ORIGINAL PAPER

Degenerate Bernstein polynomials

Taekyun Kim¹ · Dae San Kim²

Received: 15 June 2018 / Accepted: 21 October 2018 / Published online: 1 November 2018 © Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Abstract

Here we consider the degenerate Bernstein polynomials as a degenerate version of Bernstein polynomials, which are motivated by Simsek's recent work 'Generating functions for unification of the multidimensional Bernstein polynomials and their applications' (Simsek in Filomat 30(7):1683–1689, [2016,](#page-7-0) Math Methods Appl Sci 1–12, [2018\)](#page-7-1) and Carlitz's degenerate Bernoulli polynomials. We derived their generating function, symmetric identities, recurrence relations, and some connections with generalized falling factorial polynomials, higher-order degenerate Bernoulli polynomials and degenerate Stirling numbers of the second kind.

Keywords Bernoulli polynomials · Generating functions · Degenerate Bernstein polynomials · Stirling numbers

Mathematics Subject Classification 11B83

1 Introduction

For $\lambda \in \mathbb{R}$, the degenerate Bernoulli polynomials of order *k* are defined by Carlitz as

$$
\left(\frac{t}{(1+\lambda t)^{\frac{1}{\lambda}}-1}\right)^{k} (1+\lambda t)^{\frac{x}{\lambda}} = \sum_{n=0}^{\infty} \beta_{n,\lambda}^{(k)} \frac{t^{n}}{n!}, \quad (\text{see } [4,5]). \tag{1.1}
$$

Note that $\lim_{\lambda\to 0} \beta_{n,\lambda}^{(k)}(x) = B_n^{(k)}(x)$ are the ordinary Bernoulli polynomials of order *k* given by

$$
\left(\frac{t}{e^t-1}\right)^k e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!}, \quad \text{(see [1,13,14])}.
$$

 \boxtimes Taekyun Kim tkkim@kw.ac.kr Dae San Kim dskim@sogang.ac.kr

¹ Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

² Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

It is known that the Stirling numbers of the second kind are defined as

$$
x^{n} = \sum_{l=0}^{n} S_{2}(n, l)(x)_{l}, \quad \text{(see [2,4,8,10])}, \tag{1.2}
$$

where $(x)_l = x(x - 1) \cdots (x - l + 1), (l \ge 1), (x)_0 = 1.$

For $\lambda \in \mathbb{R}$, the $(x)_{n,\lambda}$ is defined as

$$
(x)_{0,\lambda} = 1, \ (x)_{n,\lambda} = x(x - \lambda)(x - 2\lambda) \cdots (x - (n - 1)\lambda), \ (n \ge 1)
$$
 (1.3)

In [\[8](#page-7-8)[–10\]](#page-7-9), $\binom{x}{n}_{\lambda}$ is defined as

$$
\binom{x}{n}_{\lambda} = \frac{(x)_{n,\lambda}}{n!} = \frac{x(x-\lambda)\cdots(x-(n-1)\lambda)}{n!}, \ (n \ge 1), \ \binom{x}{0}_{\lambda} = 1. \tag{1.4}
$$

Thus, by (1.4) , we get

$$
(1 + \lambda t)^{\frac{x}{\lambda}} = \sum_{n=0}^{\infty} {x \choose n}_{\lambda} t^n, \quad (|\lambda t| < 1), \quad \text{(see [7]).} \tag{1.5}
$$

From (1.5) , we note that

$$
\sum_{m=0}^{n} \binom{y}{m}_{\lambda} \binom{x}{n-m}_{\lambda} = \binom{x+y}{n}_{\lambda}, \ (n \ge 0). \tag{1.6}
$$

The degenerate Stirling numbers of the second kind are defined by

$$
\frac{1}{k!}((1+\lambda t)^{\frac{1}{\lambda}}-1)^k = \sum_{n=k}^{\infty} S_{2,\lambda}(n,k) \frac{t^n}{n!}, \ (k \ge 0), \quad (\text{see } [7,8]). \tag{1.7}
$$

