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Abstract The relation between the concept of Darboux transform and the full Kostant Toda
lattice is analyzed. The main result is Theorem 1, where the discrete Korteweg de Vries
equation is used to obtain new solutions of the full Kostant Toda lattice. In addition, an
iterative method to obtain the generalized Darboux factorization for a Hessenberg banded
matrix is provided, which is the basis to obtain the new solutions.
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1 Introduction

In [2] some aspects of the relation between the (p + 2)-banded matrices

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0 1
a1,0 a1,1 1
...

...
. . .

. . .

ap,0 ap,1 · · · ap,p 1

0 ap+1,1
. . .

. . .
. . .

0 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

and the integrable system

ȧi, j = (
ai,i − a j, j

)
ai, j + ai+1, j − ai, j−1 , i, j = 0, 1, . . . (2)
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were studied. In particular, a method for constructing solutions of this system was given in
the case p = 2. This method is based on the extension of the concept of Darboux transform,
which can be consulted in [4] for the classical tridiagonal case p = 1. Due to the matrix
interpretation of this method, the concept of Darboux transform was extended in [2] for an
arbitrary p ∈ N and a banded matrix J as in (1). However, just in [3] the existence of such
a kind of generalized transforms was determined. As a consequence, now we are under the
appropriate conditions to generalize the method for constructing solutions of (2), given in
[2] in the case p = 2, to any p ∈ N. This is precisely the goal of this paper.

For simplicity of the reading, we recall here some concepts introduced in [2] and used in
[3] which will be employed in our work. The system (2) is usually called full Kostant Toda
lattice. Here and in the sequel, the dot means differentiation with respect to t ∈ R. However,
in most of the cases we suppress the explicit t-dependence for brevity.

Definition 1 The infinite matrix J is called a solution of (2) if:

1. For each j = 0, 1 . . . the entries ai, j = ai, j (t) , i = j, j + 1, . . . , j + p , of J are
continuous functions with complex values defined in an open interval I j such that

N⋂
j=0

I j �= ∅ for every N ∈ N . (3)

2. The entries ai, j of J verify (2).

An important tool for us is the called discrete Korteweg de Vries (KdV) equation,

γ̇n = γn

( p∑
i=1

γn+i −
p∑

i=1

γn−i

)
, n ∈ N . (4)

This system is an extension of the Volterra lattices studied in [10] and [6]. As in (2), the
matrix theory is used to analyze the KdV equations. The matrix associated with this system
is

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 0 1
...

. . .
. . .

0
...

γ1 0

0 γ2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with γ1 in the p-th row. Also we assume that the entries γ j = γ j (t) , j ∈ N , of Γ are
continuous functions with complex values defined in the open intervals O j such that

N⋂
j=0

O j �= ∅ , for every N ∈ N . (5)

Definition 2 The matrix Γ is called a solution of (4) if the sequence {γn} satisfies (4) and
(5).

With respect to the extension of the concept of Darboux transform, the following definition
was introduced in [2] and analyzed in [3]. As usual, here and in the sequel Mn denotes the
leading principal submatrix of M with size n × n.
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Definition 3 Let B = (
bi j

)
, i, j ∈ N , be a lower Hessenberg (p + 2)-banded matrix,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0,0 1
b1,0 b1,1 1
...

...
. . .

. . .

bp,0 bp,1 · · · bp,p 1

0 bp+1,1
. . .

. . .
. . .

0 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

such that det(Bn) �= 0 for any n ∈ N. Let L and U be lower and upper triangular matrices,
respectively, such that the entries in the diagonal of L are lii = 1 and B = LU is the (unique)
LU factorization of B in these conditions. Assume L = L(1)L(2) . . . L(p), where

U =

⎛
⎜⎜⎜⎝

γ1 1
γp+2 1

γ2p+3
. . .
. . .

⎞
⎟⎟⎟⎠ , L(i) =

⎛
⎜⎜⎜⎜⎜⎝

1
γi+1 1

γp+i+2 1

γ2p+i+3
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

, i=1, . . . , p .

(7)

Then the matrix decomposition

L(1)L(2) · · · L(p)U (8)

is called a Darboux factorization of B. Moreover, any circular permutation

L(i+1) · · · L(p)UL(1) · · · L(i) , i = 1, 2, . . . , p , (9)

of (8) is called a Darboux transform of B. (We understandUL(1) · · · L(p) in (9) when i = p.)

Notice that the Hessenberg banded matrix (6) in Definition 3, in general, does not depend
on t ∈ R. However, our object is to obtain some solutions of (2) using theDarboux transforms
of J − C I under certain conditions for C ∈ C. In other words, we need to work with
banded matrices J − C I whose entries are functions verifying (2)–(3). Our main result is
the following.

Theorem 1 Let J be a (p + 2)-banded matrix as in (1). Assume that J is a solution of (2)
verifying ap+i,i �= 0 , i = 0, 1, . . . , and let C ∈ C be such that det(Jn − C In) �= 0 for any
n ∈ N. Then there exist p solutions J (1), . . . , J (p) of (2) such that the following relations
hold.

J (i) = C I + L(i+1) · · · L(p)UL(1) · · · L(i) , i = 0, 1, 2, . . . , p (10)

(assuming J (0) = J ), where L(i) , i = 1, 2, . . . , p , andU are as in (7). Moreover the entries
of U, L(1) , · · · , L(p) provide the sequence {γn}, which defines a solution Γ of (4).

Along the paper it is convenient to have another expression of (10), which is obtainedwhen
each entry of the matrix J (i) is given in terms of the entries of matrices ofU, L(1) , · · · , L(p).
This is, if we write
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J ( j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a( j)
0,0 1

a( j)
1,0 a( j)

1,1 1
...

...
. . .

. . .

a( j)
p,0 a( j)

p,1 · · · a( j)
p,p 1

0 a( j)
p+1,1

. . .
. . .

. . .

