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Abstract
Non-dicritical codimension one foliations on projective spaces of dimension four or higher
always have an invariant algebraic hypersurface. The proof relies on a strengthening of a result
by Rossi on the algebraization/continuation of analytic subvarieties of projective spaces.
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1 Introduction

1.1 Motivation

This paper drawsmotivation from a conjecture proposed byBrunella concerning the structure
of codimension one foliations on projective spaces.

Conjecture 1.1 Every codimension one foliation on P
n, n ≥ 3, either admits an invariant

algebraic hypersurface or is everywhere tangent to a foliation by codimension two algebraic
subvarieties.

We focus our attention on the class of codimension one foliations with non-dicritical
singularities. Roughly speaking, these are foliations for which composition of blow-ups with
centers contained in the singular set of the foliation will have invariant exceptional divisors,
see Sect. 2.2. It can be verified that non-dicritical foliations on P

n cannot be tangent to a
one-dimensional foliation by algebraic leaves. Therefore, a positive answer to Conjecture
1.1, would imply that non-dicritical foliations on Pn , n ≥ 3, have at least one algebraic leaf.
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1.2 Existence of algebraic separatrices

Our first main result confirms Conjecture 1.1 for the class of non-dicritical foliations on Pn ,
n ≥ 4.

Theorem A Let F be a codimension one foliation on P
n, n ≥ 4. If F is non-dicritical then

F leaves invariant an algebraic hypersurface.

Unfortunately, our proof of Theorem A does not generalize easily to dimension three.
Nevertheless, our arguments still guarantee the existence of algebraic separatrices inP3 under
some conditions on the codimension two components of the singular set of the foliation as
explained in Sect. 4.3.

1.3 Characterization of non-dicritical logarithmic foliations

In [12], Cerveau, Lins Neto et al., proposed a stronger version of Conjecture 1.1.

Conjecture 1.2 Every codimension one foliation on a compact complex manifold either is
transversely projective or is everywhere tangent to a foliation by codimension two compact
subvarieties.

Our second main result confirms Conjecture 1.2 for non-dicritical foliations on Pn , n ≥ 4,
with general two dimensional section free from saddle-nodes.

Theorem B LetF be a codimension one foliation on Pn, n ≥ 4. IfF is non-dicritical and the
restriction of F to a general P2 does not have saddle nodes in its resolution of singularities
then F is defined by a closed logarithmic 1-form.

It is interesting to compare Theorem B with the main result of [11]. As in the case of
Theorem Awe can, under more restrictive assumptions on the codimension two singularities
of F , formulate a version of Theorem B valid for foliations on P

3, see Sect. 4.3.

1.4 Algebraization of analytic subvarieties

The main technical tool used in the proofs of Theorems A and B is a strengthening of a
classical result by Rossi [20] concerning the algebraization of germs of analytic subvarieties
of projective varieties. Although not standard, we will use the terminology local subvarieties
for subvarieties of Euclidean open subsets of projective spaces, in order to emphasize that
they are not a priori globally defined.

Theorem C Let X be an irreducible subvariety of Pn. Let U be an Euclidean neighborhood
of X and let V be a local irreducible subvariety of U. If dim V +dim X > n and X ∩V �= ∅
then there exists a subvariety V of Pn such that dim V = dim V and V ∩U ⊇ V .

Rossi, in his original statement, made the assumption that X ∩ V have the expected
dimension dim X + dim V − n. Here we make no assumption on the dimension of X ∩ V .
The original proof is analytic in nature, and relies on an ingenious use of Hartog’s extension
theorem. Our proof is more algebraic, and explores properties of the Hilbert scheme of Pn .
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1.5 Structure of the paper

Section 2 reviews the definition of non-dicritical singularities and the results on the existence
of separatrices for codimension one foliations in the local and in the semi-local setting.
Section 3 is devoted to the proof of Theorem C. Finally, Theorems A and B are proved in
Sect. 4.

2 Existence of separatrices for germs of non-dicritical foliations

This section briefly reviews the known results concerning the existence of separatrices for
codimension one foliations on germs of smooth complex manifolds.

Let ω be a germ of integrable differential 1-form on (Cn, 0) and consider the foliation F
defined by it. As usual we will assume that ω has singular set of codimension at least two.
A germ of hypersurface H through 0 is a separatrix for F if for every smooth point p of H ,
the tangent space of H at p is contained in the kernel of ω(p).

2.1 Camacho–Sad

For foliations on (C2, 0) there always exists at least one separatrix for F . This was first
established by Camacho and Sad in [5].

Theorem 2.1 Let F be a germ of foliation on (C2, 0). Then there exists a germ of separatrix
through 0.

The result was later generalized by Camacho to singular surfaces with contractible reso-
lution graph in [3]. Since then, a number of alternative proofs came to light, see for instance
[10,19,21–23].

