ORIGINAL PAPER

Remarks on vector fields with simply connected trajectories and their associated derivations

Alvaro Bustinduy¹ · Luis Giraldo[2](http://orcid.org/0000-0002-9599-5025)

Received: 4 July 2018 / Accepted: 3 April 2019 / Published online: 25 April 2019 © The Royal Academy of Sciences, Madrid 2019

Abstract

Let *X* be a polynomial vector field on \mathbb{C}^2 with at most isolated zeros and whose trajectories are all simply connected. Let us suppose that there is a polynomial $P \in \mathbb{C}[x, y]$ such that (i) $dP(X) = 1$ or (ii) $dP(X) = a \cdot P$, with $a \in \mathbb{C}^*$. In (Bustinduy and Giraldo, in Adv Math 285:1339–1357, [2015;](#page-6-0) Bustinduy and Giraldo, in J Differ Equ 264:3933–3939, [2018\)](#page-6-1) the authors determined *X* and *P*, up to an algebraic change of coordinates, when $P \in \mathbb{C}[x, y]$ is primitive. In this note, we extend these results for an arbitrary *P*. Finally, as an application, we show that if a polynomial vector field *X* on \mathbb{C}^2 with at most isolated zeros has all its trajectories simply connected and there exist $P \in \mathbb{C}[x, y]$ and $n \in \mathbb{N}^+$ such that $X^n(P) = 0$ and $X^{n-1}(P) \neq 0$ or $X^{n+1}(P) = a \cdot X^{n}(P)$ with $a \in \mathbb{C}^*$, *X* is complete and present some questions on the study of derivations whose image is a Mathieu subspace.

Keywords Foliation transverse to a fibration · Foliation *P*-complete · Simply connected trajectories · Eigenfunctions of derivations

Mathematics Subject Classification Primary 32M25; Secondary 32L30 · 32S65

Contents

To Felipe Cano, on his 60th birthday.

Supported by Spanish MICINN Project MTM2015-63612-P.

 \boxtimes Luis Giraldo luis.giraldo@mat.ucm.es Alvaro Bustinduy abustind@nebrija.es

¹ Departamento de Ingeniería Industrial Escuela Politécnica Superior, Universidad Antonio de Nebrija, Calle Pirineos 55, 28040 Madrid, Spain

² Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Instituto de Matemática Interdisciplinar (IMI), Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain

1 Introduction

1.1 Vector fields and trajectories

A holomorphic vector field *X* on \mathbb{C}^2 is a section of the tangent bundle of \mathbb{C}^2 . Set coordinates x, y in \mathbb{C}^2 , hence

$$
X = P_1(x, y)\frac{\partial}{\partial x} + P_2(x, y)\frac{\partial}{\partial y},
$$

with P_1 , P_2 holomorphic functions. A point which is a common zero of P_1 and P_2 is called a singular point of *X*. Take $z = (x, y)$ in \mathbb{C}^2 and the differential equation $\varphi'_z(t) = X(\varphi_z(t))$ with $\varphi_z(0) = z$. The local solution φ_z can be extended by analytic continuation along paths from $t = 0$ in $\mathbb C$ to a maximal connected Riemann surface $\pi_z : \Omega_z \to \mathbb C$, which is a Riemann domain over \mathbb{C} . The solution of *X* through *z* is $\varphi_z : \Omega_z \to \mathbb{C}^2$. The (complex) trajectory C_z of *X* through *z* is the Riemann surface $\varphi_z(\Omega_z)$ immersed in \mathbb{C}^2 .

If Ω _z = \mathbb{C} , as domain in \mathbb{C} (then, π _z is an analytic isomorphism), *X* is said to be complete on C_z . In this case, C_z is uniformized by $\mathbb C$, and then analytically isomorphic to (= of type) C or C[∗] (maximum principle).