0 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, j = 0, 1, . . . , p , (11)

then for each j = 0, 1, . . . , p, from the products on the right hand side of (10) we get

a( j)
i,i = C +

j+p+1∑
s= j+1

γ(i−1)p+i+s , (12)

a( j)
i+k,i =

∑

E ( j)
k

γ(i−1)p+i1+iγi p+i2+i · · · γ(k+i−1)p+ik+1+i ,

i = 0, 1, . . . , k = 1, 2, . . . , p . (13)

(notice that J (0) = J and, consequently, a(0)
s,r = as,r ). The sum in (13) is extended to the set

of indices E ( j)
k defined as

E ( j)
k = {(i1, . . . , ik+1) : j + k + 1 ≤ ik+1 ≤ · · · ≤ i1 ≤ j + p + 1}. (14)

We are interested in the solutions of (2) and (4), which are connected by (12)–(13).
Therefore, in the following we call Bäcklund transformations to relations (12)–(13) (and by
extension (10)). In fact, in the literature of integrable systems this term is used to appoint
relations between solutions of different systems (see [6]), being (12)–(13) extensions of this
kind of relations.

The connection between Darboux transforms and banded matrices is a classical topic
in the study of integrable systems and differential equations (see for instance [9], [11]).
We underline that our concepts and results for the Darboux transforms not only extend
those corresponding to tridiagonal matrices but also those established in the past for banded
matrices (see [1]). In particular, notice the relevance of the Darboux factorization (8) for
obtaining the new solutions J (i), i = 1, . . . , p, given in (10). In this work we study this
problem, given a constructive approach to arrive at (8) from J , which is another contribution
of this paper.

In Sect. 2 some tools for our work are presented and the main auxiliary results are intro-
duced. In Sect. 3 an iterative method for obtaining the Darboux factorization (8) is presented.
Finally, the proof of Theorem 1 appears in Sect. 4.

2 Auxiliary results

An important tool in our approach is the sequence of polynomials {Pn(z)} = {Pn(t, z)} , n ∈
N , associated with the matrix J . This family is defined by the following recurrence relation.
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n−1∑
i=n−p

an,i Pi (z) + (an,n − z)Pn(z) + Pn+1(z) = 0, n = 0, 1, . . .

P0(z) ≡ 1 , P−1(z) = · · · = P−p(z) = 0 .

⎫⎪⎬
⎪⎭

(15)

If J is a solution of (2) then each polynomial Pn = Pn(t, z) is a continuous function on t .
Furthermore, in Lemma 2 of [2] was proved

Ṗn(z) = −
n−1∑

i=n−p

an,i Pi(z) , n = 0, 1, . . . . (16)

As a consequence of the above comments, for each n = 0, 1, . . . we have that Ṗn(z) is also
a continuous function on t in some open interval of R. Moreover, the following expression
for the derivative is straightly obtained from (15) and (16).

Ṗn(z) = (an,n − z)Pn(z) + Pn+1(z) , n = 0, 1, . . . . (17)

On the other hand, it is well known that for each matrix J and C ∈ C in the conditions of
Theorem 1 there exists the LU factorization of J − C I . This is, there exists a banded lower
triangular matrix

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
l1,1 1
...

. . .
. . .

l p,1 l p,2 . . . 1

0 l p+1,2
. . .

. . .

0 . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

and there exists an upper triangular matrix U = U (t) as in (7) such that

J − C I = LU, (19)

being

Jn − C In = LnUn (20)

for each n ∈ N (see for instance [5]).
The following auxiliary result also will be used in the proof of Theorem 1.

Lemma 1 In the above conditions, the entries γnp+n+1 , n = 0, 1, . . . , of U verify (4).

Proof It is obvious that the recurrence relation (15) can be rewritten as

(Jn − z In)

⎛
⎜⎜⎝

P0(z)
P1(z)

...

Pn−1(z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
...

−Pn(z)

⎞
⎟⎟⎠ .

In particular, for z = C from (20) we have

LnUn

⎛
⎜⎜⎝

P0(C)

P1(C)
...

Pn−1(C)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
...

−Pn(C)

⎞
⎟⎟⎠ .
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Then, using the fact that L is a triangular matrix whose diagonal entries are 1,

Un

⎛
⎜⎜⎝

P0(C)

P1(C)
...

Pn−1(C)

⎞
⎟⎟⎠ = L−1

n

⎛
⎜⎜⎝

0
0
...

−Pn(C)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
...

−Pn(C)

⎞
⎟⎟⎠ .

This is, taking into account the structure of U [see (7)],

γnp+n+1 = − Pn+1(C)

Pn(C)
, n = 0, 1, . . . (21)

Taking derivatives in (21),

γ̇np+n+1 = − Pn(C)

Pn−1(C)

(
Ṗn(C)

Pn(C)
− Ṗn−1(C)

Pn−1(C)

)
.

From this and (17),

γ̇np+n+1 = γnp+n+1
(
an,n − an−1,n−1 − γnp+n+1 + γ(n−1)p+n

)
.

Then since (12) (with j = 0) we arrive at (4). ��

The next result guarantees the existence of the Darboux factorization, which is used in
the proof of Theorem 1.

Lemma 2 (Theorem 1 in [3]) Let L be a lower triangular matrix as in (18) with complex
entries, such that l p+ j, j+1 �= 0 for each j = 0, 1, . . . Then there exists a set of p(p − 1)/2
complex numbers

γ2, γp+3 · · · · · · γ(p−1)p,

γ3, γp+4 · · · γ(p−2)p,
...

... . .
.

γp−1, γ2p,

γp

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(22)

as well as p triangular matrices L(i), i = 1, . . . , p , as in (7) such that

L = L(1)L(2) · · · L(p) , (23)

where γk(p+1)+i+1 �= 0 for i = 1, 2, . . . , p and k = 0, 1, . . . Moreover, the factorization
(23) is unique for each fixed set of points (22).

Lemma 2 in [3] was obtained as a consequence of the following result. Here, the necessary
conditions to obtain the set (22) are given in an explicit way.

Lemma 3 (Theorem 2 in [3]) Let us consider a (p + 1)-banded lower triangular matrix L
as in (18) such that l p+ j, j+1 �= 0 for each j = 0, 1, . . . Assume α1, α2, . . . , αp−1 ∈ C such
that

p−1∑
s=0

(−1)sαp−sαp−s+1 · · · αp−1C
(s)
k �= 0 , for all k = 1, 2, . . . , (24)
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where C (s)
1 := l p−s−1,1 and

C (s)
k :=

∣∣∣∣∣∣∣∣∣∣∣

l p−s−1,1 l p−s−1,2 · · · · · · l p−s−1,k

l p,1 l p,2
. . .

. . . l p,k

0 l p+1,2
. . .

. . . l p+1,k
...

