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Abstract
Here we consider the degenerate Bernstein polynomials as a degenerate version of Bernstein
polynomials, which are motivated by Simsek’s recent work ‘Generating functions for uni-
fication of the multidimensional Bernstein polynomials and their applications’ (Simsek in
Filomat 30(7):1683–1689, 2016, Math Methods Appl Sci 1–12, 2018) and Carlitz’s degen-
erate Bernoulli polynomials. We derived their generating function, symmetric identities,
recurrence relations, and some connections with generalized falling factorial polynomials,
higher-order degenerate Bernoulli polynomials and degenerate Stirling numbers of the sec-
ond kind.

Keywords Bernoulli polynomials · Generating functions · Degenerate Bernstein
polynomials · Stirling numbers
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1 Introduction

For λ ∈ R, the degenerate Bernoulli polynomials of order k are defined by Carlitz as
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n! , (see [4,5]). (1.1)

Note that limλ→0 β
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n (x) are the ordinary Bernoulli polynomials of order k
given by (
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It is known that the Stirling numbers of the second kind are defined as

xn =
n∑

l=0

S2(n, l)(x)l , (see [2,4,8,10]), (1.2)

where (x)l = x(x − 1) · · · (x − l + 1), (l ≥ 1), (x)0 = 1.
For λ ∈ R, the (x)n,λ is defined as

(x)0,λ = 1, (x)n,λ = x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), (n ≥ 1) (1.3)

In [8–10],
(x
n

)
λ
is defined as(

x

n

)
λ

= (x)n,λ

n! = x(x − λ) · · · (x − (n − 1)λ)

n! , (n ≥ 1),

(
x

0

)
λ

= 1. (1.4)

Thus, by (1.4), we get
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tn, (|λt | < 1), (see [7]). (1.5)

From (1.5), we note that

n∑
m=0

(
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)
λ
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n

)
λ

, (n ≥ 0). (1.6)

The degenerate Stirling numbers of the second kind are defined by

1

k!
(
(1 + λt)

1
λ − 1

)k =
∞∑
n=k

S2,λ(n, k)
tn

n! , (k ≥ 0), (see [7,8]). (1.7)

By (1.7), we easily get

lim
λ→0

S2,λ(n, k) = S2(n, k), (n ≥ k ≥ 0), (see [8,10]).

In this paper, we use the following notation.

(x ⊕λ y)n =
n∑

k=0

(
n

k

)
(x)k,λ(y)n−k,λ, (n ≥ 0). (1.8)

The Bernstein polynomials of degree n is defined by

Bk,n(x) =
(
n

k

)
xk(1 − x)n−k, (n ≥ k ≥ 0), (see [6,11,19]). (1.9)

LetC[0, 1] be the space of continuous functions on [0, 1]. The Bernstein operator of order
n for f is given by

Bn( f |x) =
n∑

k=0

f
( k
n

) (
n

k

)
xk(1 − x)n−k =

n∑
k=0

f
( k
n

)
Bk,n(x), (1.10)

where n ∈ N ∪ {0} and f ∈ C[0, 1], (see [3,6,15]).
ABernoulli trial involves performing a randomexperiment and notingwhether a particular

event A occurs. The outcome of Bernoulli trial is said to be “success” if A occurs and a
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“failure” otherwise. The probability Pn(k) of k successes in n independent Bernoulli trials
is given by the binomial probability law:

Pn(k) =
(
n

k

)
pk(1 − p)n−k, for k = 0, 1, 2, . . . ,

From the definition of Bernstein polynomials we note that Bernstein basis is probability mass
of binomial distribution with parameter (n, x = p).

Here we would like to mention that in [18] the author studies the so-called Bernstein type
polynomials, which are different from our degenerate Bernstein polynomials, and derives
many interesting results on those polynomials.

Let us assume that the probability of success in an experiment is p. We wondered if we
can say the probability of success in the ninth trial is still p after failing eight times in a ten
trial experiment. Because there’s a psychological burden to be successful.

It seems plausible that the probability is less than p. This speculation motivated the study
of the degenerate Bernstein polynomials associated with the probability distribution.

In this paper, we consider the degenerate Bernstein polynomials as a degenerate version of
Bernstein polynomials. We derive their generating function, symmetric identities, recurrence
relations, and some connections with generalized falling factorial polynomials, higher-order
degenerate Bernoulli polynomials and degenerate Stirling numbers of the second kind.

