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Abstract
In this article, we investigate the generalized Hyers–Ulam stability of ternary homomor-
phisms from ternary semigroups into modular spaces. Ternary algebraic structures appear
in theoretical and mathematical physics. We show the stability of that functional equation
without�2-condition and Fatou property of the modular space. Moreover, we solve the same
problem for β-homogeneous Banach spaces and show a hyperstability of a mapping from
ternary semigroups into normed algebras.

Keywords Generalized Hyers–Ulam stability · Ternary homomorphism · Modular space ·
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1 Introduction and preliminaries

The study ofmodulars andmodular spaces as generalizations ofmetric spaceswas initiated by
Nakano [20]. Since then several mathematicians, for example, Luxemburg, Mazur, Musielak
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and Orlicz [14,16,18,19] developed it extensively. Up to now, the theory of modulars and
modular spaces is widely applied in interpolation theory and Orlicz spaces.

To begin with, we consider some basic concepts concerning modular spaces.

Definition 1.1 ([20]) Let X be a vector space over a fieldK (R orC). A generalized function
ρ : X → [0,∞] is called a modular if for any α, β ∈ K and x, y ∈ X ,

(M1) ρ(x) = 0 if and only if x = 0,
(M2) ρ(αx) = ρ(x) for every α with |α| = 1,
(M3) ρ(αx + β y) ≤ ρ(x) + ρ(y) if α + β = 1 and α, β ≥ 0.

If the condition (M3) is replaced by

(M4) ρ(αx + β y) ≤ αsρ(x) + βsρ(y) if αs + βs = 1 and α, β ≥ 0 with an s ∈ (0, 1],
then ρ is called an s-convex modular. 1-convex modulars are called convex modulars.

For a modular ρ, there corresponds a linear subspace Xρ of X , given by

Xρ = {x ∈ X | ρ(λx) → 0 as λ → 0}.
Xρ is called a modular space.

Definition 1.2 Let Xρ be a modular space and {xn} be a sequence in Xρ .

(1) {xn} is ρ-convergent to a point x ∈ Xρ if ρ(xn − x) → 0 as n → ∞. The point x is

called the ρ-limit of the sequence {xn} and we write xn
ρ→ x .

(2) {xn} is called a ρ-Cauchy sequence if for any ε > 0 one has ρ(xn − xm) < ε for
sufficiently large m, n ∈ N.

(3) A subset S ⊆ Xρ is called ρ-complete if every ρ-Cauchy sequence in S is ρ-convergent
to a point of S.

Remark 1.3 Note that for a fixed x ∈ Xρ , the function λ (∈ R) �→ ρ(λx) is nondecreasing.
If ρ is a convex modular and 0 < λ ≤ 1, we have ρ(x) ≤ λρ

( 1
λ
x
)
for all x ∈ Xρ . If

xn
ρ−→ x and yn

ρ−→ y, then αxn + β yn
ρ−→ αx + β y, where α + β ≤ 1 and α, β ≥ 0. The

ρ-convergence of a sequence {xn} to x does not imply that {cxn} is ρ-convergent to cx for
scalar c with |c| > 1. Thus, additional conditions on modular spaces were imposed by many
mathematicians so that the sequence {cxn} is ρ-convergent to cx for scalar c.

A modular ρ is said to have the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn)whenever the
sequence {xn} is ρ-convergent to x . A modular ρ is said to satisfy the �2-condition if there
exists κ ≥ 0 such that ρ(2x) ≤ κρ(x) for all x ∈ Xρ .

Example 1.4 WeconsiderOrlicz spaces as prototypes ofmodular spaces. Letφ : [0,∞) → R

be a function such that φ(0) = 0, φ(t) > 0 for t > 0, and φ(t) → ∞ as t → ∞. If moreover
φ is continuous, convex and nondecreasing, then φ is called an Orlicz function. For a measure
space (
,�,μ), let L0(μ) be the set of allmeasurable functions on
. Define for f ∈ L0(μ),

ρφ( f ) =
∫




φ(| f |)dμ.