. . .
. . .

. . .
...

0 · · · 0 l p+k−2,k−1 l p+k−2,k

∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 2 , (25)

for each s = 0, 1, . . . , p − 1. (We understand αp−sαp−s+1 · · · αp−1 = 1 for s = 0 and
li, j = 0 for j > i + 1.) Then there exist a bi-diagonal matrix

D(1) =

⎛
⎜⎜⎜⎜⎜⎝

1
α1 1

α2 1

α3
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

(26)

and a p-banded lower triangular matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
δ2,1 1
...

. . .
. . .

δp,1 δp,2 . . . 1

0 δp+1,2
. . .

. . .

0 . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(27)

such that δp+k−1,k �= 0 , k = 1, 2, . . . , and

L = D(1)A . (28)

Moreover, if the p entries α1, α2, . . . , αp−1 ∈ C of D(1) are fixed verifying (24), then (28) is
the unique factorization of L in these conditions.

Lemma 2 can be obtained as a corollary of Lemma 3. The key of this fact is the next
lemma, which we use in the proof of our main result.

Lemma 4 For s ∈ {0, 1, . . . , p − 2} and N ∈ N, let us consider the triangular matrix

T (s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
m(s)

1,1 1
...

. . .
. . .

m(s)
p−s,1 m(s)

p−s,2 . . . 1

0 m(s)
p−s+1,2

. . .
. . .

0 . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29)

where m(s)
p−s+ j, j+1 �= 0 , j = 0, 1, . . . Then there exist p − s − 1 complex values

α
(s)
i �= 0 , i = 1, 2, . . . , p − s − 1 , (30)
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such that
p−s−1∑
j=0

(−1) jα(s)
p−s− jα

(s)
p−s− j+1 · · · α(s)

p−s−1R
(s, j)
k �= 0 (31)

for each k = 1, 2, . . . , N , where R(s,r)
1 = m(s)

p−s−r−1,1 and

R(s,r)
k :=

∣∣∣∣∣∣∣∣∣∣∣∣

m(s)
p−s−r−1,1 m(s)

p−s−r−1,2 · · · · · · m(s)
p−s−r−1,k

m(s)
p−s,1 m(s)

p−s,2 · · · · · · m(s)
p−s,k

0 m(s)
p−s+1,2

. . .
. . . m(s)

p−s+1,k
...

. . .
. . .

. . .
...

0 · · · 0 m(s)
p−s+k−2,k−1 m(s)

p−s+k−2,k

∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 2 .

(32)

Proof For the complex numbers R(s,r)
k , r = 0, . . . , p − s − 1, given in (32) and k =

1, 2, . . . , N , we consider the hyperplanes πk in R
p−s−1 given by the equation of the form

R(s,1)
k x1 + R(s,2)

k x2 + · · · + R(s,p−s−1)
k x p−s−1 = R(s,0)

k . (33)

Also we consider the hyperplanes Ψi of equation xi = 0 , i = 1, . . . , p − s − 1. We define
π := ⋃N

k=1 πk and Ψ := ⋃p−s−1
i=1 Ψi . Then, if μ is the Lebesgue measure in R

p−s−1, it
is well known that μ(π ∪ Ψ ) = 0 (see [12] for details). As a consequence, there exists a
nonnumerable set of points X ∈ R

p−s−1 such that X = (x1, . . . , xp−s−1) /∈ π ∪ Ψ. We
choose one of these points and we define iteratively

α
(s)
p−s− j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 , if j = 1 ,

(−1) j+1x j

α
(s)
p−s− j+1α

(s)
p−s− j+2 . . . α

(s)
p−s−1

, if j = 2, . . . , p − s − 1 .
(34)

Note that α
(s)
1 , . . . , α

(s)
p−s−1 are well defined because X /∈ Ψ and, consequently, x j �= 0 for

each j = 1, . . . , p − s − 1. Therefore α
(s)
i �= 0 , i = 1, . . . , p − s − 1.

From (33) and (34) we arrive at (31). ��

3 Construction of the matrices L(i), i = 1, . . . , p

Let L be a matrix as in (18) verifying l p+ j, j+1 �= 0 , j = 0, 1, . . . Then from the set of data
(22) it is possible to build L(1), . . . , L(p) which are the factors in (23). With this purpose we
will construct Table 1 where, on each row, the entries of these matrices will be given. From
the Backlünd transformations (13) (for j = 0) it is easy to arrive at

δ
(i)
k γ(k+i+1)p+i = ak+i+1,i−1 −

∑

Ẽ (0)
k+2

γ(i−2)p+i+i1−1γ(i−1)p+i+i2−1 · · · γ(k+i)p+i+ik+3−1

i ∈ N, k = −1, 0, . . . , p − 2 , (35)

where

δ
(i)
k = γ(i−1)p+iγi p+i · · · γ(k+i)p+i (36)
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Ta
bl
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1

C
on

st
ru
ct
in
g
L

(1
)
,
..

.,
L

(
p)

U
γ
1

γ
p+

2
···

γ
m
p+

(m
+1

)
···

···
···

γ
(
p+

i−
1)
p+

(i
−1

)
···

L
(1

)
γ
2

γ
p+

3
···

γ
m
p+

(m
+2

)
···

···
···

γ
(
p+

i−
1)
p+

i
···

L
(2

)
γ
3

γ
p+

4
···

γ
m
p+

(m
+3
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···

···
γ
(
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i−
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p+

i
···

. . .
. . .

. . .
. . .

..
.

L
(
p−

m
−1

)
γ
p−

m
γ
2
p−

m
+1

···
γ
(m

+1
)
p

···
γ
(m

+i
+1

)
p+

i
. . .

. . .
. . .

..
.