2 Degenerate Bernstein polynomials

For λ ∈ R and k, n ∈ N ∪ {0}, with k ≤ n, we define the degenerate Bernstein polynomials
of degree n which are given by

Bk,n(x |λ) =
(
n

k

)
(x)k,λ(1 − x)n−k,λ, (x ∈ [0, 1]). (2.1)

Note that limλ→0 Bk,n(x |λ) = Bk,n(x), (0 ≤ k ≤ n). From (2.1), we derive the generating
function of Bk,n(x |λ), which are given by
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Therefore, by (2.2), we obtain the following theorem.
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Theorem 2.1 For x ∈ [0, 1] and k = 0, 1, 2, . . . , we have

1

k! (x)k,λt
k(1 + λt)

1−x
λ =

∞∑
n=k

Bk,n(x |λ)
tn

n! .

From (2.1), we note that

Bk,n(x |λ) =
(
n

k

)
(x)k,λ(1 − x)n−k,λ =

(
n

n − k

)
(x)k,λ(1 − x)n−k,λ. (2.3)

By replacing x by 1 − x , we get

Bk,n(1 − x |λ) =
(

n

n − k

)
(1 − x)k,λ(x)n−k,λ = Bn−k,n(x |λ), (2.4)

where n, k ∈ N ∪ {0}, with 0 ≤ k ≤ n.
Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2 (Symmetric identities) For n, k ∈ N∪{0}, with k ≤ n, and x ∈ [0, 1], we have
Bn−k,n(x |λ) = Bk,n(1 − x |λ).

Now, we observe that

n − k

n
Bk,n(x |λ) + k + 1

n
Bk+1,n(x |λ)

= n − k

n

(
n

k

)
(x)k,λ(1 − x)n−k,λ + k + 1

n

(
n

k + 1

)
(x)k+1,λ(1 − x)n−k−1,λ

= (n − 1)!
k!(n − k − 1)! (x)k,λ(1 − x)n−k,λ + (n − 1)!

k!(n − k − 1)! (x)k+1,λ(1 − x)n−k−1,λ

= (1 − x − (n − k − 1)λ)Bk,n−1(x |λ) + (x − kλ)Bk,n−1(x |λ)

= (1 + λ(1 − n))Bk,n−1(x |λ). (2.5)

Therefore, by (2.5), we obtain the following theorem.

Theorem 2.3 For k ∈ N ∪ {0}, n ∈ N, with k ≤ n − 1, and x ∈ [0, 1], we have
(n − k)Bk,n(x |λ) + (k + 1)Bk+1,n(x |λ) = (1 + λ(1 − n))Bk,n−1(x |λ). (2.6)

From (2.1), we have(
n − k + 1

k

)(
n − (k − 1)λ

1 − x − (n − k)λ

)
Bk−1,n(x |λ)

=
(
n − k + 1

k

)(
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k − 1

)
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= n!
k!(n − k)! (x)k−1,λ(1 − x)n−k,λ = Bk,n(x |λ). (2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.4 For n, k ∈ N, with k ≤ n, we have(
n − k + 1

k

) (
n − (k − 1)λ

1 − x − (n − k)λ

)
Bk−1,n(x |λ) = Bk,n(x |λ).
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For 0 ≤ k ≤ n, we get

(1 − x − (n − k − 1)λ)Bk,n−1(x |λ) + (x − (k − 1)λ)Bk−1,n−1(x |λ)

= (1 − x − (n − k − 1)λ)

(
n − 1

k

)
(x)k,λ(1 − x)n−1−k,λ
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+
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k
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Therefore, by (2.8), we obtain the following theorem.

Theorem 2.5 (Recurrence formula). For k, n ∈ N, with k ≤ n − 1, x ∈ [0, 1], we have
(1 − x − (n − k − 1)λ)Bk,n−1(x |λ) + (x − (k − 1)λ)Bk−1,n−1(x |λ) = Bk,n(x |λ).
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k
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Similarly, we have
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k=i

(k
i

)
(n
i
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k
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From (2.10), we note that

(x − kλ)i,λ = 1

(x ⊕λ (1 − x))n−i

n∑
k=i

(k
i

)
(n
i

) Bk,n(x |λ), (2.11)

where n, i ∈ N, with i ≤ n, and x ∈ [0, 1].
Therefore, by (2.11), we obtain the following theorem.