By [\(1.7\)](#page-1-2), we easily get

$$
\lim_{\lambda \to 0} S_{2,\lambda}(n, k) = S_2(n, k), \ (n \ge k \ge 0), \ \ (\text{see } [8, 10]).
$$

In this paper, we use the following notation.

$$
(x \oplus_{\lambda} y)^n = \sum_{k=0}^n {n \choose k} (x)_{k,\lambda} (y)_{n-k,\lambda}, \ (n \ge 0).
$$
 (1.8)

The Bernstein polynomials of degree *n* is defined by

$$
B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \ (n \ge k \ge 0), \quad \text{(see [6,11,19])}.
$$
 (1.9)

Let *C*[0, 1] be the space of continuous functions on [0, 1]. The Bernstein operator of order *n* for *f* is given by

$$
\mathbb{B}_n(f|x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{k,n}(x),\tag{1.10}
$$

where *n* ∈ $\mathbb{N} \cup \{0\}$ and *f* ∈ *C*[0, 1], (see [\[3](#page-7-14)[,6](#page-7-11)[,15](#page-7-15)]).

A Bernoulli trial involves performing a random experiment and noting whether a particular event A occurs. The outcome of Bernoulli trial is said to be "success" if A occurs and a "failure" otherwise. The probability $P_n(k)$ of k successes in *n* independent Bernoulli trials is given by the binomial probability law:

$$
P_n(k) = {n \choose k} p^k (1-p)^{n-k}, \text{ for } k = 0, 1, 2, \dots,
$$

From the definition of Bernstein polynomials we note that Bernstein basis is probability mass of binomial distribution with parameter $(n, x = p)$.

Here we would like to mention that in $[18]$ the author studies the so-called Bernstein type polynomials, which are different from our degenerate Bernstein polynomials, and derives many interesting results on those polynomials.

Let us assume that the probability of success in an experiment is *p*. We wondered if we can say the probability of success in the ninth trial is still p after failing eight times in a ten trial experiment. Because there's a psychological burden to be successful.

It seems plausible that the probability is less than *p*. This speculation motivated the study of the degenerate Bernstein polynomials associated with the probability distribution.

In this paper, we consider the degenerate Bernstein polynomials as a degenerate version of Bernstein polynomials. We derive their generating function, symmetric identities, recurrence relations, and some connections with generalized falling factorial polynomials, higher-order degenerate Bernoulli polynomials and degenerate Stirling numbers of the second kind.

2 Degenerate Bernstein polynomials

For $\lambda \in \mathbb{R}$ and $k, n \in \mathbb{N} \cup \{0\}$, with $k \leq n$, we define the degenerate Bernstein polynomials of degree *n* which are given by

$$
B_{k,n}(x|\lambda) = \binom{n}{k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}, \ (x \in [0,1]). \tag{2.1}
$$

Note that $\lim_{\lambda\to 0} B_{k,n}(x|\lambda) = B_{k,n}(x)$, $(0 \le k \le n)$. From [\(2.1\)](#page-2-0), we derive the generating function of $B_{k,n}(x|\lambda)$, which are given by

$$
\sum_{n=k}^{\infty} B_{k,n}(x|\lambda) \frac{t^n}{n!} = \sum_{n=k}^{\infty} {n \choose k} (x)_{k,\lambda} (1-x)_{n-k,\lambda} \frac{t^n}{n!}
$$

$$
= \frac{(x)_{k,\lambda}}{k!} \sum_{n=k}^{\infty} \frac{1}{(n-k)!} (1-x)_{n-k,\lambda} t^n
$$

$$
= \frac{(x)_{k,\lambda}}{k!} \sum_{n=0}^{\infty} \frac{(1-x)_{n,\lambda}}{n!} t^{n+k}
$$

$$
= \frac{(x)_{k,\lambda}}{k!} t^k \sum_{n=0}^{\infty} {1-x \choose n}_{\lambda} t^n
$$

$$
= \frac{(x)_{k,\lambda}}{k!} t^k (1+\lambda t)^{\frac{1-x}{\lambda}}.
$$
(2.2)

Therefore, by (2.2) , we obtain the following theorem.