L
(
p−

2)
γ
p−

1
γ
2
p

···
γ
(i

+2
)
p+

i

L
(
p−

1)
γ
p

···
γ
(i

+1
)
p+

i

L
(
p)

···
γ
ip

+i
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and

Ẽ (0)
k+2 = {(i1, . . . , ik+3) : k + 3 ≤ ik+3 ≤ · · · ≤ i1 ≤ p + 1 , ik+3 < p + 1}. (37)

We remark that the subsequence {γmp+m+1} , m ∈ N , in (35)–(36) is knownandgiven in (21).
This subsequence of {γn} constitutes the first row of Table 1 and defines thematrixU . In order
to complete the rest of the γ ’s, themain idea is to obtain γ(k+i+1)p+i for k = −1, 0, . . . , p−2,
iteratively for each fixed i ∈ N. Firstly we take i = 1 in (35). This is,

δ
(1)
k γ(k+2)p+1 = ak+2,0 −

∑

Ẽ (0)
k+2

γ−p+i1γi2γp+i3 · · · γ(k+1)p+ik+3 ,

k = −1, 0, 1, . . . , p − 2 , (38)

and δ
(1)
k = γ1γp+1γ2p+1 · · · γ(k+1)p+1.We note that γ−p+i1 = 0 when i1 �= p+1 in the sum

of (38). Therefore this sum can be rewritten extended to ˜̃Ek+2 := {(i2, . . . , ik+3) : k + 3 ≤
ik+3 ≤ · · · ≤ i2 ≤ p + 1 , ik+3 < p + 1}. This is,

δ
(1)
k γ(k+2)p+1 = ak+2,0 − γ1

∑
˜̃Ek+2

γi2γp+i3 · · · γ(k+1)p+ik+3 . (39)

For k = −1 we have δ
(1)
−1 = γ1 and since (39)

γp+1 = a1,0
γ1

−
p∑

j=2

γ j .

Now we can calculate δ
(1)
0 = γ1γp+1. Taking k = 0 in (39),

γ2p+1 = a2,0

δ
(1)
0

− 1

γp+1

∑
˜̃E2

γi2γp+i3 .

In this way, in p steps given for k = −1, 0, . . . , p − 2 we obtain the entries

γp+1, γ2p+1, . . . , γp2+1,

corresponding to the matrices L(p), L(p−1), . . . , L(1) respectively (see (7)). These values of
γ ’s constitute the secondary diagonal in Table 1 for i = 1. Note that in the step k + 2 it is
possible to obtain γ(k+2)p+1 in (39) because the entries γi2 , γp+i3 , . . . , γ(k+1)p+ik+3 in the
right hand side are in the upper triangular part of Table 1, over the secondary diagonal. In
fact γsp+is+2 is in the column s + 1, including the secondary diagonal, for s = 0, 1, . . . , k,
because is+2 ≤ p + 1. The last factor, γ(k+1)p+ik+3 , is in the column k + 2 but ik+3 ≤ p and
this factor is not in the secondary diagonal, whose entry γ(k+1)p+(p+1) is being obtained in
this step.

We will iterate the above procedure for constructing any parallel diagonal

γi p+i , γ(i+1)p+i , . . . , γ(p+i−1)p+i

in Table 1. Assume that we have constructed the parallel diagonals

γsp+s, γ(s+1)p+s, . . . , γ(p+s−1)p+s , s = 1, 2, . . . , i − 1 . (40)

Then we take k = −1 in (36) and we have δ
(i)
−1 = γ(i−1)p+i , which is an entry of

U . Therefore γi p+i can be obtained from (35) when k = −1. In general, for each
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k ∈ {−1, 0, . . . , p − 2} we can obtain γ(k+i+1)p+i from (35), because for this value of

k we have that δ
(i)
k is known in the previous step. As in the case i = 1, the factors

γ(i−2)p+i+i1−1, γ(i−1)p+i+i2−1 , . . . , γ(k+i)p+i+ik+3−1 on the right hand side of (35) are
the entries of matrices L( j), j = 1, . . . , p , corresponding to the upper triangular part
of Table 1, which are known from the previous steps. In this form, the parallel diagonal
γ(k+i+1)p+i , k = −1, 0, . . . , p−2 , is obtained, corresponding with the value s = i in (40).

4 Proof of Theorem 1

If J and C satisfy the conditions of the statement in Theorem 1, then (19) holds. Moreover
for each N ∈ N there exists some open interval IN �= ∅ , IN ⊂ R , such that the entries
γi p+i+1(t) of U (see (7)) and the entries li, j (t) of L , i, j ≤ N , (see (18)) are continuous
functions onIN . In fact, these entries can be expressed in terms of products and sums of the
entries of J − C I , which are continuous functions (see [8] for instance). We assume a fixed
N ≥ p − 1 in the sequel for convenience, and we let t0 ∈ IN .

4.1 Factorization of L

In [3], Lemma 2 and the factorization (23) were proved for a fixed matrix L that could not
depend on t ∈ R. Also Lemma 3 was proved in [3] for this kind of fixed matrices. Here, we
need to extend these results for our matrix L , which depends on t . In other words, we want to
prove that the first entries of the factors L(i), i = 1, . . . , p, in (23) are defined in some open
interval I ⊂ R such that t0 ∈ I . With this purpose we will apply Lemma 4 successively
for s = 0, 1, . . . , p − 2.

First we take s = 0 and T (0) = L(t0) in (29). Then there exist α
(0)
1 , . . . , α

(0)
p−1 verifying

(31), this is

p−1∑
j=0

(−1) jα(0)
p− jα

(0)
p− j+1 . . . α

(0)
p−1R

(0, j)
k (t0) �= 0 , k = 1, . . . , N . (41)

For each i ∈ {1, 2, . . . , p − 1} we consider the following initial value problem,

γ̇(i−1)p+(i+1)(t) = γ(i−1)p+(i+1)(t)
(
D(0)
i (t) − γ(i−1)p+(i+1)(t)

)

γ(i−1)p+(i+1)(t0) = α
(0)
i

}
(42)

being D(0)
i = ai,i − ai−1,i−1 + γ(i−2)p+i . We analyze (42) iteratively. If i = 1 then D(0)

1 =
a1,1 − a0,0 and it is well known that (42) has a unique solution γ2(t) in some open interval
I

(0)
1 containing t0 (see [7] for details). If i = 2 then D(0)

2 = a2,2 − a1,1 + γ2 is defined in

I
(0)
1 and the solution γp+3 is defined in some open intervalI (0)

2 containing t0, beingI
(0)
2 ⊂

I
(0)
1 . Iterating this procedure, suppose that γ2, γp+3, . . . , γ( j−1)p+( j+1) , j < p − 1 , are

the solutions of (42) which are continuous functions defined in some open interval I (0)
j

containing t0. If i = j + 1 then D(0)
i = a j+1, j+1 − a j, j + γ( j−1)p+( j+1) is a continuous

function defined in such interval I (0)
j . Therefore (42) has a solution γ j p+( j+2) in these

conditions, which is defined in some interval I (0)
j+1 ⊂ I

(0)
j . Thus we have proved the

existence of p − 1 continuous functions

γ(i−1)p+(i+1) , i = 1, 2, . . . , p − 1 , (43)
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being these functions the respective solutions of (42) in some open interval I (0) containing
t0. We take I (0) := I

(0)
p−1.