Then ρφ is a modular and the corresponding modular space is called an Orlicz space and
denoted by

Lφ = { f ∈ L0(μ) | ρφ(λ f ) → 0 as λ → 0}.
Lφ is known to be ρφ-complete.
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Approximate homomorphisms from ternary semigroups to modular spaces 2177

We say that an equation is stable if any function satisfying the equation approximately
is near to an exact solution of the equation. We also say that an equation is hyperstable if
every approximate solution is an exact solution of the functional equation. In 1940, Ulam
[28] raised the first stability problem. He proposed a question whether there exists an exact
homomorphism near an approximate homomorphism. An answer to the problem was given
by Hyers [9] in the setting of Banach spaces. Since then the stability problems have been
extensively investigated for a variety of functional equations and spaces. We refer to [1–
3,6,7,10,11,24] for results, references and examples.

In most cases, a functional equation is algebraic in nature whereas the stability is rather
metrical. Hence, a normed linear space is a suitable choice to work with the stability of
functional equations. However, there are a great number of linear topological spaces whose
topologies are not normable. Nakano [20] and Musielak and Orlicz [18] successfully con-
sidered replacing a norm by a so-called modular. A modular yields less properties than a
norm does, but it makes a more sense in many special situations. When we work in a modular
space, it is frequently assumed that the modular satisfies extra additional properties like some
relaxed continuity or some �2-condition (see [12] for example).

Recently, Sadeghi [25] showed the stability of the Cauchy and Jensen functional equa-
tions on modular spaces. Wongkum et al. [29,30] obtained stability results of the quadratic
and quartic functional equations in modular spaces equipped with the Fatou property but
without �2-condition. Cho et al. [4] presented a fixed point method to prove the general-
ized Hyers–Ulam stability of the system of additive-quadratic-cubic functional equations in
β-homogeneous probabilitistic modular spaces. Also, Gordji et al. [8] proved a generalized
Hyers–Ulam stability of Cauchy mappings in modular spaces endowed with a partial order.
In [13], by using the direct method, the authors obtained the refined stability of additive and
quadratic functional equations in modular spaces, which generalizes the results of [25] and
[29]. In [22], the authors investigated the stability of additive and Jensen-additive functional
equations without using the �2-condition by a fixed point method.

Let us recall that a pair (G, [·]), where G is a non-empty set and [·] : G3 → G is a
function (which is said to be a ternary operation), is called a ternary groupoid. Given a
mapping ⊕ : G2 → G, we can define a ternary operation [·] on G by

[xyz] := (x ⊕ y) ⊕ z, x, y, z ∈ G.

Then we say that the operation [·] is derived from ⊕. Every linear space can be considered
as a ternary groupoid with an operation derived from a vector space addition.

A ternary groupoid is said to be commutative if

[x1x2x3] = [xσ(1)xσ(2)xσ(3)], x1, x2, x3 ∈ G, σ ∈ S3,

where S3 denotes the set of all permutations of the set {1, 2, 3}.
We say that the ternary groupoid (G, [·]) is a ternary semigroup if the operation [·] is

associative, i.e., if

[[xyz]uv] = [x[yzu]v] = [xy[zuv]], x, y, z, u, v ∈ G.

It is obvious that linear spaces with binary + and associative algebras with multiplication
are ternary semigroups.

Ternary algebraic structures appear in various domains of theoretical and mathematical
physics (for example, the so-called “Nambumechanics”which has been proposed byNambu,
and the algebra of “nonions”, which was introduced by Sylvester as a ternary analog of
Hamilton’s quarternions).
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Let (G1, [·]1) and (G2, [·]2) be ternary groupoids. A mapping f : G1 → G2 is called a
ternary homomorphism if

f ([xyz]1) = [ f (x) f (y) f (z)]2, x, y, z ∈ G1.