We say that *X* is complete if it is complete on C_z for any *z*. In this case, the flow φ : $\mathbb{C} \times \mathbb{C}^2 \to \mathbb{C}^2$ of *X*, $(t, z) \mapsto \varphi(t, z) = \varphi_z(t)$, defines a holomorphic action of $(\mathbb{C}, +)$ on \mathbb{C}^2 by analytic automorphisms and $X = \frac{\partial}{\partial t} \varphi(t, z)_{|t=0}$.

There are different types of flows:

- φ is *algebraic*, if φ is a polynomial map.
- $φ$ is *quasi-algebraic*, if $φ_t$, for any $t ∈ \mathbb{C}$, is a polynomial automorphism.
- $-\varphi$ is *proper*, if the topological closure \overline{C}_z of C_z in \mathbb{C}^2 , for any *z*, is an analytic curve.

1.2 Vector fields and simply-connected trajectories

Let *X* be a polynomial vector field (then P_1 , $P_2 \in \mathbb{C}[x, y]$) with simply-connected trajectories. We addressed in [\[2](#page-6-0)[,3](#page-6-1)] the problem of deciding if *X* is complete or not, under the assumption that there existed a nonconstant primitive polynomial $P \in \mathbb{C}[x, y]$ such that

(i)
$$
dP(X) = 1
$$
, or

(ii) $dP(X) = a \cdot P$ with $a \neq 0$.

Concretely, in both cases we proved that $P = x$ and

$$
X = [ax + d]\frac{\partial}{\partial x} + [b(x)y + c(x)]\frac{\partial}{\partial y}
$$
 (1)

after a polynomial automorphism. In fact, it is obtained that $a = 0$ and $d = 1$ in case (i) [\[2\]](#page-6-0), and $a \neq 0$, $d = 0$, $b(0) = 0$ and $c(0) \neq 0$ in case (ii) [\[3\]](#page-6-1). In particular, *X* is complete. There are several motivations to study these problems.

1. If *X* is a complete polynomial vector field on \mathbb{C}^2 with at most isolated zeros and simply connected trajectories (of type C), by classification of complete polynomial vector fields [\[1\]](#page-6-3) *X* is as [\(1\)](#page-1-3) after a polynomial change of coordinates. Moreover, after performing another polynomial change of coordinates, we can assume that $d = 0$, if $a \neq 0$; and $d = 1$, if $a = 0$. Note that these vector fields satisfy one of the following two properties with respect to $P = x$: either $dP(X) = ax$, if $a \neq 0$; or $dP(X) = 1$, if $a = 0$.

On the other hand, if *X* has no zeros and flow φ , one also knows, according to [\[13](#page-7-0)], [\[16,](#page-7-1) Théorème 2] and [\[16,](#page-7-1) Théorème 4] (see also [\[2,](#page-6-0) Introduction]):

- Algebraic $\varphi \Rightarrow$ Quasi-algebraic $\varphi \Rightarrow$ Proper φ and trajectories of type $\mathbb C$.
- In these three situations for φ , after a holomorphic automorphism, there is a polynomial $P = x$ such that $dP(X) = 1$.

Then, it is natural to study if a reciprocal of Brunella's result is valid:

If a polynomial vector field X on $\hat{\mathbb{C}}^2$ *with at most isolated zeros and simply-connected trajectories satisfies for a primitive polynomial P that* $dP(X) = aP$ *, with* $a \neq 0$ *, or* $dP(X) = 1$, *is X complete?*

The affirmative answer to this question is given in [\[2](#page-6-0)] and [\[3](#page-6-1)], and it implies that such an *X* has no trajectories of type \mathbb{D} , and they are all of type \mathbb{C} .

Note that in case (i), the trajectories are always proper in \mathbb{C}^2 and X is the constant horizontal vector field after a holomorphic change of coordinates. However, in case (ii), the trajectories are not necessarily proper.