Note that in (43) we have obtained the first row of (22). These functions, defined in the
interval I (0), are the first p − 1 entries in the subdiagonal of L(1)(t).

(41) can be written as

p−1∑
j=0

(−1) jγ(p− j−1)p+(p− j+1)(t0) · · · γ(p−2)p+p(t0)R
(0, j)
k (t0) �= 0 , k = 1, . . . , N .

(44)

Due to the continuity of functions (43) and R(0, j)
k , it is possible to choose I (0) sufficiently

small such that (44) is satisfied for each t ∈ I (0). This is,

p−1∑
j=0

(−1) jγ(p− j−1)p+(p− j+1)(t) · · · γ(p−2)p+p(t)R
(0, j)
k (t) �= 0 , k = 1, . . . , N ,

for t ∈ I (0).
In these conditions we apply Lemma 3 and we see that L(t) is factorized as in (28) for

each t ∈ I (0). This is,

L(t) = L(1)(t)T (1)(t) , t ∈ I (0) , (45)

where T (1) is given in (29) for s = 1 satisfying m(1)
p−1+ j, j+1(t) �= 0 , t ∈ I (0) , j =

0, 1, . . . , and L(1) has the structure given in (7). We underline that the factorization (45)
should be understood in a formal sense, because we need to fix N ∈ N to have the first entries
of these matrices defined in some nonempty open interval. In other words, it is possible that
the entries for the infinite matrices L(1)(t) and T (1)(t) are defined in t = t0 but they are not
simultaneously defined in a nonempty open interval. This remark should be applied in the
sequel to matrices depending on t , as in (46) and (47).

We seek to prove the existence of the factors L(i)(t) , i = 1, . . . , p, satisfying

L(t) = L(1)(t) · · · L(p)(t) (46)

whose first entries are continuous functions in some open interval containing t0. We proceed
by induction. Let r ∈ N be satisfying 0 ≤ r < p − 2. For s = 0, 1, . . . , r , we assume

T (s)(t) = L(s+1)(t)T (s+1)(t) , t ∈ I (s) , (47)

where I (s) is an open interval and

t0 ∈ I (r) ⊆ · · ·I (1) ⊆ I (0) . (48)

In (47) we assume T (0) = L and T (s+1) , s = 0, 1, . . . , r , as in (29) such that

m(s)
p−s+ j, j+1 �= 0 , j = 0, 1, . . . (49)
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Also we assume the matrices L(s+1)(t) , s = 0, . . . , r , with the structure given in (7). This
is,

L(s+1)(t) =

⎛
⎜⎜⎜⎜⎜⎝

1
γs+2(t) 1

γp+s+3(t) 1

γ2p+s+4(t)
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (50)

being γs+2(t) , . . . , γ(p−s−1)p(t) continuous functions in I (s) such that

γ̇(i−1)p+(i+s+1)(t) = γ(i−1)p+(i+s+1)(t)
(
D(s)
i (t) − γ(i−1)p+(i+s+1)(t)

)
(51)

[see row s + 1 in (22)], and

D(s)
i = ai,i − ai−1,i−1 − 2

s∑
j=1

γ(i−1)p+(i+ j) +
s∑

j=1

γi p+(i+ j+1) +
s∑

j=0

γ(i−2)p+(i+ j) .

(52)

We have proved the factorization (47) in the above conditions for s = 0 [see (45)]. We
want to prove that (47)–(52) are satisfied for s = r + 1 in some interval I (r+1) such that
t0 ∈ I (r+1) ⊆ I (r). Since (49) and Lemma 4 (for s = r + 1) we know that there exist
p − r − 2 complex numbers

α
(r+1)
i �= 0 , i = 1, 2, . . . , p − r − 2 ,

satisfying

p−r−2∑
j=0

(−1) jα(r+1)
p−r− j−1α

(r+1)
p−r− j · · · α(r+1)

p−r−2R
(r+1, j)
k �= 0 , k = 1, . . . , N . (53)

Moreover we define

α
(s)
i := γ(i−1)p+i+s+1(t0) , s = 1, 2, . . . , r , i = 1, 2, . . . , p − s − 1 . (54)

We consider the following initial value problem for each s = 1, 2, . . . , r + 1 and i =
1, 2, . . . , p − s − 1,

γ̇(i−1)p+i+s+1(t) = γ(i−1)p+i+s+1(t)
(
D(s)
i (t) − γ(i−1)p+i+s+1(t)

)

γ(i−1)p+i+s+1(t0) = α
(s)
i

}
(55)

where D(s)
i is given in (52). Since (42), (51) and (54), the continuous functions

γs+2(t), . . . , γ(p−s−1)p(t) , t ∈ I (s) , s = 0, . . . , r ,

are the solutions of (55) for i = 1, 2, . . . , p − s − 1 respectively. We study this initial value
problem when s = r + 1 taking i = 1, 2, . . . , p − r − 2. First, if i = 1 we have that

D(r+1)
1 = a1,1 − a0,0 − 2

r+1∑
j=1

γ j+1 +
r+1∑
j=1

γp+ j+2
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is a continuous function defined in I (r). Then there exists a solution γr+3(t) of (55) (with
i = 1, s = r + 1), which is a continuous function in some open interval I (r+1)

1 containing

t0 such that I (r+1)
1 ⊆ I (r). Iterating the procedure, we suppose γ(i−1)p+i+s+1 solutions

of (55) when s = r + 1 and i = 1, 2, . . . , ĩ , being ĩ < p − r − 2. Then the continuous
functions

