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Abstract
Let X be a polynomial vector field on C2 with at most isolated zeros and whose trajectories
are all simply connected. Let us suppose that there is a polynomial P ∈ C[x, y] such that (i)
dP(X) = 1 or (ii) dP(X) = a · P, with a ∈ C

∗. In (Bustinduy and Giraldo, in Adv Math
285:1339–1357, 2015; Bustinduy and Giraldo, in J Differ Equ 264:3933–3939, 2018) the
authors determined X and P , up to an algebraic change of coordinates, when P ∈ C[x, y] is
primitive. In this note, we extend these results for an arbitrary P . Finally, as an application,
we show that if a polynomial vector field X on C

2 with at most isolated zeros has all its
trajectories simply connected and there exist P ∈ C[x, y] and n ∈ N

+ such that Xn(P) = 0
and Xn−1(P) �= 0 or Xn+1(P) = a · Xn(P) with a ∈ C

∗, X is complete and present some
questions on the study of derivations whose image is a Mathieu subspace.
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trajectories · Eigenfunctions of derivations

Mathematics Subject Classification Primary 32M25; Secondary 32L30 · 32S65

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4120
1.1 Vector fields and trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4120

To Felipe Cano, on his 60th birthday.

Supported by Spanish MICINN Project MTM2015-63612-P.

B Luis Giraldo
luis.giraldo@mat.ucm.es

Alvaro Bustinduy
abustind@nebrija.es

1 Departamento de Ingeniería Industrial Escuela Politécnica Superior, Universidad Antonio de
Nebrija, Calle Pirineos 55, 28040 Madrid, Spain

2 Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Instituto de
Matemática Interdisciplinar (IMI), Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040
Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-019-00670-z&domain=pdf
http://orcid.org/0000-0002-9599-5025


4120 A. Bustinduy, L. Giraldo

1.2 Vector fields and simply-connected trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 4120
1.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4122

2 Proof of Theorem1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4122
3 An application and some questions on the image of derivations . . . . . . . . . . . . . . . . . . 4123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4125

1 Introduction

1.1 Vector fields and trajectories

A holomorphic vector field X on C2 is a section of the tangent bundle of C2. Set coordinates
x , y in C

2, hence

X = P1(x, y)
∂

∂x
+ P2(x, y)

∂

∂ y
,

with P1, P2 holomorphic functions. A point which is a common zero of P1 and P2 is called
a singular point of X . Take z = (x, y) in C

2 and the differential equation ϕ′
z(t) = X(ϕz(t))

with ϕz(0) = z. The local solution ϕz can be extended by analytic continuation along paths
from t = 0 inC to a maximal connected Riemann surface πz : �z → C, which is a Riemann
domain over C. The solution of X through z is ϕz : �z → C

2. The (complex) trajectory Cz

of X through z is the Riemann surface ϕz(�z) immersed in C
2.

If�z = C, as domain inC (then, πz is an analytic isomorphism), X is said to be complete
on Cz . In this case, Cz is uniformized by C, and then analytically isomorphic to (= of type)
C or C∗ (maximum principle).

We say that X is complete if it is complete on Cz for any z. In this case, the flow ϕ :
C × C

2 → C
2 of X , (t, z) �→ ϕ(t, z) = ϕz(t), defines a holomorphic action of (C,+) on

C
2 by analytic automorphisms and X = ∂

∂t ϕ(t, z)|t=0.
There are different types of flows:

– ϕ is algebraic, if ϕ is a polynomial map.
– ϕ is quasi-algebraic, if ϕt , for any t ∈ C, is a polynomial automorphism.
– ϕ is proper, if the topological closure Cz of Cz in C

2, for any z, is an analytic curve.

1.2 Vector fields and simply-connected trajectories

Let X be a polynomial vector field (then P1, P2 ∈ C[x, y]) with simply-connected trajec-
tories. We addressed in [2,3] the problem of deciding if X is complete or not, under the
assumption that there existed a nonconstant primitive polynomial P ∈ C[x, y] such that

(i) dP(X) = 1, or
(ii) dP(X) = a · P with a �= 0.

Concretely, in both cases we proved that P = x and

X = [ax + d] ∂

∂x
+ [b(x)y + c(x)] ∂

∂ y
(1)

after a polynomial automorphism. In fact, it is obtained that a = 0 and d = 1 in case (i) [2],
and a �= 0, d = 0, b(0) = 0 and c(0) �= 0 in case (ii) [3]. In particular, X is complete. There
are several motivations to study these problems.
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1. If X is a complete polynomial vector field on C
2 with at most isolated zeros and simply

connected trajectories (of type C), by classification of complete polynomial vector fields [1]
X is as (1) after a polynomial change of coordinates. Moreover, after performing another
polynomial change of coordinates, we can assume that d = 0, if a �= 0; and d = 1, if
a = 0. Note that these vector fields satisfy one of the following two properties with respect
to P = x : either dP(X) = ax , if a �= 0; or dP(X) = 1, if a = 0.