2.2 Dicritical foliations

Theorem 2.1 does not generalize to codimension one foliations on higher dimensional man-
ifolds without further hypothesis. Even before the appearance of [5], there was available in
the literature an example of a foliation on C

3 (global and homogeneous) without any germ
of separatrix at 0. For any m ≥ 2, the foliation Fm defined by the 1-form

ωm = (xmz − ym+1)dx + (ymx − zm+1)dy + (zm y − xm+1)dz

does not have a separatrix at the origin, see [17, Chapter 4].

Definition 2.2 A foliation F on (Cn, 0) is dicritical if there exists a finite sequence of blow
ups

X0 = (Cn, 0) ← X1 ← · · · ← XN

with smooth centers everywhere tangent to the strict transform Fi of the foliation F0 = F ,
such the exceptional divisor of the last morphism is not invariant by FN .

The strict transforms of Jouanolou’s foliations Fm under the blow-up at the origin of
(C3, 0) give rise to foliations which do not leave the exceptional divisor invariant. All
Jouanolou’s foliations are dicritical foliations.
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The definition above appears in [9, Section 2.1] as the first of five equivalent definitions
for dicritical foliations. The last definition (loc. cit.) states that a foliation F is dicritical if
and only if there exists an irreducible surface Z ⊂ (Cn, 0) such that restriction of F to Z
contains infinitelymany distinct separatrices. Formore information about dicritical foliations
the reader can consult [6,7].

2.3 Cano–Cerveau and Cano–Mattei

It turns out that dicriticalness is the only obstruction for the existence of separatrices of
codimension one foliations on smooth manifolds.

Theorem 2.3 Let F be a germ of codimension one foliation on (Cn, 0), n ≥ 3. If F is
non-dicritical then there exists a germ of invariant hypersurface through 0.

Theorem 2.3 is due to Cano and Cerveau [8] when n = 3 and to Cano andMattei [9] when
n > 3. Both proofs rely on reduction of singularities for non-dicritical foliations established
in full generality in dimension three [8] and generically in dimension greater than three [9].

2.4 Semi-local separatrices

In dimension three, Cano and Cerveau prove a reduction of singularities theorem for non-
dicritical foliations and then establish a bijection between connected components of the set
of singular points of the resulting foliation which are not contained in the singular set of
the exceptional divisor, and separatrices (formal or convergent) for the original foliation on
(C3, 0), see [8, Theorem 2.1]. In particular they show that any germ of curve in (C3, 0)
tangent everywhere to a foliation but not contained in the singular set, is contained in a
unique separatrix. The existence of such germs of curves follows from Theorem 2.1 applied
to a sufficiently general hyperplane sections.

In dimension strictly greater than three, Cano andMattei show in the proof of [9, Theorem
5] that the separatrices of the restriction of F to a sufficiently general 3-dimensional germ of
manifold through the origin of (Cn, 0) can be uniquely extended to germs of separatrices of
the foliation on (Cn, 0).

Putting together [8, Theorem 2.1] and the proof of Theorem [9, Theorem 5], one obtains
the following semi-local version of Theorem 2.3.

Theorem 2.4 Let F be a codimension one foliation on a complex manifold X. Let S ⊂
sing(F) be an irreducible component of the singular set of F; let p ∈ S be a sufficiently
general point of S; and let γ be a germ of irreducible curve at p not contained in sing(F) but
everywhere tangent to F . If F is non-dicritical along S then there exists an open Euclidean
neighborhood U of S and a local F-invariant hypersurface V ⊂ U containing both γ and
S.

3 Continuation of subvarieties

3.1 Rossi’s theorem

We recall below the main result of [20]. Its proof is analytic in nature and relies on an
ingenious application of Hartog’s theorem.
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Theorem 3.1 Let X be an irreducible subvariety of Pn. Let U ⊂ P
n be an Euclidean neigh-

borhood of X and let V be a local irreducible subvariety of U. If

(1) dim V + dim X > n, and
(2) every branch of V ∩ X has dimension dim V + dim X − n

then there exists a subvariety V of Pn such that V ∩U = V .

3.2 A strengthening of Rossi’s theorem

At the introduction of [20], Rossi remarks that he does not know if condition (2) is really
necessary. A variant of the argument used in [18, Proposition 6.6] shows that condition (2)
is indeed superfluous.

Theorem 3.2 (Theorem C of introduction) Let X be an irreducible subvariety of Pn. Let
U be an Euclidean neighborhood of X and let V be a local irreducible subvariety of U.
If dim V + dim X > n and X ∩ V �= ∅ then there exists a subvariety V of Pn such that
dim V = dim V and V ∩U ⊇ V .

