 1
3 kta) 2@tk 3

which is completes the proof. O

Remark 4 1f we take « = k = 1 in Corollary 2, then Corollary 2 reduces to Corollary 1 in
[16].

Corollary 3 Under assumption of Corollary 2 with k = 1, then we have

1 4 a+b b
‘g[f(a)Jr f<72 >+f( )]

2 —a) [, a+b w o (ath
T T+ [Ia*f< 2 )_Ib’f< 2 )”

b—a / !
< B[l @]+ ®]].
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()
“=1\3 1+a) 2@+ 3

Theorem5 Let f : I = [a,b] C R — R be an absolutely continuous mapping on I° such
that ' € Ly ([a,b]), wherea,b € I° witha < b. If the mapping |f’|q, q > 1, is convex
on [a, b], then we have the following inequality

1 a+b 1 a+b a+b
i@ ((50) 110 ] - g s ((50) 4 (7))

1
e[ ”dt)f’{(If’<a>|‘f+s|f’<b>|q>q
INORYA 4

. (3 I (a)|q4+ If (b>|q)1

1,1 __
wherep—i—q_l.

where

A1)
2 3

Proof From Lemma 3 and by Holder’s inequality, we get

1 a+b 1 a+b a+b
slrorsr ((50) 0] - g s (50) 4 (7))

b—a ('TIA@) AWM, (1—t 1+t
S2A(1)o[2_3 <2“+2b>’
Ay A@||,, (1+1 1—1t
3 T2 f( > “*H)H‘”
| PN sl _ qa \i
<([152-500) ([ (e 5[
0 2 3 0 2 2

A A@®)

3 2

) ([ (e 5 )
)L (oo

()
=/

A (1)

2 3

AW A@P\T [ . g
([ ) (S iror) e
<</‘ A@) ) @43 @\
“\Jo | 2 3 4

N (3 7 <a>|q4+ 7 <b>|">5} |

Remark 5 Under assumption of Theorem 5 with ¢ (f) = ¢, then Theorem 5 reduce to
Theorem 4 in [16].

m}
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Remark 6 Under assumption of Theorem 5 with ¢ (1) =

%, then Theorem 5 reduce to

Corollary 2.10 in [2].

o

Corollary 4 Under assumption of Theorem 5 with ¢ (t) = %, we have the following

inequality
1 a+b
‘8 [f (@) +4f (T) +f (b)]
2% b —a)k a+b a+b
I e I L iy ey O3 -
Ty (@ + k) [ “*’kf( 2 ) b ’kf< 2 )]
1 1
b — 1 t% 1 p P / q 3 / b q\ q
_b-a / i 1 A\ (@ 3] @)
2 0o |2 3 4
1
3£ @] + [ &) \*
_|_
4
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