Theorem 2.6 For n, i ∈ N, with i ≤ n, and x ∈ [0, 1], we have

(x − kλ)i,λ = 1

(x ⊕λ (1 − x))n−i

n∑
k=i

(k
i

)
(n
i

) Bk,n(x |λ).

From Theorem 2.1, we note that

tk
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1
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)k (
t
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1
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S2,λ(m, k)
tm
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β
(k)
l,λ (1 − x)

t l

l!

)
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n=k

(
n∑

m=k

(
n

m

)
S2,λ(m, k)β(k)

n−m,λ(1 − x)

)
tn

n! . (2.12)

On the other hand,

(x)k,λ
k! tk(1 + λt)

1−x
λ =

∞∑
n=k

Bk,n(x |λ)
tn

n! . (2.13)

Therefore, by (2.12) and (2.13), we obtain the following theorem.

Theorem 2.7 For n, k ∈ N ∪ {0} with n ≥ k, we have

Bk,n(x |λ) = (x)k,λ

n∑
m=k

(
n

m

)
S2,λ(m, k)β(k)

n−m,λ(1 − x).

Let � be the shift difference operator with � f (x) = f (x + 1) − f (x). Then we easily
get

�n f (0) =
n∑

k=0

(
n

k

)
(−1)n−k f (k), (n ∈ N ∪ {0}). (2.14)

Let us take f (x) = (x)m,λ, (m ≥ 0). Then, by (2.14), we get

�n(0)m,λ =
n∑

k=0

(
n

k

)
(−1)n−k(k)m,λ. (2.15)

For more details on (2.14) and (2.15), we let the reader refer to Chapter 7 of the book [12].
From (1.7), we note that

∞∑
n=k

S2,λ(n, k)
tn

n! = 1

k!
(
(1 + λt)

1
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)k = 1
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=
∞∑
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(
1
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l=0

(
k

l

)
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)
tn

n! . (2.16)
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Thus, by comparing the coefficients on both sides of (2.16), we have

1

k!�
k(0)n,λ = 1

k!
k∑

l=0

(
k

l

)
(−1)k−l(l)n,λ =

{
S2,λ(n, k) if n ≥ k,

0 if n < k.
(2.17)

By (2.17), we get
1

k!�
k(0)n,λ = S2,λ(n, k), if n ≥ k. (2.18)

From Theorem 7 and (2.18), we obtain the following corollary.

Corollary 2.8 For n, k ∈ N ∪ {0} with n ≥ k, we have

Bk,n(x |λ) = (x)k,λ

n∑
m=k

(
n

m

)
β

(k)
n−m,λ(1 − x)

1

k!�
k(0)m,λ.

Now, we observe that

(1 + λt)
x
λ =

(
(1 + λt)

1
λ − 1 + 1)x =

∞∑
k=0

(
x

k

)(
(1 + λt)

1
λ − 1

)k

=
∞∑
k=0

(x)k
1

k!
(
(1 + λt)

1
λ − 1

)k

=
∞∑
k=0

(x)k

∞∑
n=k

S2,λ(n, k)
tn

n!

=
∞∑
n=0

(
n∑

k=0

(x)k S2,λ(n, k)

)
tn

n! . (2.19)

On the other hand,

(1 + λt)
x
λ =

∞∑
n=0

( x
λ

n

)
λntn =

∞∑
n=0

(x)n,λ

tn

n! , (|λt | < 1). (2.20)

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.9 For n ≥ 0, we have

(x)n,λ =
n∑

k=0

(x)k S2,λ(n, k).

By Theorem 2.9, we easily get

(x − kλ)i,λ =
i∑

l=0

(x − kλ)l S2,λ(i, l). (2.21)

From Theorem 2.6, we have the following theorem.

Theorem 2.10 For n, i ∈ N, with i ≤ n, and x ∈ [0, 1], we have
i∑

l=0

(x − kλ)l S2,λ(i, l) = 1

(x ⊕λ (1 − x))n−i

n∑
k=i

(k
i

)
(n
i

) Bk,n(x |λ).
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