In 2006, Amyari and Moslehian [1] proved the generalized Hyers–Ulam stability of
ternary homomorphisms from commutative ternary semigroups into Banach spaces. In 2017,
Ciepliński [5] generalized their result to n-Banach spaces as well as to non-Archimedean
normed spaces. We refer the readers to [17,23,26,27] and the references therein for more
results.

The contents of the paper are as follows:
In Sect. 2, we prove the above mentioned result for modular spaces without using Fatou

property and �2-condition.
In Sect. 3, since s-convexmodular spaces can bemade into s-homogeneous normed spaces

we prove a similar result for β-homogeneous Banach spaces.
In Sect. 4, we show a hyperstability of an approximate homomorphism from ternary

semigroups into normed algebras.
Throughout this paper we write x3 as [xxx].

2 Stability of ternary homomorphisms intomodular spaces

Weshow the generalizedHyers–Ulamstability of ternary homomorphisms fromcommutative
ternary semigroups into modular spaces.

Theorem 2.1 Let G be a ternary semigroup, Xρ be a ρ-complete modular space where ρ is
convex, and ϕ : G3 → [0,∞) be a function with

ϕ̂(x, y, z) := 1

3

∞∑

k=0

1

3k
ϕ(x3

k
, y3

k
, z3

k
) < ∞, (x, y, z) ∈ G3. (2.1)

Assume that f : G → Xρ is a mapping such that

ρ
(
f ([xyz]) − ( f (x) + f (y) + f (z))

) ≤ ϕ(x, y, z), (x, y, z) ∈ G3. (2.2)

Then there exists a unique mapping T : G → Xρ such that

ρ
(
f (x) − T (x)

) ≤ ϕ̂(x, x, x) (2.3)

and
T (x3) = 3T (x) (2.4)

for all x ∈ G. If, moreover, the semigroup is commutative, then T is a ternary homomorphism.

Proof Putting x = y = z in (2.2), we get

ρ( f (x3) − 3 f (x)) ≤ ϕ(x, x, x), x ∈ G. (2.5)

Then by induction, we have

ρ

(
f (x3

k
)

3k
− f (x)

)

≤ 1

3

k−1∑

j=0

ϕ
(
x3

j
, x3

j
, x3

j
)

3 j
(2.6)
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Approximate homomorphisms from ternary semigroups to modular spaces 2179

for all x ∈ G. Indeed, the case k = 1 follows from (2.5). Assume that (2.6) holds for k ∈ N.
Then we obtain the following inequality

ρ

(
f (x3

k+1
)

3k+1 − f (x)

)

= ρ

⎛

⎝1

3

⎛

⎝
f
(
(x3)3

k
)

3k
− f (x3)

⎞

⎠ + 1

3

(
f (x3) − 3 f (x)

)
⎞

⎠

≤ 1

3
ρ

⎛

⎝
f
(
(x3)3

k
)

3k
− f (x3)

⎞

⎠ + 1

3
ρ

(
f (x3) − 3 f (x)

)

≤ 1

3
· 1
3

k−1∑

j=0

ϕ
(
x3

j+1
, x3

j+1
, x3

j+1
)

3 j
+ 1

3
ϕ(x, x, x)

= 1

3

⎛

⎝
k−1∑

j=0

ϕ
(
x3

j+1
, x3

j+1
, x3

j+1
)

3 j+1 + ϕ(x, x, x)

⎞

⎠

= 1

3

k∑

j=0

ϕ
(
x3

j
, x3

j
, x3

j
)

3 j

for all x ∈ G. Hence (2.6) holds for every k ∈ N.
Let m and n be nonnegative integers with n > m. Then by (2.6), we have

ρ

(
f
(
x3

n )

3n
− f

(
x3

m )

3m

)

= ρ

(
1

3m

(
f
(
x3

n )

3n−m
− f

(
x3

m
)))