γ(i−1)p+i+r+2(t) , i = 1, 2, . . . , ĩ ,

are defined in some open interval I (r+1)
ĩ

containing t0, being I
(r+1)
ĩ

⊆ I
(r+1)
ĩ−1

⊆ · · · ⊆
I

(r+1)
1 . We recall that also the functions

γ(i−1)p+i+s+1(t) , i = 1, 2, . . . , p − s − 1 , s = 0, 1, . . . , r,

are determined in the previous steps. Therefore, D(r+1)
ĩ+1

is a continuous function defined in

some open interval I (r+1)
ĩ+1

such that t0 ∈ I
(r+1)
ĩ+1

⊆ I
(r+1)
ĩ

. Then it is possible to set that

(55), for i = ĩ + 1 and s = r + 1, also has a solution in the above conditions. Thus for
s = r + 1 the continuous functions

γ(i−1)p+i+r+2(t) , i = 1, 2, . . . , p − r − 2 , (56)

are defined in some open interval, namely I (r+1) := I
(r+1)
p−r−2, containing t0. Note that

I (r+1) ⊆ I (r). Moreover, from (53) and the continuity of the functions (56), we can assume
I (r+1) sufficiently small such that

p−r−2∑
j=0

(−1) jγ(p−r− j−2)p+p− j (t)γ(p−r− j−1)p+p− j+1(t) · · · γ(p−r−2)p(t)R
(r+1, j)
k (t) �= 0 ,

k = 1, . . . , N , t ∈ I (r+1) .

Therefore we apply Lemma 3 (substituting p by p−r−1) and we arrive at (47) for s = r+1.
Consequently, (47) and the conditions given in (48)–(52) are satisfied for s = 0, 1, . . . , p−2.
In particular,

T (p−2)(t) = L(p−1)(t)T (p−1)(t) , t ∈ I (p−2) ,

where L(p) := T (p−1) is a by-diagonal matrix with the structure given in (7). Then we obtain
the factorization (46) by applying successively (47) in t ∈ I (p−2) for s = 0, 1, . . . , p − 2.
We recall that (46) has a formal sense. This is, for each fixed N ∈ N there exists some
open interval IN such that the entries li, j (t) , i, j ≤ N , of L(t) are obtained in terms of
the corresponding products and sums of entries of L(1) , . . . , L(p) for t ∈ IN ∩ I (p−2).
However, it is possible to have

⋂
N∈N IN = {t0}.

4.2 Solution of the KdV equation

Now we analyze the derivative γ̇n of the entries of U and the recently defined matrices
L(i) , i = 1, . . . , p, to prove that the matrix Γ defined by the sequence {γn} is a solution of
(4) (see Definition 2).

The functions

γ(i−1)p+i+s+1(t) , i = 1, 2, . . . , p − s − 1 , s = 0, 1, . . . , p − 2 , (57)
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defined for t ∈ I (p−2) were obtained as the solutions of the initial value problem (55). These
functions correspond to the set (22). Moreover the entries ai, j of J can be obtained since (19)
and (46) in terms of the entries of the factors U , L(i) , i = 1, . . . , p . This is (12) (taking
j = 0) for the diagonal entries of J . From this and (52) we arrive immediately to (4) for the
functions γn given in (57). On the other hand, (4) was proved for the entries of U in Lemma
1. Thus we only need to verify (4) for the rest of the entries of L(i) , i = 1, . . . , p, that are
not given in (57).

The terms of the sequence {γn} not given in (57) are

γ(k+i+1)p+i , i = 1, 2, . . . , k = −1, 0, . . . , p − 2 . (58)

The construction of these terms from the data (57)was analyzed in Sect. 3. The functions (57),
whose derivatives verify (4), can be rewritten as in (58) taking i = −p+2,−p+3, . . . ,−1, 0
(with the convention γn ≡ 0 when n ≤ 0). We recall that for each fixed i ∈ N a parallel
secondary diagonal of Table 1 is obtained in (35) for k = −1, 0, . . . , p − 2. Next we look
for an iterative expression like (35) for the derivatives of these functions. This is, we want to
use this construction for obtaining iteratively and simultaneously each function γ(k+i+1)p+i

and its derivative γ̇(k+i+1)p+i in terms of the functions and the derivatives obtained in the
previous steps. In this way we assume that all the functions γn on the right hand side of (35)
and their derivatives are known.

We shall prove the next expression for the derivative of the function δ
(i)
k given in (36),

δ̇
(i)
k = δ

(i)
k

⎛
⎝

p∑
j=0

γ(k+i)p+i+ j −
p∑

j=0

γ(i−2)p+i+ j

⎞
⎠ ,

i = 1, 2, . . . , k = −1, 0, . . . , p − 2 . (59)

We underline that for each i, k the factors γn of δ
(i)
k given in (36) and its derivatives γ̇n verify

(4) from the previous steps. From this fact,

δ̇
(i)
k

δ
(i)
k

=
k∑

r=−1

γ̇(r+i)p+i

γ(r+i)p+i
=

k∑
r=−1

⎛
⎝

p∑
j=1

γ(r+i)p+i+ j −
p∑

j=1

γ(r+i−1)p+i+ j−1

⎞
⎠

=
p∑

j=1

γ(k+i)p+i+ j +
k∑

r=0

(
γ(r+i−1)p+i+p − γ(r+i−1)p+i

) −
p∑

j=1

γ(i−2)p+i+ j−1 ,

which leads to (59).
Now, for i ∈ N and k ∈ {−1, 0, . . . , p−2} fixed, we study the derivatives of the terms on

the right hand side of (35). With this purpose for each (i1, i2, . . . , ik+3) ∈ Ẽ (0)
k+2 we define

Δ
(i)
k := γ(i−2)p+i+i1−1γ(i−1)p+i+i2−1 · · · γ(i+k)p+i+ik+3−1 , (60)

(see (37)), where we assume that the derivatives of the functions γn verify (4). From this we
have

Δ̇
(i)
k

Δ
(i)
k

=
p∑

j=1

γ(k+i)p+i+ik+3+ j−1 −
p∑

j=1

γ(i−3)p+i+i1+ j−2

+
k+2∑
r=1

⎛
⎝

i+ir+p−1∑
j=i+ir

γ(r+i−3)p+ j −
i+ir+1+p−2∑
j=i+ir+1−1

γ(r+i−3)p+ j

⎞
⎠ . (61)
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We are interested in (61) when (i1, i2, . . . , ik+3) ∈ Ẽ (0)
k+2 and k ∈ {−1, 0, . . . , p − 2}, as

in (35).
Firstly, if k ≥ 0 we have ir − ir+1 ≤ p − k − 2 ≤ p − 2 for r = 1, 2, . . . , k + 2. Then

i + ir+1 − 1 < i + ir ≤ i + ir+1 + p − 2 < i + ir + p − 1 (62)

for (i1, i2, . . . , ik+3) ∈ E (0)
k+2 given in (14) and, in particular, for (i1, i2, . . . , ik+3) ∈ Ẽ (0)

k+2.
Then we simplify (61) because

i+ir+p−1∑
j=i+ir

γ(r+i−3)p+ j −
i+ir+1+p−2∑
j=i+ir+1−1

γ(r+i−3)p+ j

=
i+ir+p−1∑

j=i+ir+1+p−1

γ(r+i−3)p+ j −
i+ir−1∑

j=i+ir+1−1

γ(r+i−3)p+ j . (63)