Theorem 2.1 *For* $x \in [0, 1]$ *and* $k = 0, 1, 2, \ldots$, *we have*

$$
\frac{1}{k!}(x)_{k,\lambda}t^k(1+\lambda t)^{\frac{1-x}{\lambda}}=\sum_{n=k}^{\infty}B_{k,n}(x|\lambda)\frac{t^n}{n!}.
$$

From (2.1) , we note that

$$
B_{k,n}(x|\lambda) = \binom{n}{k} (x)_{k,\lambda} (1-x)_{n-k,\lambda} = \binom{n}{n-k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}.
$$
 (2.3)

By replacing *x* by $1 - x$, we get

$$
B_{k,n}(1-x|\lambda) = {n \choose n-k} (1-x)_{k,\lambda}(x)_{n-k,\lambda} = B_{n-k,n}(x|\lambda), \qquad (2.4)
$$

where $n, k \in \mathbb{N} \cup \{0\}$, with $0 \leq k \leq n$.

Therefore, by [\(2.4\)](#page-3-0), we obtain the following theorem.

Theorem 2.2 (Symmetric identities) *For n, k* $\in \mathbb{N} \cup \{0\}$ *, with k* $\leq n$ *, and x* $\in [0, 1]$ *, we have*

$$
B_{n-k,n}(x|\lambda) = B_{k,n}(1-x|\lambda).
$$

Now, we observe that

$$
\frac{n-k}{n}B_{k,n}(x|\lambda) + \frac{k+1}{n}B_{k+1,n}(x|\lambda)
$$
\n
$$
= \frac{n-k}{n} {n \choose k} (x)_{k,\lambda} (1-x)_{n-k,\lambda} + \frac{k+1}{n} {n \choose k+1} (x)_{k+1,\lambda} (1-x)_{n-k-1,\lambda}
$$
\n
$$
= \frac{(n-1)!}{k!(n-k-1)!} (x)_{k,\lambda} (1-x)_{n-k,\lambda} + \frac{(n-1)!}{k!(n-k-1)!} (x)_{k+1,\lambda} (1-x)_{n-k-1,\lambda}
$$
\n
$$
= (1-x - (n-k-1)\lambda)B_{k,n-1}(x|\lambda) + (x - k\lambda)B_{k,n-1}(x|\lambda)
$$
\n
$$
= (1 + \lambda(1-n))B_{k,n-1}(x|\lambda).
$$
\n(2.5)

Therefore, by (2.5) , we obtain the following theorem.

Theorem 2.3 *For k* ∈ \mathbb{N} ∪ {0}*, n* ∈ \mathbb{N} *, with k* ≤ *n* − 1*, and x* ∈ [0, 1]*, we have*

$$
(n-k)B_{k,n}(x|\lambda) + (k+1)B_{k+1,n}(x|\lambda) = (1+\lambda(1-n))B_{k,n-1}(x|\lambda).
$$
 (2.6)

From (2.1) , we have

$$
\begin{aligned}\n\left(\frac{n-k+1}{k}\right) & \left(\frac{n-(k-1)\lambda}{1-x-(n-k)\lambda}\right) B_{k-1,n}(x|\lambda) \\
&= \left(\frac{n-k+1}{k}\right) \left(\frac{n-(k-1)\lambda}{1-x-(n-k)\lambda}\right) \binom{n}{k-1} (x)_{k-1,\lambda} (1-x)_{n-k+1,\lambda} \\
&= \frac{n!}{k!(n-k)!} (x)_{k-1,\lambda} (1-x)_{n-k,\lambda} = B_{k,n}(x|\lambda).\n\end{aligned} \tag{2.7}
$$

Therefore, by (2.7) , we obtain the following theorem.