2. Let *X* be a polynomial vector field on \mathbb{C}^2 , and the \mathbb{C} -derivation D_X of $\mathbb{C}[x, y]$ associated to *X*:

$$
D_X: \mathbb{C}[x, y] \to \mathbb{C}[x, y]
$$

$$
f \mapsto X(f).
$$

A *slice s* of D_X is a polynomial $s \in \mathbb{C}[x, y]$ such that $D_X(s) = 1$. Questions about slices and derivations are related to Cancellation Problem in affine spaces [\[11,](#page-7-2) Chapter 10]. Moreover, the Jacobian Conjecture can be formulated as a problem in terms of derivations with a slice [\[11,](#page-7-2) Chapter 3]. Furthermore, this famous conjecture has been also formulated by Van de Essen, Wright and Zhao [\[17](#page-7-3)] in terms of derivations: it holds if the image of every derivation of $\mathbb{C}[x, y]$ with zero divergence and having a slice is a Mathieu subspace (we will recall this notion in the last section).

If D_X is surjective, $1 \in \text{Im}(D_X)$ and D_X has a slice. Surjective derivations in $\mathbb{C}[x, y]$ are studied in [\[5\]](#page-6-4), and they are studied too in affine domains B over $\mathbb C$ with small dimension in [\[12\]](#page-7-4). An important property of a surjective derivation D_X of $\mathbb{C}[x, y]$ is that *X* has simplyconnected trajectories [\[5](#page-6-4), Proposition 1.6].

Motivated by these facts, we studied in [\[2](#page-6-0)] polynomial vector fields *X* on \mathbb{C}^2 with simplyconnected trajectories such that D_X have a slice, and determined X , modulo a polynomial automorphism. Moreover, we applied this result to the study of surjective derivations. In particular we obtained in [\[2](#page-6-0), Theorem 2] an affirmative answer to a conjecture stated by Cerveau in $[6]$: If D_X *is surjective, then, up to a polynomial change of coordinates,*

$$
X = \frac{\partial}{\partial x} + by \frac{\partial}{\partial y} \tag{2}
$$

with $b \in \mathbb{C}$.

1.3 Main result

In what follows, we will assume that *X* has at most isolated zeros. We extend the above results to the case of a non-primitive polynomial *P* with the following theorem:

Theorem 1 *Let X be a polynomial vector field in* \mathbb{C}^2 *. If there is* $P \in \mathbb{C}[x, y]$ *such that (i)* $dP(X) = 1$ *or (ii)* $dP(X) = a \cdot P$, with $a \in \mathbb{C}^*$; and the trajectories of X are simply *connected, up to a polynomial change of coordinates:*

 (1.1) *In case* (i), $P = x$ *, and*

$$
X = \frac{\partial}{\partial x} + [b(x)y + c(x)]\frac{\partial}{\partial y},
$$

with b, $c \in \mathbb{C}[x]$ *, and*

(1.2) *In case* (ii), $P = x^n$ *, with* $n \in \mathbb{N}^+$ *, and*

$$
X = dx \frac{\partial}{\partial x} + [b(x)y + c(x)] \frac{\partial}{\partial y},
$$

with d = a/n *, b, c* $\in \mathbb{C}[x]$ *, b*(0) = 0 *and c*(0) \neq 0*.*

In particular, X is complete and has all its trajectories of type C*.*

2 Proof of Theorem [1](#page-3-1)

Note that in case (i): $dP(X) = 1$, *P* is always primitive. Theorem [1,](#page-3-1) after [\[2](#page-6-0)] and [\[3](#page-6-1)], follows by this proposition:

Proposition 1 Let X be a polynomial vector field in \mathbb{C}^2 . If there is a non-primitive $P \in \mathbb{C}[x, y]$ *such that* $dP(X) = a \cdot P$ *, with* $a \in \mathbb{C}^*$ *; and the trajectories of X are simply-connected, up to a polynomial change of coordinates, P and X are as in* (1.2) *with n* > 1*.*

Proof By Stein's factorization Theorem, we consider a primitive polynomial P_0 such that $P = h(P_0)$ with *h* a polynomial in $\mathbb{C}[z]$ of degree $n \geq 2$.