≤ 1

3m
· 1
3

n−m−1∑

j=0

1

3 j
ϕ

(
x3

m+ j
, x3

m+ j
, x3

m+ j
)

= 1

3

n−m−1∑

j=0

1

3m+ j
ϕ

(
x3

m+ j
, x3

m+ j
, x3

m+ j
)

= 1

3

n−1∑

k=m

1

3k
ϕ

(
x3

k
, x3

k
, x3

k
)

(2.7)

for all x ∈ G.
We deduce by (2.1) and (2.7), the sequence

{
f (x3

n
)

3n

}
is a ρ-Cauchy sequence in Xρ .

By the ρ-completeness of Xρ , the sequence is ρ-convergent. Hence there exists a mapping
T : G → Xρ defined by

T (x) := ρ − limit
f
(
x3

n )

3n
(2.8)

for all x ∈ G.
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We see

ρ

(
T (x3) − 3T (x)

33

)
= ρ

(
1

33

(

T (x3) − f (x3
n+1

)

3n

)

+ 1

3

(
1

3
· f (x3

n+1
)

3n+1 − 1

3
T (x)

))

≤ 1

33
ρ

(

T (x3) − f (x3
n+1

)

3n

)

+ 1

9
ρ

(
f (x3

n+1
)

3n+1 − T (x)

)

(2.9)

for all x ∈ G. Since T (x3) = ρ − limit f (x3
n+1

)
3n by (2.8), the last expression of (2.9) tends

to 0 as n → ∞. Therefore, it follows that

T (x3) = 3T (x)

for all x ∈ G, so that (2.4) holds.
Next, we estimate ρ(T (x) − f (x)). Note that for every n ∈ N, we get

ρ (T (x) − f (x))

= ρ

(
n∑

k=1

f (x3
k
) − 3 f (x3

k−1
)

3k
+

(

T (x) − f (x3
n
)

3n

))

= ρ

⎛

⎝
n∑

k=1

f (x3
k
) − 3 f (x3

k−1
)

3k
+ 1

3

⎛

⎝T (x3) −
f
(
(x3)3

n−1
)

3n−1

⎞

⎠

⎞

⎠ (2.10)

for all x ∈ G. Since
∑n

k=1
1
3k

+ 1
3 < 1, it follows from (2.5) and (2.10) that

ρ (T (x) − f (x))

≤
n∑

k=1

1

3k
ρ

(
f (x3

k
) − 3 f (x3

k−1
)
)

+ 1

3
ρ

⎛

⎝T (x3) −
f
(
(x3)3

n−1
)

3n−1

⎞

⎠

≤
n∑

k=1

1

3k
ϕ

(
x3

k−1
, x3

k−1
, x3

k−1
)

+ 1

3
ρ

⎛

⎝T (x3) −
f
(
(x3)3

n−1
)

3n−1

⎞

⎠ (2.11)

for all x ∈ G. Letting n → ∞ in (2.11), we obtain

ρ(T (x) − f (x)) ≤ ϕ̂(x, x, x)

for all x ∈ G. Hence we arrive at (2.3).
To show the aforementioned uniqueness of T , assume that T1 and T2 are mappings satis-

fying (2.3) and (2.4). Then we get

ρ

(
T1(x) − T2(x)

2

)
= ρ

(
1

2

(
T1(x3

k
)

3k
− f (x3

k
)

3k

)

+ 1

2

(
f (x3

k
)

3k
− T2(x3

k
)

3k

))

≤ 1

2
ρ

(
T1(x3

k
)

3k
− f (x3

k
)

3k

)

+ 1

2
ρ

(
f (x3

k
)

3k
− T2(x3

k
)

3k

)

≤ 1

2
· 1

3k

{
ρ

(
T1(x

3k ) − f (x3
k
)
)

+ ρ
(
T2(x

3k ) − f (x3
k
)
)}

≤ 1

3k
ϕ̂(x3

k
, x3

k
, x3

k
)
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= 1

3

∞∑

j=k

1

3 j
ϕ

(
x3

j
, x3

j
, x3

j
)

→ 0 as k → ∞
for all x ∈ G. This implies that T1 = T2.