On the other hand, if X has no zeros and flow ϕ, one also knows, according to [13], [16,
Théorème 2] and [16, Théorème 4] (see also [2, Introduction]):

– Algebraic ϕ ⇒ Quasi-algebraic ϕ ⇒ Proper ϕ and trajectories of type C.

– In these three situations for ϕ, after a holomorphic automorphism, there is a polynomial
P = x such that dP(X) = 1.

Then, it is natural to study if a reciprocal of Brunella’s result is valid:
If a polynomial vector field X on C

2 with at most isolated zeros and simply-connected
trajectories satisfies for a primitive polynomial P that d P(X) = aP , with a �= 0, or
d P(X) = 1, is X complete?

The affirmative answer to this question is given in [2] and [3], and it implies that such an
X has no trajectories of type D, and they are all of type C.

Note that in case (i), the trajectories are always proper inC2 and X is the constant horizontal
vector field after a holomorphic change of coordinates. However, in case (ii), the trajectories
are not necessarily proper.
2. Let X be a polynomial vector field on C2, and the C -derivation DX of C[x, y] associated
to X :

DX : C[x, y] → C[x, y]
f �→ X( f ).

A slice s of DX is a polynomial s ∈ C[x, y] such that DX (s) = 1. Questions about slices and
derivations are related to Cancellation Problem in affine spaces [11, Chapter10]. Moreover,
the Jacobian Conjecture can be formulated as a problem in terms of derivations with a slice
[11, Chapter3]. Furthermore, this famous conjecture has been also formulated by Van de
Essen, Wright and Zhao [17] in terms of derivations: it holds if the image of every derivation
of C[x, y] with zero divergence and having a slice is a Mathieu subspace (we will recall this
notion in the last section).

If DX is surjective, 1 ∈ Im(DX ) and DX has a slice. Surjective derivations in C[x, y] are
studied in [5], and they are studied too in affine domains B over C with small dimension in
[12]. An important property of a surjective derivation DX of C[x, y] is that X has simply-
connected trajectories [5, Proposition 1.6].

Motivated by these facts, we studied in [2] polynomial vector fields X onC2 with simply-
connected trajectories such that DX have a slice, and determined X , modulo a polynomial
automorphism. Moreover, we applied this result to the study of surjective derivations. In
particular we obtained in [2, Theorem2] an affirmative answer to a conjecture stated by
Cerveau in [6]: If DX is surjective, then, up to a polynomial change of coordinates,

X = ∂

∂x
+ by

∂

∂ y
(2)

with b ∈ C.
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1.3 Main result

In what follows, we will assume that X has at most isolated zeros. We extend the above
results to the case of a non-primitive polynomial P with the following theorem:

Theorem 1 Let X be a polynomial vector field in C
2. If there is P ∈ C[x, y] such that (i)

d P(X) = 1 or (ii) d P(X) = a · P, with a ∈ C
∗; and the trajectories of X are simply

connected, up to a polynomial change of coordinates:

(1.1) In case (i), P = x, and

X = ∂

∂x
+ [b(x)y + c(x)] ∂

∂ y
,

with b, c ∈ C[x], and
(1.2) In case (ii), P = xn, with n ∈ N

+, and

X = dx
∂

∂x
+ [b(x)y + c(x)] ∂

∂ y
,

with d = a/n, b, c ∈ C[x], b(0) = 0 and c(0) �= 0.

In particular, X is complete and has all its trajectories of type C.

2 Proof of Theorem1

Note that in case (i): dP(X) = 1, P is always primitive. Theorem 1, after [2] and [3], follows
by this proposition:

Proposition 1 Let X beapolynomial vector field inC2. If there is a non-primitive P ∈ C[x, y]
such that d P(X) = a · P, with a ∈ C

∗; and the trajectories of X are simply-connected, up
to a polynomial change of coordinates, P and X are as in (1.2) with n > 1.

Proof By Stein’s factorization Theorem, we consider a primitive polynomial P0 such that
P = h(P0) with h a polynomial in C[z] of degree n ≥ 2.