Lemma 1 *The polynomial* $h \in \mathbb{C}[z]$ *has only one root*

Proof Assume that $h(z)$ has k roots $\alpha_i \in \mathbb{C}$, for *i* from 1 to k , respectively of multiplicity $m_i \in \mathbb{N}^+$. Then

$$
h(z) = \lambda \prod_{i=1}^{k} (z - \alpha_i)^{m_i},
$$

with $\lambda \in \mathbb{C}^*$, and with *n* equal to $\sum_{i=1}^k m_i$. According to $dP(X) = aP$, it follows that $h'(P_0)dP_0(X) = ah(P_0)$. Then $h(P_0)/h'(P_0) \in \mathbb{C}[x, y]$, and thus $h(z)/h'(z) \in \mathbb{C}[z]$. Because

$$
\frac{h(z)}{h'(z)} = \frac{\prod_{i=1}^{k} (z - \alpha_i)}{\sum_{i=1}^{k} m_i (\prod_{j \neq i} (z - \alpha_j))}
$$

it is clear that if $k \ge 2$, the polynomial $\sum_{i=1}^{k} m_i (\prod_{j \ne i} (z - \alpha_j))$ has other roots different from α_i and we obtain a contradiction because $h(z)/h'(z)$ is not a polynomial. \Box After Lemma [1,](#page-3-3) Proposition [1](#page-3-4) follows easily from [\[3](#page-6-1)].

Assume that $h(z) = (z - \alpha_1)^n$, with $n > 2$ ($\lambda = 1$). Condition $dP(X) = aP$ can be written as

$$
n(P_0 - \alpha_1)^{n-1} dP_0(X) = a(P_0 - \alpha_1)^n.
$$

Hence $dP_0(X) = a/n(P_0 - \alpha_1)$. As $dP_0 = d(P_0 - \alpha_1)$, if $Q = P_0 - \alpha_1$, one obtains that *Q* is a primitive polynomial such that $dQ(X) = a/nQ$. According to [\[3](#page-6-1)], we can assume that $Q = x$ and

$$
X = (a/n)x \frac{\partial}{\partial x} + [b(x)y + c(x)] \frac{\partial}{\partial y},
$$

where *b*, $c \in \mathbb{C}[x]$ with $b(0) = 0$ and $c(0) \neq 0$ after a polynomial automorphism. Then $P = x^n$, and Proposition [1](#page-3-4) is proved.

Ч

3 An application and some questions on the image of derivations

First, we give an application of Theorem [1.](#page-3-1)

Theorem 2 Let *X* be a polynomial vector field in \mathbb{C}^2 whose trajectories are all simply con*nected. If there is a nonconstant* $P \in \mathbb{C}[x, y]$ *and* $n \in \mathbb{N}^+$ *satisfying:*

a) $X^n(P) = 0$ *and* $X^{n-1}(P) ≠ 0$ *, or b*) $X^{n+1}(P) = a \cdot X^n(P)$ *for a* ∈ \mathbb{C}^*

Then, X is complete.

Proof In case *a*), suppose first that $n = 1$; then $X(P) = 0$ and as P is not a constant polynomial, according to [\[15\]](#page-7-6), after a polynomial change of coordinates, $X = \partial/\partial x$ which is complete. If $n > 2$, take $\overline{P} := X^{n-1}(P)$. If \overline{P} is not constant, then $X(\overline{P}) = 0$ and as before [\[15\]](#page-7-6) implies that after a polynomial change of coordinates $X = \partial/\partial x$, that is complete. Otherwise, if $\overline{P} = \lambda \in \mathbb{C}^*$, it is enough to apply Theorem [1](#page-3-1) to $\tilde{X} := (1/\lambda)X$ and P if $n = 2$, and to \tilde{X} and $\tilde{P} := X^{n-2}(P)$ if $n > 2$, because $\tilde{X}(P) = 1$ and $\tilde{X}(\tilde{P}) = 1$ respectively, to conclude that \overline{X} , and then X , are complete.