Finally assume that the semigroup G is commutative. We note that

ρ

(
f ([xyz]3 j

)

3 j
− f (x3

j
) + f (y3

j
) + f (z3

j
)

3 j

)

≤ 1

3 j
ρ

(
f ([xyz]3 j

) − f (x3
j
) − f (y3

j
) − f (z3

j
)
)

≤ 1

3 j
ϕ

(
x3

j
, y3

j
, z3

j
)

→ 0 as j → ∞ (2.12)

for all x, y, z ∈ G. Then by (2.12) we obtain the following inequality

ρ

(
T ([xyz]) − T (x) − T (y) − T (z)

5

)

≤ 1

5

{

ρ

(

T ([xyz]) − f ([xyz]3 j
)

3 j

)

+ ρ

(

T (x) − f (x3
j
)

3 j

)

+ ρ

(

T (y) − f (y3
j
)

3 j

)

+ ρ

(

T (z) − f (z3
j
)

3 j

)}

+ 1

5
ρ

(
f ([xyz]3 j

)

3 j
− f (x3

j
)

3 j
− f (y3

j
)

3 j
− f (z3

j
)

3 j

)

→ 0 as j → ∞.

Therefore, we conclude that

T ([xyz]) = T (x) + T (y) + T (z)

for all x, y, z ∈ G, i.e., T is a ternary homomorphism. This completes the proof. 
�
Puttingϕ ≡ ε > 0 in Theorem2.1,we immediately obtain the following result on classical

Ulam stability of ternary homomorphisms under consideration.

Corollary 2.2 Let G be a ternary semigroup, and Xρ be a ρ-complete modular space, where
ρ is convex. If f : G → Xρ is a mapping such that

ρ
(
f ([xyz]) − ( f (x) + f (y) + f (z))

) ≤ ε

for all (x, y, z) ∈ G3, then there exists a unique mapping T : G → Xρ such that

ρ
(
f (x) − T (x)

) ≤ ε

2

and
T (x3) = 3T (x)

for all x ∈ G.
If, moreover, the semigroup G is commutative, then T is a ternary homomorphism.
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Corollary 2.3 Let G = (R\{0}, ·) and Xρ = (R,+) with ρ(x) = |x | for all x ∈ R. Assume
that f : R\{0} → R is a mapping, continuous in a point, such that

| f (xyz) − ( f (x) + f (y) + f (z))| ≤ ε

for all x, y, z ∈ R\{0}. Then there exists a real constant c such that

| f (x) − c ln |x || ≤ ε

2

for all x ∈ R\{0}.
Proof From T (xyz) = T (x) + T (y) + T (z), it follows that T (1) = 0. Then

T (xy) = T (x) + T (y)

for all x, y ∈ R \ {0}. It is well-known that T is of the form T (x) = c ln |x | for all
x ∈ R\{0}. 
�

3 Stability of ternary homomorphisms intoˇ-homogeneous spaces

Definition 3.1 Let X be a linear space overC. A functional ‖ · ‖ : X → [0,∞] is an F-norm
if it satisfies the following conditions;

(N1) ‖x‖ = 0 if and only if x = 0,
(N2) ‖λx‖ = ‖x‖ for every x ∈ X and every λ with |λ| = 1,
(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X ,
(N4) ‖λnx‖ → 0 provided λn → 0,
(N5) ‖λxn‖ → 0 provided xn → 0.

The linear metric space (X , d), where d(x, y) = ‖x − y‖, is called an F-space if d is a
complete metric.

An F-norm is called β-homogeneous (β > 0) if ‖t x‖ = |t |β‖x‖ for all x ∈ X and t ∈ C.
A β-homogeneous F-space is called a β-homogeneous complex Banach space.