Theorem 2.4 *For* $n, k \in \mathbb{N}$ *, with* $k \leq n$ *, we have*

$$
\left(\frac{n-k+1}{k}\right)\left(\frac{n-(k-1)\lambda}{1-x-(n-k)\lambda}\right)B_{k-1,n}(x|\lambda)=B_{k,n}(x|\lambda).
$$

 \bigcirc Springer

For $0 \leq k \leq n$, we get

$$
(1 - x - (n - k - 1)\lambda)B_{k,n-1}(x|\lambda) + (x - (k - 1)\lambda)B_{k-1,n-1}(x|\lambda)
$$

= $(1 - x - (n - k - 1)\lambda)\binom{n-1}{k}(x)_{k,\lambda}(1 - x)_{n-1-k,\lambda}$
+ $(x - (k - 1)\lambda)\binom{n-1}{k-1}(x)_{k-1,\lambda}(1 - x)_{n-k,\lambda}$
= $\binom{n-1}{k}(x)_{k,\lambda}(1 - x)_{n-k,\lambda} + \binom{n-1}{k-1}(x)_{k,\lambda}(1 - x)_{n-k,\lambda}$
= $\binom{n-1}{k} + \binom{n-1}{k-1}(x)_{k,\lambda}(1 - x)_{n-k,\lambda} = \binom{n}{k}(x)_{k,\lambda}(1 - x)_{n-k,\lambda}.$ (2.8)

Therefore, by [\(2.8\)](#page-4-0), we obtain the following theorem.

Theorem 2.5 (Recurrence formula)*. For k*, $n \in \mathbb{N}$ *, with k* ≤ *n* − 1*, x* ∈ [0, 1]*, we have*
 $(1 - x - (n - k - 1)\lambda)B_{k}$ _{*n*-1}(x|λ)</sub> + (x − (k − 1)λ) B_{k-1} _{n-1}(x|λ) = B_{k} _n(x|λ)

$$
(1 - x - (n - k - 1)\lambda)B_{k,n-1}(x|\lambda) + (x - (k - 1)\lambda)B_{k-1,n-1}(x|\lambda) = B_{k,n}(x|\lambda).
$$

Remark 1 For $n \in \mathbb{N}$, we have

$$
\sum_{k=0}^{n} \frac{k}{n} B_{k,n}(x|\lambda) = \sum_{k=0}^{n} \frac{k}{n} {n \choose k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
$$

=
$$
\sum_{k=1}^{n} {n-1 \choose k-1} (x)_{k,\lambda} (1-x)_{n-k,\lambda} = \sum_{k=0}^{n-1} {n-1 \choose k} (x)_{k+1,\lambda} (1-x)_{n-1-k,\lambda}
$$

=
$$
(x - k\lambda) \sum_{k=0}^{n-1} {n-1 \choose k} (x)_{k,\lambda} (1-x)_{n-1-k,\lambda} = (x - k\lambda) (x \bigoplus_{\lambda} (1-x))^{n-1}.
$$

Now, we observe that

$$
\sum_{k=2}^{n} \frac{\binom{k}{2}}{\binom{n}{2}} B_{k,n}(x|\lambda) = \sum_{k=2}^{n} \frac{k(k-1)}{n(n-1)} \binom{n}{k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
$$

$$
= \sum_{k=2}^{n} \frac{k(k-1)}{n(n-1)} \binom{n}{k} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
$$

$$
= \sum_{k=2}^{n} \binom{n-2}{k-2} (x)_{k,\lambda} (1-x)_{n-k,\lambda}
$$

$$
= \sum_{k=0}^{n-2} \binom{n-2}{k} (x)_{k+2,\lambda} (1-x)_{n-2-k,\lambda}
$$

$$
= (x - k\lambda)(x - (k+1)\lambda) \sum_{k=0}^{n-2} \binom{n-2}{k} (x)_{k,\lambda} (1-x)_{n-2-k,\lambda}.
$$
 (2.9)