In case *b*), we note that neither $X^n(P)$ nor $X^{n+1}(P)$ equals a nonzero constant. Denote \hat{P} := $X^n(P)$. Since $X(\hat{P}) = a \cdot \hat{P}$, Theorem [1](#page-3-1) implies that *X* is complete. \Box

Consider the natural domain Ω , containing $\{0\} \times \mathbb{C}^2$, in $\mathbb{C} \times \mathbb{C}^2$, where the local flow φ : $\Omega \to \mathbb{C}^2$ of *X* is defined as $\varphi(t, x, y) = \varphi_{\tau}(t)$ (see Sect. [1\)](#page-1-0).

Take $P \in \mathbb{C}[x, y]$. Then $P(\varphi(t, x, y))$ can be expressed according to the *Lie series* as:

$$
P(\varphi(t, x, y)) = P(x, y) + X^{2}(P)(x, y)\frac{t^{2}}{2!} + X^{3}(P)(x, y)\frac{t^{3}}{3!} + \cdots
$$

Theorem [2](#page-4-1) implies the following:

Corollary 1 Let X be a polynomial vector field in \mathbb{C}^2 whose trajectories are all simply con*nected. Consider the local flow* $\varphi : \Omega \to \mathbb{C}^2$ *of X. If there is a nonconstant P* $\in \mathbb{C}[x, y]$ *and* $n \in \mathbb{N}^+$ *satisfying:*

(a)

$$
P(\varphi(t, x, y)) = P + X(P)t + X^{2}(P)\frac{t^{2}}{2!} + \dots + X^{n-1}(P)\frac{t^{n-1}}{(n-1)!},
$$

 $\circled{2}$ Springer

with $X^{n-1}(P) \neq 0$, *or* (b)

$$
P(\varphi(t, x, y)) = P + X(P)t + X^{2}(P)\frac{t^{2}}{2!} + \dots + X^{n-1}(P)\frac{t^{n-1}}{(n-1)!} + \dots + a^{-n}X^{n}(P)\left[e^{at} - (1 + at + \frac{(at)^{2}}{2!} + \dots + \frac{(at)^{n-1}}{(n-1)!})\right],
$$

with $a \in \mathbb{C}^*$.

Then, φ *can be extended to* $\mathbb{C} \times \mathbb{C}^2$ *and X is complete.*

Remark 1 The Lie series is related to *r*-inflection points of the vector field with respect to curves of degree *r*, where $r = \deg(P)$. See [\[7](#page-7-7)[,9\]](#page-7-8); see [\[10\]](#page-7-9) for an extension of this idea for codimension one foliations.

Finally, we want to point out some ideas related with *Mathieu subspaces*, recently intro-duced by Zhao in [\[18\]](#page-7-10), and the study of derivations of $\mathbb{C}[x, y]$. Let us first recall the following

Definition 1 Let *R* be a commutative *k*-algebra and *M* a *k*-subspace of *R*. Then *M* is a Mathieu subspace of *R* if the following condition holds: if $a \in R$ is such that $a^m \in M$ for all $m > 1$, then for any $b \in R$ there exists and $N \in \mathbb{N}$ such that $ba^m \in M$ for all $m > N$.