Remark 3.2 A modular space Xρ can be equipped with an F-norm defined by

‖x‖ρ = inf
{
α > 0

∣∣∣ ρ
( x

α

)
≤ α

}
.

In case of an s-convex modular, the formula

‖x‖ρ = inf
{
αs > 0

∣∣∣ ρ
( x

α

)
≤ 1

}

defines an F-norm with the additional property ‖λx‖ρ = |λ|s‖x‖ρ so that ‖ · ‖ρ is s-
homogeneous. For s = 1, this norm is frequently called the Luxemburg norm.

In view of Remark 3.2, it is quite natural to consider the generalized Hyers–Ulam stabil-
ity of ternary homomorphisms from commutative ternary semigroups into β-homogeneous
Banach spaces.

Theorem 3.3 Let G be a ternary semigroup, X be a β-homogeneous complex Banach space
(0 < β ≤ 1), and ϕ : G3 → [0,∞) be a function with

ϕ̂(x, y, z) := 1

3β

∞∑

k=0

1

3kβ
ϕ(x3

k
, y3

k
, z3

k
) < ∞, (x, y, z) ∈ G3. (3.1)
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Assume that f : G → X is a mapping such that

‖ f ([xyz]) − ( f (x) + f (y) + f (z))‖ ≤ ϕ(x, y, z), (x, y, z) ∈ G3. (3.2)

Then there exists a unique mapping T : G → X such that

‖ f (x) − T (x)‖ ≤ ϕ̂(x, x, x) (3.3)

and
T (x3) = 3T (x) (3.4)

for all x ∈ G. If, moreover, the semigroup is commutative, then T is a ternary homomorphism.

Proof Putting x = y = z in (3.2), we get

‖ f (x3) − 3 f (x)‖ ≤ ϕ(x, x, x), x ∈ G. (3.5)

By induction on k ∈ N, using (3.5) it is easy to see that

∥∥∥∥∥
f (x3

k
)

3k
− f (x)

∥∥∥∥∥
≤ 1

3β

k−1∑

j=0

ϕ
(
x3

j
, x3

j
, x3

j
)

3 jβ
(3.6)

for all x ∈ G. Let m and n be nonnegative integers with n > m. Then we have by (3.6)

∥∥∥∥∥
f
(
x3

n )

3n
− f

(
x3

m )

3m

∥∥∥∥∥

=
∥∥∥∥∥
1

3m

(
f (x3

n
)

3n−m
− f (x3

m
)

)∥∥∥∥∥

≤ 1

3mβ
· 1

3β

n−m−1∑

j=0

ϕ(x3
m+ j

, x3
m+ j

, x3
m+ j

)

3 jβ

= 1

3β

n−1∑

j=m

1

3 jβ
ϕ

(
x3

j
, x3

j
, x3

j
)

(3.7)

for all x ∈ G. Since the last term of (3.7) tends to zero by (3.1), it follows that for every

x ∈ G, the sequence
{

f (x3
n
)

3n

}
is a Cauchy sequence in X . Due to the completeness of X , the

sequence is convergent. Hence there exists a mapping T : G → X defined by

T (x) := lim
n→∞

f
(
x3

n )

3n
(3.8)

for all x ∈ G. Letting m = 0 and passing the limit n → ∞ in (3.7), we obtain (3.3). (3.4)
follows immediately from (3.8).
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Next, assume that S : G → X is another mapping satisfying (3.3) and (3.4). Then we
have

‖T (x) − S(x)‖

≤
∥
∥
∥
∥
∥
T (x3

k
) − f (x3

k
)

3k

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥
S(x3

k
) − f (x3

k
)

3k

∥
∥
∥
∥
∥

≤ 2

3β

∞∑

j=0

1

3( j+k)β
ϕ

(
x3

j+k
, x3

j+k
, x3

j+k
)

= 2

3β

∞∑

j=k

1

3 jβ
ϕ

(
x3

j
, x3

j
, x3

j
)

→ 0 as k → ∞
for all x ∈ G, from which it follows that T = S.