Similarly, we have

$$
\sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k,n}(x|\lambda) = (x - k\lambda)_{i,\lambda} \sum_{k=0}^{n-i} \binom{n-i}{k} (x)_{k,\lambda} (1 - x)_{n-i-k,\lambda}
$$

$$
= (x - k\lambda)_{i,\lambda} (x \bigoplus_{\lambda} (1 - x))^{n-i}.
$$
(2.10)

² Springer

From (2.10) , we note that

$$
(x - k\lambda)_{i,\lambda} = \frac{1}{(x \oplus_{\lambda} (1 - x))^{n - i}} \sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k,n}(x | \lambda), \tag{2.11}
$$

where $n, i \in \mathbb{N}$, with $i \leq n$, and $x \in [0, 1]$.

Therefore, by [\(2.11\)](#page-5-0), we obtain the following theorem.

Theorem 2.6 *For n, i* $\in \mathbb{N}$ *, with i* $\leq n$ *, and x* $\in [0, 1]$ *, we have*

$$
(x-k\lambda)_{i,\lambda} = \frac{1}{(x \oplus_{\lambda} (1-x))^{n-i}} \sum_{k=i}^{n} \frac{\binom{k}{i}}{\binom{n}{i}} B_{k,n}(x|\lambda).
$$

From Theorem [2.1,](#page-2-2) we note that

$$
\frac{t^k}{k!}(x)_{k,\lambda}(1+\lambda t)^{\frac{1-x}{\lambda}} = \frac{(x)_{k,\lambda}}{k!} \left((1+\lambda t)^{\frac{1}{\lambda}} - 1 \right)^k \left(\frac{t}{(1+\lambda t)^{\frac{1}{\lambda}} - 1} \right)^k (1+\lambda t)^{\frac{1-x}{\lambda}}
$$

$$
= (x)_{k,\lambda} \left(\sum_{m=k}^{\infty} S_{2,\lambda}(m,k) \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} \beta_{l,\lambda}^{(k)} (1-x) \frac{t^l}{l!} \right)
$$

$$
= (x)_{k,\lambda} \sum_{n=k}^{\infty} \left(\sum_{m=k}^n {n \choose m} S_{2,\lambda}(m,k) \beta_{n-m,\lambda}^{(k)} (1-x) \right) \frac{t^n}{n!}.
$$
 (2.12)

On the other hand,

$$
\frac{(x)_{k,\lambda}}{k!}t^k(1+\lambda t)^{\frac{1-x}{\lambda}} = \sum_{n=k}^{\infty} B_{k,n}(x|\lambda)\frac{t^n}{n!}.
$$
 (2.13)

Therefore, by [\(2.12\)](#page-5-1) and [\(2.13\)](#page-5-2), we obtain the following theorem.

Theorem 2.7 *For n, k* $\in \mathbb{N} \cup \{0\}$ *with n* $\geq k$ *, we have*

$$
B_{k,n}(x|\lambda) = (x)_{k,\lambda} \sum_{m=k}^n {n \choose m} S_{2,\lambda}(m,k) \beta_{n-m,\lambda}^{(k)}(1-x).
$$

Let Δ be the shift difference operator with $\Delta f(x) = f(x+1) - f(x)$. Then we easily get

$$
\Delta^n f(0) = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} f(k), \ (n \in \mathbb{N} \cup \{0\}).
$$
 (2.14)

Let us take $f(x) = (x)_{m,\lambda}$, $(m \ge 0)$. Then, by [\(2.14\)](#page-5-3), we get

$$
\Delta^{n}(0)_{m,\lambda} = \sum_{k=0}^{n} {n \choose k} (-1)^{n-k} (k)_{m,\lambda}.
$$
 (2.15)