In our situation, $R = \mathbb{C}[x, y]$. It is clear that the image of a derivation Im(*D_X*) is a \mathbb{C} subspace of $\mathbb{C}[x, y]$. However, Im(D_X) is not necessarily a Mathieu subspace. Indeed, Zhao proved in [\[18](#page-7-10), Lemma 4,5] that if *M* is a Mathieu subspace of *R* and $1 \in M$, then $M = R$. The following example, taken from [\[17](#page-7-3), Example 2.4],

$$
X = \frac{\partial}{\partial x} - y^2 \frac{\partial}{\partial y}
$$

shows that Im(D_X) is not a Mathieu subspace, as $1 \in \text{Im}(D_X)$ but D_X is not surjective $(y \notin \text{Im}(D_X)).$

Recall that *D_X* is locally finite if for any $f \in \mathbb{C}[x, y]$, the C-vector space spanned by ${X^n f \mid n \geq 0}$ has finite dimension. If D_X is locally finite, Im(D_X) is a Mathieu subspace [\[17,](#page-7-3) Theorem 3.1]. In particular, if D_X is locally finite and has a slice, *X* is surjective, and then of the form [\(2\)](#page-2-0) after a polynomial automorphism [\[17,](#page-7-3) Proposition 3.2].

It would be interesting to *determine polynomial vector fields X with all its trajectories simply-connected and such that* $\text{Im}(D_X)$ *is a Mathieu subspace of* $\mathbb{C}[x, y]$ *, up to a polynomial automorphism.*

A polynomial vector field *X* in \mathbb{C}^2 determines a locally finite derivation D_X if and only if its flow $\varphi : \mathbb{C} \times \mathbb{C}^2 \to \mathbb{C}^2$ is quasi-algebraic [\[8](#page-7-11), Theorem 3.1]. In particular, *X* is complete.

As we mentioned before, in [\[17](#page-7-3), Theorem 4.3] it is proved that the Jacobian conjecture in \mathbb{C}^2 holds if and only if for every derivation *D* of $\mathbb{C}[x, y]$ with zero divergence (where if $D = p \frac{\partial}{\partial x} + q \frac{\partial}{\partial y}$, Div $(D) = \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y}$ and having a slice, it holds that Im(*D*) is a Mathieu subspace.

Recall that the jacobian conjecture in \mathbb{C}^2 affirms that a polynomial map $F := (F_1, F_2)$: $\mathbb{C}^2 \longrightarrow \mathbb{C}^2$ with det $J_F = 1$ is an automorphism. We call a pair of polynomials $F_1, F_2 \in$ $\mathbb{C}[x, y]$ with det $J_{(F_1, F_2)} = 1$ a *Jacobian pair*. In a joint article with Muciño [\[4\]](#page-6-5), the authors proved that the invertibility of the map given by the jacobian pair is equivalent to the fact that one of the vector fields

$$
\frac{\partial}{\partial F_2} := \frac{\partial F_1}{\partial y} \frac{\partial}{\partial x} - \frac{\partial F_1}{\partial x} \frac{\partial}{\partial y} \quad \text{or} \quad \frac{\partial}{\partial F_1} := \frac{\partial F_2}{\partial y} \frac{\partial}{\partial x} - \frac{\partial F_2}{\partial x} \frac{\partial}{\partial y}
$$

is complete. Hence, the condition that the image of a derivation *D* with zero divergence and having a slice is a Mathieu subspace is equivalent to the fact that the polynomial vector field inducing *D* is complete.

Thus, we note that for derivations there is a close relation between having as image a Mathieu subspace and being induced by a complete polynomial vector field. *We do not know examples of a derivation* D_X *determined by a non complete vector field X for which* $\text{Im}(D_X)$ *is a Mathieu subspace of* ^C[*x*, *^y*].

Example 1 Let us consider

$$
X = \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y}.
$$

X is complete with flow $\varphi(t, x_0, y_0) = (t + x_0, y_0 e^{\frac{t^2}{2} + x_0 t})$. Then D_X is not locally finite. Its trajectories are simply-connected. Moreover, D_X has x as slice.