Finally, we assume that the semigroup G is commutative. Then we obtain
∥
∥
∥
∥∥
1

3 j
f ([xyz]3 j

) − f (x3
j
) + f (y3

j
) + f (z3

j
)

3 j

∥
∥
∥
∥∥

≤ 1

3 jβ
ϕ

(
x3

j
, y3

j
, z3

j
)

→ 0 as j → ∞,

and hence it follows that

T ([xyz]) = T (x) + T (y) + T (z)

for all x, y, z ∈ G, i.e., T is a ternary homomorphism. This completes the proof. 
�
Puttingϕ ≡ ε > 0 in Theorem3.3,we immediately obtain the following result on classical

Ulam stability of ternary homomorphisms under consideration.

Corollary 3.4 Let G be a ternary semigroup and X be a β-homogeneous complex Banach
space with 0 < β ≤ 1. If f : G → X is a mapping such that

‖ f ([xyz]) − ( f (x) + f (y) + f (z))‖ ≤ ε

for all (x, y, z) ∈ G3, then there exists a unique mapping T : G → X such that

‖ f (x) − T (x)‖ ≤ ε

3β − 1

and
T (x3) = 3T (x)

for all x ∈ G. If, moreover, the semigroup G is commutative, then T is a ternary homomor-
phism.

4 Hyperstability of ternary homomorphisms into normed algebras

In this section, we consider mappings from ternary semigroups into normed algebras. In [1,
Theorem 3.1], the authors have shown the following result.
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Theorem 4.1 Suppose that G is a ternary semigroup and X is a normed algebra whose norm
is multiplicative, i.e., ‖ab‖ = ‖a‖ · ‖b‖ for all a, b ∈ X. Assume that ε ≥ 0 and f : G → X
satisfies the following condition

‖ f ([xyz]) − f (x) f (y) f (z)‖ ≤ ε

for all x, y, z ∈ G. Then either ‖ f (x)‖ ≤ δ for all x ∈ G, where δ = 1+√
1+4ε
2 > 1 or else

f ([xyz]) = f (x) f (y) f (z) for all x, y, z ∈ G.

In the following theorem, we consider a similar problem to Theorem 4.1. As the norm is
not multiplicative in many normed algebras, we impose a condition on the mapping, not on
the normed algebra. In the proof, we adopt an idea of [1, Theorem 3.1].

Theorem 4.2 Suppose that G is a ternary semigroup, X is a normed algebra with unit I and
f : G → X is a mapping such that n I ∈ f (G) for all sufficiently large n ∈ N. If ε ≥ 0 and

‖ f ([xyz]) − f (x) f (y) f (z)‖ ≤ ε, (x, y, z) ∈ G3

then

f ([xyz]) = f (x) f (y) f (z)

for all x, y, z ∈ G.

Proof Let x, y, z, t, s be elements of G. Then we estimate
∥∥(

f ([xyz]) − f (x) f (y) f (z)
)
f (t) f (s)

∥∥

≤ ‖ f ([xyz]) f (t) f (s) − f (x) f ([yzt]) f (s)‖
+‖ f (x) f ([yzt]) f (s) − f (x) f (y) f (z) f (t) f (s)‖

≤ ‖ f ([xyz]) f (t) f (s) − f ([[xyz]ts])‖ + ‖ f ([x[yzt]s]) − f (x) f ([yzt]) f (s)‖
+ ∥∥ f (x)

(
f ([yzt]) − f (y) f (z) f (t)

)
f (s)

∥∥

≤ 2ε + ε‖ f (x)‖ · ‖ f (s)‖. (4.1)

For any sufficiently large n ∈ N, choose tn ∈ G such that f (tn) = nI . Letting t = s = tn in
(4.1), we have

‖ f ([xyz]) − f (x) f (y) f (z)‖ ≤ 2ε + ε‖ f (x)‖ · n
n2

.