For more details on (2.14) and (2.15) , we let the reader refer to Chapter 7 of the book [\[12](#page-7-17)]. From (1.7) , we note that

$$
\sum_{n=k}^{\infty} S_{2,\lambda}(n,k) \frac{t^n}{n!} = \frac{1}{k!} \Big((1+\lambda t)^{\frac{1}{\lambda}} - 1 \Big)^k = \frac{1}{k!} \sum_{l=0}^k {k \choose l} (-1)^{k-l} (1+\lambda t)^{\frac{l}{\lambda}}
$$

$$
= \sum_{n=0}^{\infty} \left(\frac{1}{k!} \sum_{l=0}^k {k \choose l} (-1)^{k-l} (l)_{n,\lambda} \right) \frac{t^n}{n!}.
$$
(2.16)

 \bigcirc Springer

Thus, by comparing the coefficients on both sides of (2.16) , we have

$$
\frac{1}{k!} \Delta^k(0)_{n,\lambda} = \frac{1}{k!} \sum_{l=0}^k {k \choose l} (-1)^{k-l} (l)_{n,\lambda} = \begin{cases} S_{2,\lambda}(n,k) & \text{if } n \ge k, \\ 0 & \text{if } n < k. \end{cases}
$$
 (2.17)

By [\(2.17\)](#page-6-0), we get

$$
\frac{1}{k!} \Delta^k(0)_{n,\lambda} = S_{2,\lambda}(n,k), \text{ if } n \ge k. \tag{2.18}
$$

From Theorem 7 and (2.18) , we obtain the following corollary.

Corollary 2.8 *For n, k* ∈ \mathbb{N} ∪ {0} *with n* ≥ *k, we have*

$$
B_{k,n}(x|\lambda) = (x)_{k,\lambda} \sum_{m=k}^{n} {n \choose m} \beta_{n-m,\lambda}^{(k)} (1-x) \frac{1}{k!} \Delta^{k}(0)_{m,\lambda}.
$$

Now, we observe that

(1 + λ*t*)

$$
(1 + \lambda t)^{\frac{x}{\lambda}} = ((1 + \lambda t)^{\frac{1}{\lambda}} - 1 + 1)^{x} = \sum_{k=0}^{\infty} {x \choose k} ((1 + \lambda t)^{\frac{1}{\lambda}} - 1)^{k}
$$

$$
= \sum_{k=0}^{\infty} (x)_{k} \sum_{n=k}^{\infty} S_{2,\lambda}(n, k) \frac{t^{n}}{n!}
$$

$$
= \sum_{n=0}^{\infty} {x \choose k} \sum_{n=k}^{\infty} S_{2,\lambda}(n, k) \frac{t^{n}}{n!}
$$

$$
= \sum_{n=0}^{\infty} {x \choose k} \sum_{k=0}^{n} (x)_{k} S_{2,\lambda}(n, k) \frac{t^{n}}{n!}.
$$
 (2.19)

On the other hand,

$$
(1+\lambda t)^{\frac{x}{\lambda}} = \sum_{n=0}^{\infty} {\frac{x}{\lambda}} \lambda^n t^n = \sum_{n=0}^{\infty} (x)_{n,\lambda} \frac{t^n}{n!}, \ (\vert \lambda t \vert < 1). \tag{2.20}
$$

Therefore, by [\(2.19\)](#page-6-2) and [\(2.20\)](#page-6-3), we obtain the following theorem.

Theorem 2.9 *For* $n \geq 0$ *, we have*

$$
(x)_{n,\lambda} = \sum_{k=0}^{n} (x)_k S_{2,\lambda}(n,k).
$$

By Theorem [2.9,](#page-6-4) we easily get

$$
(x - k\lambda)_{i,\lambda} = \sum_{l=0}^{i} (x - k\lambda)_{l} S_{2,\lambda}(i, l). \tag{2.21}
$$

From Theorem [2.6,](#page-5-6) we have the following theorem.