Secondly, if k = −1 then in the above conditions we have (i1, i2) ∈ Ẽ (0)
1 and

2 ≤ i2 ≤ i1 ≤ p + 1 . (64)

Thus i1 − i2 ≤ p − 1. If

i1 − i2 ≤ p − 2 (65)

then (62) also holds (with r = 1) and consequently we arrive at (63). Moreover, (65) holds
when either i2 �= 2 or i1 �= p+1 in (64). In this case, when i2 = 2 and i1 = p+1, we arrive
straight at (63).

Therefore (63) holds for r = 1, 2, . . . , k+2 , k = −1, 0, . . . , p−2 and (i1, i2, . . . , ik+3) ∈
E (0)
k+2. From this and (61) we have

Δ̇
(i)
k

Δ
(i)
k

=
p∑

j=1

γ(k+i)p+i+ik+3+ j−1 −
p∑

j=1

γ(i−3)p+i+i1+ j−2

+
k+2∑
r=1

⎛
⎝

i+ir+p−1∑
j=i+ir+1+p−1

γ(r+i−3)p+ j −
i+ir−1∑

j=i+ir+1−1

γ(r+i−3)p+ j

⎞
⎠ . (66)

Moreover for each j = 0, 1, . . . , p we can show

∑

Ẽ ( j)
k+2

Δ
(i)
k

⎛
⎝

i+ir−1+p−1∑
s=i+ir+p−1

γ(r+i−4)p+s −
i+ir+p−1∑

s=i+ir+1+p−1

γ(r+i−4)p+s

⎞
⎠ = 0 ,

k = −1, 0, . . . , p − 2 , r = 2, . . . , k + 2 . (67)

Indeed, in the first term of (67) for each s = i + j̃ + p − 1 , ir ≤ j̃ ≤ ir−1 we have

Δ
(i)
k γ(r+i−4)p+s = γ

(i−3)p+i+ĩ0−1γ(i−2)p+i+ĩ1−1 · · · γ
(i+k)p+i+ĩk+3−1 (68)

where

ĩq =
⎧⎨
⎩
iq+1 + p , q = 0, 1, . . . , r − 2
j̃ + p , q = r − 1
iq , q = r, r + 1, . . . , k + 3 .

(69)
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In the second term of (67), for each s = i + j̃ + p − 1 and ir+1 ≤ j̃ ≤ ir we have (68) for

ĩq =
⎧⎨
⎩
iq+1 + p , q = 0, 1, . . . , r − 1
j̃ , q = r
iq , q = r + 1, r + 2, . . . , k + 3 .

(70)

In both cases, (69) and (70), it is verified (i1, i2, . . . , ik+3) ∈ Ẽ ( j)
k+2 and j + k + 2 ≤ ĩk+3 ≤

· · · ≤ ĩ0 ≤ j + 2p + 1 , being ĩr−1 − ĩr ≥ p and taking (̃i0, ĩ1, . . . , ĩk+3) all the values in
these conditions. Thus both sums coincide and (67) is verified.

Taking into account (67) and making some computations in (66) we obtain

∑

Ẽ (0)
k+2

Δ̇
(i)
k =

∑

Ẽ (0)
k+2

Δ
(i)
k

⎛
⎝

p∑
j=1

γ(k+i)p+i+ik+3+ j−1 −
p∑

j=1

γ(i−3)p+i+i1+ j−2

−
i1∑
j=i2

γ(i−2)p+i+ j−1 +
ik+2∑
j=ik+3

γ(k+i)p+i+ j−1

⎞
⎠ . (71)

Due to Ẽ (0)
k+2 = E (0)

k+2\{(
(k+3)︷ ︸︸ ︷

p + 1, · · · , p + 1)}, since (71) we have
∑

Ẽ (0)
k+2

Δ̇
(i)
k =

∑

E (0)
k+2

Δ
(i)
k

⎛
⎝

p∑
j=1

γ(k+i)p+i+ik+3+ j−1 −
p∑

j=1

γ(i−3)p+i+i1+ j−2

−
i1∑
j=i2

γ(i−2)p+i+ j−1 +
ik+2∑
j=ik+3

γ(k+i)p+i+ j−1

⎞
⎠

−δ
(i)
k γ(k+i+1)p+i

⎛
⎝

p∑
j=0

γ(k+i+1)p+i+ j −
p+1∑
j=1

γ(i−2)p+i+ j−1

⎞
⎠ . (72)

On the other hand we know (i1, i2, . . . , ik+4) ∈ E (0)
k+3 if and only if k + 3 ≤ ik+4 − 1 ≤

· · · ≤ i2−1 ≤ i1−1 ≤ p .This is, (i2−1, i3−1, . . . , ik+4−1) ∈ E (0)
k+2 and i2 ≤ i1 ≤ p+1.