Lemma 1 The polynomial h ∈ C[z] has only one root
Proof Assume that h(z) has k roots αi ∈ C, for i from 1 to k, respectively of multiplicity
mi ∈ N

+. Then

h(z) = λ

k∏

i=1

(z − αi )
mi ,

with λ ∈ C
∗, and with n equal to

∑k
i=1 mi . According to dP(X) = aP , it follows that

h′(P0)dP0(X) = ah(P0). Then h(P0)/h′(P0) ∈ C[x, y], and thus h(z)/h′(z) ∈ C[z].
Because

h(z)

h′(z)
=

∏k
i=1(z − αi )∑k

i=1 mi (
∏

j �=i (z − α j ))

it is clear that if k ≥ 2, the polynomial
∑k

i=1 mi (
∏

j �=i (z − α j )) has other roots different
from αi and we obtain a contradiction because h(z)/h′(z) is not a polynomial. 
�
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After Lemma 1, Proposition 1 follows easily from [3] .
Assume that h(z) = (z − α1)

n , with n ≥ 2 (λ = 1). Condition dP(X) = aP can be
written as

n(P0 − α1)
n−1dP0(X) = a(P0 − α1)

n .

Hence dP0(X) = a/n(P0 −α1). As dP0 = d(P0 −α1), if Q = P0 −α1, one obtains that Q
is a primitive polynomial such that dQ(X) = a/nQ. According to [3], we can assume that
Q = x and

X = (a/n)x
∂

∂x
+ [b(x)y + c(x)] ∂

∂ y
,

where b, c ∈ C[x] with b(0) = 0 and c(0) �= 0 after a polynomial automorphism. Then
P = xn , and Proposition 1 is proved.


�

3 An application and some questions on the image of derivations

First, we give an application of Theorem 1.

Theorem 2 Let X be a polynomial vector field in C
2 whose trajectories are all simply con-

nected. If there is a nonconstant P ∈ C[x, y] and n ∈ N
+ satisfying:

a) Xn(P) = 0 and Xn−1(P) �= 0, or
b) Xn+1(P) = a · Xn(P) for a ∈ C

∗

Then, X is complete.

Proof In case a), suppose first that n = 1; then X(P) = 0 and as P is not a constant
polynomial, according to [15], after a polynomial change of coordinates, X = ∂/∂x which is
complete. If n ≥ 2, take P̄ := Xn−1(P). If P̄ is not constant, then X(P̄) = 0 and as before
[15] implies that after a polynomial change of coordinates X = ∂/∂x , that is complete.
Otherwise, if P̄ = λ ∈ C

∗, it is enough to apply Theorem 1 to X̃ := (1/λ)X and P if n = 2,
and to X̃ and P̃ := Xn−2(P) if n > 2, because X̃(P) = 1 and X̃(P̃) = 1 respectively, to
conclude that X̃ , and then X , are complete.

In case b), we note that neither Xn(P) nor Xn+1(P) equals a nonzero constant. Denote
P̂ := Xn(P). Since X(P̂) = a · P̂ , Theorem 1 implies that X is complete. 
�

Consider the natural domain �, containing {0} × C
2, in C × C

2, where the local flow
ϕ : � → C

2 of X is defined as ϕ(t, x, y) = ϕz(t) (see Sect. 1).
Take P ∈ C[x, y]. Then P(ϕ(t, x, y)) can be expressed according to the Lie series as:

P(ϕ(t, x, y)) = P(x, y) + X2(P)(x, y)
t2

2! + X3(P)(x, y)
t3

3! + · · ·
Theorem 2 implies the following:

Corollary 1 Let X be a polynomial vector field in C
2 whose trajectories are all simply con-

nected. Consider the local flow ϕ : � → C
2 of X. If there is a nonconstant P ∈ C[x, y] and

n ∈ N
+ satisfying:

(a)

P(ϕ(t, x, y)) = P + X(P)t + X2(P)
t2

2! + · · · + Xn−1(P)
tn−1

(n − 1)! ,
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with Xn−1(P) �= 0, or
(b)

P(ϕ(t, x, y)) = P + X(P)t + X2(P)
t2

2! + · · · + Xn−1(P)
tn−1

(n − 1)!+

+ a−n Xn(P)

[
eat − (1 + at + (at)2

2! + · · · + (at)n−1

(n − 1)! )
]

,

with a ∈ C
∗.

Then, ϕ can be extended to C × C
2 and X is complete.

Remark 1 The Lie series is related to r -inflection points of the vector field with respect to
curves of degree r , where r = deg(P). See [7,9]; see [10] for an extension of this idea for
codimension one foliations.