Theorem 2.10 *For n, i* $\in \mathbb{N}$ *, with i* $\leq n$ *, and* $x \in [0, 1]$ *, we have*

$$
\sum_{l=0}^i (x - k\lambda)_l S_{2,\lambda}(i,l) = \frac{1}{(x \oplus_\lambda (1-x))^{n-i}} \sum_{k=i}^n \frac{\binom{k}{i}}{\binom{n}{i}} B_{k,n}(x|\lambda).
$$

 $\hat{2}$ Springer

Acknowledgements We would like to thank the referee for his valuable comments and suggestions.

References

- 1. Arató, M., Rényi, A.: Probabilistic proof of a theorem on the approximation of continuous functions by means of generalized Bernstein polynomials. Acta Math. Acad. Sci. Hungar. **8**, 91–98 (1957)
- 2. Baskakov, V.A.: A generalization of the Bernstein polynomials, (Russian). Izv Vysš Uˇcebn. Zaved. Matematika **3**(16), 48–53 (1960)
- 3. Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. **15**, 51–88 (1979)
- 4. Carlitz, L.: A degenerate Staudt–Clausen theorem. Arch. Math. (Basel) **7**, 28–33 (1956)
- 5. Kim, T.: A note on *q*-Bernstein polynomials. Russ. J. Math. Phys. **18**(1), 73–82 (2011)
- 6. Kim, T.: λ-analogue of Stirling numbers of the first kind. Adv. Stud. Contemp. Math. (Kyungshang) **27**(3), 423–429 (2017)
- 7. Kim, T.: A study on the *q*-Euler numbers and the fermionic *q*-integral of the product of several type *q*-Bernstein polynomials on Z*p*. Adv. Stud. Contemp. Math. (Kyungshang) **23**(1), 5–11 (2013)
- 8. Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. **20**(3), 319–331 (2017)
- 9. Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma functions. Russ. J. Math. Phys. **24**, 241–248 (2017)
- 10. Kim, T., Yao, Y., Kim, D.S., Jang, G.-W.: Degenerate *r*-Stirling numbers and *r*-Bell polynomials. Russ. J. Math. Phys. **25**(1), 44–58 (2018)
- 11. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Co., New York (1986)
- 12. Phillips, G.M.: Interpolation and Approximation by Polynomials. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 14. Springer, New York (2003)
- 13. Rim, S.-H., Joung, J., Jin, J.-H., Lee, S.-J.: A note on the weighted Carlitz's type *q*-Euler numbers and *q* Bernstein polynomials. Proc. Jangjeon Math. Soc. **15**(2), 195–201 (2012)
- 14. Ryoo, C.S.: Some relations between twisted *q*-Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) **21**(2), 217–223 (2011)
- 15. Siddiqui, M.A., Agrawal, R.R., Gupta, N.: On a class of modified new Bernstein operators. Adv. Stud. Contemp. Math. (Kyungshang) **24**(1), 97–107 (2014)
- 16. Simsek, Y.: Combinatorial identities associated with Bernstein type basis functions. Filomat **30**(7), 1683– 1689 (2016)
- 17. Simsek, Y.: Generating functions for unification of the multidimensional Bernstein polynomials and their applications. Math. Methods Appl. Sci. 1–12 (2018). <https://doi.org/10.1002/mma.4746>
- 18. Simsek, Y.: Generating functions for the Bernstein type polynomials: a new approach to deriving identities and applications for the polynomials. Hacet. J. Math. Stat. **43**(1), 1–14 (2014)
- 19. Szasz, O.: Generalization of S. Bernstein's polynomials to the infinite interval. J. Res. Natl. Bur. Stand. **45**, 239–245 (1950)