Letting n → ∞, we obtain that f ([xyz]) = f (x) f (y) f (z) for all x, y, z ∈ G, i.e., f is a
ternary homomorphism. 
�

Recall that a ring R is called prime whenever aRb = {0}, it implies either a = 0 or b = 0.
it is well-known that B(X) for Banach spaces X and simple C∗-algebras are prime. In the
following corollary, we assume that all algebras are C-algebras.

Corollary 4.3 Let X be a unital prime algebra containing a nontrivial idempotent and Y a
unital normed algebra with trivial center. If ε ≥ 0 and f : X → Y is a bijective mapping
such that

‖ f (λxyz) − λ f (x) f (y) f (z)‖ ≤ ε (4.2)

for all λ ∈ T
1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ X, then either f or − f is a C-linear

algebra isomorphism.
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Proof Letting λ = 1 in (4.2), we obtain by Theorem 4.2 that

f (xyz) = f (x) f (y) f (z) (4.3)

for all x, y, z ∈ X . By (4.3),

f (xy) = f (x) f (y) f (I ) = f (I ) f (x) f (y) (4.4)

for all x, y ∈ X . Taking y ∈ X such that f (y) = I , f (I ) is a central element of Y by (4.4),
so that f (I ) = μI for some scalar μ. As μI = f (I ) = f (I )3 = μ3 I , we have μ = 0 or
μ = 1 or μ = −1. Since f is surjective, the case μ = 0 does not occur. Hence f (I ) = I or
f (I ) = −I .
Firstly assume that f (I ) = I . From (4.4), it follows that f (xy) = f (x) f (y) for all

x, y ∈ X . Then by [15], which states that every multiplicative bijective mapping of a prime
ring with a nontrivial idempotent onto an arbitrary ring is additive, f is additive, and hence
f is a ring isomorphism. Letting y = z = I in (4.2), we have

‖ f (λx) − λ f (x)‖ ≤ ε

for all λ ∈ T
1 and x ∈ X . From the fact that f is additive, we have f (x) = f (nx)

n for all
n ∈ N and x ∈ X . Hence

‖ f (λx) − λ f (x)‖ =
∥∥∥∥
f (λnx) − λ f (nx)

n

∥∥∥∥ ≤ ε

n
.

If we let n → ∞, it follows that f (λx) = λ f (x) for all λ ∈ T
1 and x ∈ X . Then by the

same reasoning as in the proof of [21, Theorem 2.1], the mapping f is C-linear. Therefore
f is a C-linear algebra isomorphism.
Secondly assume that f (I ) = −I . Then by (4.4), it follows that f (xy) = − f (x) f (y)

for all x, y ∈ X . Letting g = − f , we get g(xy) = g(x)g(y) for all x, y ∈ X . Then arguing
as in the case of f (I ) = I , we obtain that g = − f is a C-linear algebra isomorphism. This
completes the proof. 
�
Corollary 4.4 Assume that ε ≥ 0 and f : Mn(C) → Mm(C) is a bijective mapping satisfying
(4.2) for all λ ∈ T

1 and all x, y, z ∈ Mn(C). Then n = m and there exists an invertible n×n
matrix t such that either f (x) = t xt−1 or f (x) = −t xt−1 for all x ∈ Mn(C).

5 Conclusions

In this article, we have proved the stability of ternary homomorphisms from commutative
ternary semigroups to modular spaces without using the Fatou property and �2-condition.
This generalizes the result of Amyari and Moslehian [1]. Since modular spaces can be made
into β-homogeneous spaces, we also have solved the same problem for β-homogeneous
Banach spaces and have shown a hyperstability of a mapping from ternary semigroups into
normed algebras.
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