Proof Fix once and for all a closed point p ∈ X ∩V . For any irreducible component� of the
Hilbert scheme of Pn , let �(V , p) be the subset corresponding to subschemes containing p
and with formal completion at p contained in V . By definition,�(V , p) is the intersection of
the Zariski closed subsets �k(V , p) ⊂ Hilb(Pn) corresponding to subschemes containing p
andwith k-th infinitesimal neighborhood at p contained at the k-th infinitesimal neighborhood
of V at p. It follows that �(V , p) ⊂ Hilb(Pn) is a Zariski closed subset.

LetU� ⊂ �×P
n → � be the universal family of subschemes parametrized by�.Wewill

denote byU�(V ,p) the restriction of the universal family to�(V , p) and by q : U�(V ,p) → P
n

the natural projection to Pn . The proof will go by showing that V can be chosen to be equal
to q(U�(V ,p)) for a suitably irreducible component � of the Hilbert scheme of Pn .

Let us fix ametric onPn . The subvariety X is a compact subset of the open setU . As such, it
rests at a positive distance c > 0 from the boundary ofU , i.e. d(X , ∂U ) = c > 0. Therefore,
there exists an open neighborhoodW ⊂ Aut(Pn) of the identity such that d(ϕ∗X , ∂U ) ≥ c/2
for any ϕ ∈ W . Notice that every irreducible component of ϕ∗X∩V is a projective subvariety
of dimension at least dim X + dim V − n > 0 contained in V .

Let Wp ⊂ W be the subset consisting of automorphisms which fix p. Let ϕ0 ∈ Wp be an
automorphism for which there exists an irreducible component E of ϕ∗

0 X ∩ V containing p
and with minimal dimension among all irreducible components of ϕ∗X ∩V containing p for
ϕ ∈ Wp . If q ∈ E is a point different from p and not contained in any other irreducible com-
ponent of ϕ∗

0 X ∩ V , then varying ϕ ∈ Wp and considering the image ϕ(ϕ−1
0 (q)) we obtain

a full neighborhood Nq of q inside V . By construction this neighborhood is filled up by
irreducible projective subvarieties containing p and contained in V . We deduce the existence
of an irreducible component � ⊂ Hilb(Pn) with general element in �(V , p) corresponding
to an irreducible subvariety of V and such that the morphism q : U�(V ,p) → P

n maps an
analytic neighborhood of � × {p} ⊂ U�(V ,p) inside V . Moreover, the image of such ana-
lytic neighborhood also contains Nq . It follows that q(U�(V ,p)) is the sought algebraization
of V . �

It was pointed out by Kebekus that the result above is probably not formulated in its most
general/natural form. The use of the generic 2-transitiveness of the automorphism group of
P
n should be replaced by an abundance of deformations of X inside the ambientmanifold.We
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do not pursue this line of reasoning here. Anyway, we do believe that a better understanding
of the mechanisms leading to the validity of the result should be pursued. In particular, a
more intrinsic argument might help answering the following natural problem.

Problem 3.3 Can one replace U , respectively V , in the statement of Theorem 3.2 by ̂U the
formal completion of Pn along X , respectively a formal subvariety V ⊂ ̂U ?

3.3 A variant of Rossi’s theorem

Theorem 3.2 does not imply anything interesting for analytic subvarieties of open subsets
of P3 containing a given projective curve. Its hypotheses are only satisfied if the analytic
subvariety in question coincides with a full neighborhood of the curve. The variant of it
below, in contrast, can also be applied for analytic subvarieties of dimension two containing
a curve in P

3.

Theorem 3.4 Let X be an irreducible subvariety of Pn. Let U be an Euclidean neighborhood
of X and let V1 and V2 be local irreducible subvarieties of U. If V1 ∩ V2 = X and dim V1 +
dim V2 > n then there exists subvarieties V 1 and V 2 of Pn such that dim V i = dim Vi and
V i ∩U ⊇ Vi for i = 1, 2.

Proof The proof follows the same lines of the proof of Theorem 3.2. The only difference is
that we now consider g∗Vi ∩ Vj , for g ∈ Aut(Pn) sufficiently close to the identity, in order
to produce many positive dimensional projective subvarieties contained in Vj . �

4 Algebraic separatrices for non-dicritical foliations

4.1 Existence of algebraic separatrices (Proof of Theorem A)

We first recall that the singular set of any codimension one foliation on P
n , n ≥ 2, has an

irreducible component of codimension 2, see for instance [17, Proposition 2.6, page 95]. Let
S ⊂ sing(F) be one such irreducible component, and let p ∈ S be a sufficiently general
point. Let � ⊂ P

n be a linearly embedded P2 passing through p. If � is sufficiently general
then � is not F-invariant and, consequently, the restriction of F to � defines a foliation G
on �.