Im(D_X) is not a Mathieu subspace. Otherwise, as $1 \in \text{Im}(D_X)$, D_X should be surjective as observed above. But this is not possible because $y \notin \text{Im}(D_X)$, as a simple calculation shows: writing $Q = a_0(x) + a_1(x)y + \cdots + a_n(n)y^n$, with $a_i(x) \in \mathbb{C}[x]$, $D_X(Q) = y$ implies

$$
y = a'_0(x) + a'_1(x)y + \dots + a_n(x)'y^n + xy[a_1(x) + 2a_2(x)y + \dots + na_n(x)y^{n-1}]
$$

hence it should hold that

$$
a_1'(x) + xa_1(x) = 1,
$$

which is impossible.

Example 2 [\[14,](#page-7-12) Theorem 2.6] Let us consider

$$
X = bx^a y^{b-1} \frac{\partial}{\partial x} - ax^{a-1} y^b \frac{\partial}{\partial y}.
$$

with $a, b > 1$. Then, Im(D_X) is a Mathieu subspace if and only if $a = b$.

Note that, when $a = b \ge 2$, X is a vector field with non isolated singularities, trajectories of type C∗, and whose image is a Mathieu subspace.

Acknowledgements The authors want to thank the referees for a careful reading, and for pointing out the references included in Remark [1.](#page-5-0)

References

- 1. Brunella, M.: Complete vector fields on the complex plane. Topology **43**(2), 433–445 (2004)
- 2. Bustinduy, A., Giraldo, L.: Vector fields with simply connected trajectories transverse to a polynomial. Adv. Math. **285**, 1339–1357 (2015)
- 3. Bustinduy, A., Giraldo, L.: On vector fields with simply connected trajectories and one invariant line. J. Differ. Equ. **264**, 3933–3939 (2018)
- 4. Bustinduy, A., Giraldo, L., Muciño-Raymundo, J.: Vector fields from locally invertible polynomial maps in C*n*. Colloq. Math. **140**, 205–220 (2015)
- 5. Cerveau, D.: Dérivations surjectives de l'anneau ^C[*x*, *^y*]. J. Algebra **¹⁹⁵**, 320–335 (1997)
- 6. Cerveau, D.: Quelques problèmes en géométrie feuilletée pour les 60 années de l'IMPA. Bull. Braz. Math. Soc. New Ser. **44**, 653–679 (2013)
- 7. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pac. J. Math. **229**(1), 63–117 (2007)
- 8. Coomes, B., Zurkowski, V.: Linearization of polynomial flows and spectra of derivations. J. Dyn. Differ. Equ. **1**, 29–66 (1991)
- 9. Corrêa Jr., M.: An improvement to Laguntinskii–Pereira integrability theorem. Math. Res. Lett **18**, 645– 661 (2011)
- 10. Corrêa, M., Corrêa Jr., M., Maza, L.G., Soares, M.G.: Hypersurfaces invariant by Pfaff systems. Commun. Contemp. Math. **17**(16), 1450051 (2015)
- 11. Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol. 136. Springer, Berlin (2006)
- 12. Gurjar, R.V., Masuda, K, Miyanishi, M.: Surjective derivations in small dimensions. J. Ramanujan Math. Soc. **28A**(Spec. Iss.), 221–246 (2013)
- 13. Rentschler, R.: Opérations du groupe additif sur le plan affine. C. R. Acad. Sci. Paris **267**, 384–387 (1968)
- 14. Sun, X.: Images of derivations of polynomial algebras with divergence zero. J. Algebra **492**, 414–418 (2017)
- 15. Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^2 . J. Math. Soc. Jpn. **26**, 241–257 (1974)
- 16. Suzuki, M.: Sur les opérations holomorphes du groupe additif complexe sur l'espace de deux variables complexes. Ann. Sci. École Norm. Sup. **10**(4), 517–546 (1977)
- 17. van den Essen, A., Wright, D., Zhao, W.: Images of locally finite derivations of polynomial algebras in two variables. J. Pure Appl. Algebra **215**, 2130–2134 (2011)
- 18. Zhao, W.: Generalizations of the image conjecture and the Mathieu conjecture. J. Pure Appl. Algebra **214**, 1200–1216 (2010)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.