Finally, we want to point out some ideas related with Mathieu subspaces, recently intro-
duced by Zhao in [18], and the study of derivations ofC[x, y]. Let us first recall the following

Definition 1 Let R be a commutative k-algebra and M a k-subspace of R. Then M is a
Mathieu subspace of R if the following condition holds: if a ∈ R is such that am ∈ M for
all m ≥ 1, then for any b ∈ R there exists and N ∈ N such that bam ∈ M for all m ≥ N .

In our situation, R = C[x, y]. It is clear that the image of a derivation Im(DX ) is a C-
subspace of C[x, y]. However, Im(DX ) is not necessarily a Mathieu subspace. Indeed, Zhao
proved in [18, Lemma4,5] that if M is a Mathieu subspace of R and 1 ∈ M , then M = R.
The following example, taken from [17, Example2.4],

X = ∂

∂x
− y2

∂

∂ y

shows that Im(DX ) is not a Mathieu subspace, as 1 ∈ Im (DX ) but DX is not surjective
(y /∈ Im (DX )).

Recall that DX is locally finite if for any f ∈ C[x, y], the C-vector space spanned by
{Xn f | n ≥ 0} has finite dimension. If DX is locally finite, Im(DX ) is a Mathieu subspace
[17, Theorem3.1]. In particular, if DX is locally finite and has a slice, X is surjective, and
then of the form (2) after a polynomial automorphism [17, Proposition3.2].

It would be interesting to determine polynomial vector fields X with all its trajectories
simply-connected and such that Im(DX ) is aMathieu subspace ofC[x, y], up to a polynomial
automorphism.

A polynomial vector field X in C2 determines a locally finite derivation DX if and only if
its flow ϕ : C × C

2 → C
2 is quasi-algebraic [8, Theorem3.1]. In particular, X is complete.

As we mentioned before, in [17, Theorem4.3] it is proved that the Jacobian conjecture
in C

2 holds if and only if for every derivation D of C[x, y] with zero divergence (where if
D = p ∂

∂x + q ∂
∂ y , Div (D) = ∂ p

∂x + ∂q
∂ y ) and having a slice, it holds that Im(D) is a Mathieu

subspace.
Recall that the jacobian conjecture in C

2 affirms that a polynomial map F := (F1, F2) :
C
2 −→ C

2 with det JF = 1 is an automorphism. We call a pair of polynomials F1, F2 ∈
C[x, y] with det J(F1,F2) = 1 a Jacobian pair. In a joint article with Muciño [4], the authors
proved that the invertibility of the map given by the jacobian pair is equivalent to the fact that
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one of the vector fields

∂

∂F2
:= ∂F1

∂ y

∂

∂x
− ∂F1

∂x

∂

∂ y
or

∂

∂F1
:= ∂F2

∂ y

∂

∂x
− ∂F2

∂x

∂

∂ y

is complete. Hence, the condition that the image of a derivation D with zero divergence and
having a slice is a Mathieu subspace is equivalent to the fact that the polynomial vector field
inducing D is complete.

Thus, we note that for derivations there is a close relation between having as image a
Mathieu subspace and being induced by a complete polynomial vector field.We do not know
examples of a derivation DX determined by a non complete vector field X for which Im(DX )

is a Mathieu subspace of C[x, y].
Example 1 Let us consider

X = ∂

∂x
+ xy

∂

∂ y
.

X is complete with flow ϕ(t, x0, y0) = (t + x0, y0e
t2
2 +x0t ). Then DX is not locally finite. Its

trajectories are simply-connected. Moreover, DX has x as slice.
Im(DX ) is not a Mathieu subspace. Otherwise, as 1 ∈ Im(DX ), DX should be surjective

as observed above. But this is not possible because y /∈ Im (DX ), as a simple calculation
shows: writing Q = a0(x) + a1(x)y + · · · + an(n)yn , with ai (x) ∈ C[x], DX (Q) = y
implies

y = a′
0(x) + a′

1(x)y + · · · + an(x)
′yn + xy[a1(x) + 2a2(x)y + · · · + nan(x)y

n−1]
hence it should hold that

a′
1(x) + xa1(x) = 1,

which is impossible.

Example 2 [14, Theorem 2.6] Let us consider

X = bxa yb−1 ∂

∂x
− axa−1yb

∂

∂ y
.

with a, b ≥ 1. Then, Im(DX ) is a Mathieu subspace if and only if a = b.
Note that, when a = b ≥ 2, X is a vector field with non isolated singularities, trajectories

of type C∗, and whose image is a Mathieu subspace.
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