Then

∑

E (0)
k+3

Δ
(i−1)
k+1 =

∑

E (0)
k+2

Δ
(i)
k

p∑
j=i1

γ(i−3)p+i+ j−1 . (73)

Moreover, (i1, i2, . . . , ik+4) ∈ E (0)
k+3 if and only if k + 3 ≤ ik+3 ≤ · · · ≤ i1 ≤ p + 1 and

k + 4 ≤ ik+4 ≤ ik+3. This is, (i1, . . . , ik+3) ∈ E (0)
k+2 and k + 4 ≤ ik+4 ≤ ik+3. Then

∑

E (0)
k+3

Δ
(i)
k+1 =

∑

E (0)
k+2

Δ
(i)
k

ik+3∑
j=k+4

γ(k+i+1)p+i+ j−1 . (74)

Since (73) and (74), using (13) we have ak+i+2,i−1 − ak+i+1,i−2 =
∑

E (0)
k+2

Δ
(i)
k

⎛
⎝

ik+3∑
j=k+4

γ(k+i+1)p+i+ j−1 −
p∑

j=i1

γ(i−3)p+i+ j−1

⎞
⎠ . (75)
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Using again the Bäcklund transformations (12)–(13),

(
ak+i+1,k+i+1 − ai−1,i−1

)
ak+i+1,k+i+1 (76)

=
∑

E (0)
k+2

Δ
(i)
k

⎛
⎝

p+1∑
j=1

γ(k+i)p+k+i+ j+1 −
p+1∑
j=1

γ(i−2)p+i+ j−1

⎞
⎠ . (77)

From (75), (76) and (2) we obtain ȧk+i+1,i−1 =

∑

E (0)
k+2

Δ
(i)
k

⎛
⎝

p+ik+3∑
j=k+3

γ(k+i)p+i+ j−1 −
2p+1∑
j=i1

γ(i−3)p+i+ j−1

⎞
⎠ . (78)

Similarly to (67) it is easy to verify

∑

E (q)
k+2

Δ
(i)
k

⎛
⎝

ik+2∑
s=ik+3

γ(k+i)p+i+s−1 −
ik+3∑

s=q+k+3

γ(k+i)p+i+s−1

⎞
⎠ = 0 (79)

and

∑

E (q)
k+2

Δ
(i)
k

⎛
⎝

q+p+1∑
s=i1

γ(i−2)p+i+s−1 −
i1∑

s=i2

γ(i−2)p+i+s−1

⎞
⎠ = 0 (80)

for each q = 0, 1, . . . , p. Taking derivatives in (35) and using (59), (72), (78) and (80) (with
q = 0) we arrive at

γ̇(k+i+1)p+i = γ(k+i+1)p+i

⎛
⎝

p∑
j=0

γ(k+i+1)p+i+ j −
p∑

j=0

γ(k+i+1)p+i− j

⎞
⎠ ,

which is (4) for n = (k + i + 1)p + i with k, i in the mentioned conditions.

4.3 New solutions of the Kostant Toda lattice

Our next target is to prove that the matrices given in (10) are the solutions of (2). With this
purpose we show that the entries a( j)

q,r of each J ( j) verify (2). Because the sequence {γn}
verifies (4), if we take derivatives in (12) and we make some extra computations we arrive at
ȧ( j)
i,i =

∑
j+1≤i2≤i1≤ j+p

γ(i−1)p+i+i1+1γi p+i+i2+1 −
∑

j+1≤i2≤i1≤ j+p

γ(i−2)p+i+i1γ(i−1)p+i+i2

which is a( j)
i+1,i − a( j)

i,i−1. Moreover, for k = 1, 2, . . . , p and using the notation of (60), from
(4) we see
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ȧ( j)
i+k,i =

∑

E ( j)
k

Δ
(i+1)
k−2

( p∑
r=1

γ(i+k−1)p+i+ik+1+r +
k−1∑
s=0

p∑
r=1

(
γ(i+s−1)p+i+is+1+r

−γ(i+s−1)p+i+is+2+r−1
) −

p∑
r=1

γ(i−1)p+i+i1−r

)
. (81)

For (i1, . . . , ik+1) ∈ E ( j)
k we have j+k+1 ≤ is+2 ≤ is+1 ≤ j+ p+1 for s = 0, . . . , k−1.

Then is+2 ≤ is+1 ≤ is+2 + p − 1 ≤ is+1 + p and

p∑
r=1

(
γ(i+s−1)p+i+is+1+r − γ(i+s−1)p+i+is+2+r−1

)

=
is+1∑

r=is+2

γ(i+s)p+i+r −
is+1∑

r=is+2

γ(i+s−1)p+i+r . (82)

Taking into account (82) in the right hand side of (81), since (68) we have

ȧ( j)
i+k,i =

∑

E ( j)
k

Δ
(i+1)
k−2

( p∑
r=1

γ(i+k−1)p+i+ik+1+r+

+
ik∑

r=ik+1

γ(i+k−1)p+i+r −
i1∑

r=i2

γ(i−1)p+i+r −
p∑

r=1

γ(i−1)p+i+i1+r

⎞
⎠ .

Then using (79)-(80) we arrive at

ȧ( j)
i+k,i =

∑

E ( j)
k

Δ
(i+1)
k−2

⎛
⎝

ik+1+p∑
r= j+k+1

γ(i+k−1)p+i+r −
j+p+1∑
r=i1−p

γ(i−1)p+i+r

⎞
⎠ . (83)

On the other hand, from (12)–(13) we have

(a( j)
i+k,i+k − a( j)

i,i )a( j)
i+k,i =

∑

E ( j)
k

Δ
(i+1)
k−2

⎛
⎝

j+p+1∑
s= j+1

γ(i+k−1)p+i+k+s −
j+p+1∑
s= j+1

γ(i−1)p+i+s

⎞
⎠ ,

(84)

a( j)
i+k+1,i =

∑

E ( j)
k+1

γ(i+k)p+i+ik+2Δ
(i+1)
k−2 . (85)

Moreover (i1, . . . , ik+2) ∈ E ( j)
k+1 if and only if (̃i1, . . . , ĩk+1) ∈ E ( j)

k and ĩ1 + 1 ≤ i1 ≤
j + p + 1, being ĩr = ir+1 − 1 , r = 1, . . . , k + 1. Then

a( j)
i+k,i−1 =

∑

E ( j)
k+1

Δ
(i)
k−1 =

∑

E ( j)
k

Δ
(i+1)
k−2

j+p+1∑
s=i1+1

γ(i−2)p+i+s−1 . (86)
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Since (84), (85) and (86) we have (a( j)
i+k,i+k − a( j)

i,i )a( j)
i+k,i + a( j)

i+k+1,i − a( j)
i+k,i−1 =

=
∑

E ( j)
k

Δ
(i+1)
k−2

⎛
⎝

p+ik+1∑
r= j+k+1

γ(i+k−1)p+i+r −
j+p+1∑
r=i1−p

γ(i−1)p+i+r

⎞
⎠ . (87)

Finally, comparing (83) and (87) we arrive at (2) for the entries of the matrices J ( j) , j =
1, . . . , p.

With this, Theorem 1 is proved. ��
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