Theorem 2.1 guarantees the existence of a curve γ ⊂ � everywhere tangent to G. But
then γ is clearly everywhere tangent to F and we can apply Theorem 2.4 to produce an open
neighborhood U of S and an analytic subvariety V ⊂ U containing S which is left invariant
by F . We conclude the proof by applying Theorem C. �

4.2 Characterization of non-dicritical logarithmic foliations (Proof of Theorem B)

As in the proof of Theorem A, let � be a sufficiently general P2 linearly embedded in P
n

and let G be the restriction of F to �. According to [4, Lemma 10], the singular set of G
coincides with the union of sing(F) ∩ � and finitely many extra singularities.

The non-dicriticalness of F , combined with Darboux-Jouanolou Theorem [17, Theo-
rem 3.3, page 102] (see also [16]), implies that F has finitely many invariant algebraic
hypersurfaces. Since � is general, we can assume that it intersects the smooth locus
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of the invariant algebraic hypersurfaces transversely. Therefore the separatrices through
p ∈ sing(G) − sing(F) ∩ � are not contained in F-invariant algebraic hypersurfaces.

Let π : �̃ → � be the composition of a reduction of singularities of G with one extra
blow-up at every point in sing(F) ∩ � and let G̃ = π∗G be the resulting reduced foliation.
The extra blow-ups guarantee that any irreducible curve invariant by G̃ is smooth. Since, by
assumption, G̃ has no saddle-nodes, every singularity of G̃ is at the intersection of two germs
of convergent separatrices.

The proof of TheoremA shows that every separatrix of G through a point p ∈ sing(F)∩�

is algebraic. Let C = {C1, . . . ,Ck} be the collection of all irreducible G̃-invariant algebraic
curves which are either an irreducible component of the exceptional divisor or are irreducible
components of strict transform of the intersection of an F-invariant algebraic hypersurface
with �. Notice that the singular set sing(G̃) ∩ Ci coincides with the intersection of Ci with
the divisor

∑

i �= j C j .
Recall from [1, Chapter 2, Proposition 3] the formula

NG̃ · Ci = C2
i + Z(G̃,Ci ) .

In our situation, we can write Z(G̃,Ci ) = (
∑

j �=i C j ) · Ci and deduce that

NG̃ · Ci =
⎛

⎝

k
∑

j=1

C j

⎞

⎠ · Ci . (4.1)

for every curve Ci , i = 1, . . . , k.
The Picard group of �̃ is generated by the line bundles associated to the exceptional

divisors and by the pull-back of OP2(1). Therefore the curves in C generate a finite index
subgroup of the Picard group of �̃. We deduce that NG̃ and O�̃(

∑k
j=1 C j ) are isomorphic

line bundles because they have equal intersection numbers with every curve in C according
to (4.1) and the intersection form is non-degenerate in Pic(�̃). It follows that G̃ is defined by
a logarithmic 1-form with poles on the simple normal crossing divisor

∑k
i=1 Ci . A result by

Deligne [15, (3.2.14)] guarantees that such logarithmic 1-form is closed. Consequently, the
foliation G is defined by a closed logarithmic 1-form. Since � is generic, it follows that F
is also defined by a closed logarithmic 1-form, see [13], [4, Lemma 9] or [14, Appendix A].

�

4.3 Results for foliations on P3

One can try to replace Theorem 3.2 by Theorem 3.4 in order to establish analogues of
Theorems A and B for foliations on P3. The only obstruction in order to do so is the presence
of codimension two components of the singular set contained in exactly one semi-local
separatrix. This may happen because over a general transverse section the germ of foliation
has a singularity with only one irreducible separatrix (e.g. Poincaré-Dulac singularities), or
due to a transitive monodromy action on the set of the separatrices on a two-dimensional
section.

The argument used to prove Theorem A implies the following result.

Proposition 4.1 Let F be a codimension one foliation on P
3. If F is non-dicritical then F

leaves invariant an algebraic hypersurface, or each irreducible component of the singular
set of codimension two is contained in exactly one convergent separatrix.

Similarly, the arguments leading to Theorem B also lead to the following result.
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Proposition 4.2 LetF be a codimension one foliation on P3. Assume thatF is non-dicritical
and that each one-dimensional irreducible component of its singular set is contained in at
least two convergent separatrices. If the restriction ofF to a general P2 does not have saddle
nodes in its resolution of singularities then F is defined by a closed logarithmic 1-form.

The proposition above gives an alternative proof of the stability of logarithmic foliations
on P

n , n ≥ 3, a result established by Calvo-Andrade in a more general context, see [2]. It
suffices to observe that deformations of general logarithmic foliations are non-dicritical and
have one-dimensional irreducible components of the singular set contained in exactly two
separatrices.
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