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Abstract In the paper we introduce the classes of functions defined by generalized
Ruscheweyh derivatives and we show that they can be presented as dual sets. Moreover,
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defined classes of functions. Some applications of the main results are also considered.
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1 Introduction

A real-valued function u is said to be harmonic in a domain D C C if it has continuous
second order partial derivatives in D, which satisfy the Laplace equation

A 82u+82u 0
u:=——+——=0.
ax2  o9y?

We say that a complex-valued continuous function f : D — C is harmonic in D if both
functions # := Re f and v := Im f are real-valued harmonic functions in D. We note that
every complex-valued function f harmonic in D with 0 € D, can be uniquely represented
as
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where h, g are analytic functions in D with g(0) = 0. Then we call & the analytic part and
g the co-analytic part of f (see [4]). It is easy to verify, that the Jacobian of f is given by

Jr(2)=|h (z)\2 - ¢ (z)\2 (ze D).

The mapping f is locally univalent if J7 (z) # 0 in D. A result of Lewy [15] shows that
the converse is true for harmonic mappings. Therefore, f is locally univalent and sense-
preserving if and only if

| ()| > |¢g' (2| (zeD). 2)

Let H denote the class of harmonic functions in the unit disc U. Any function f € H can be
written in the form

f@ =) a"+ Y by" (ze). 3)
n=0 n=1

LetN; :={l,l+1,...}, N:=Nj, k € Ny, and let H (k) denote the class of function
with missing coefficients i.e. the functions f € H of the form

f@ =2+ (and" +bsz") (z€l), )

n=k

which are univalent and sense-preserving in U.
We say that a function f € H (2) is harmonic starlike in U (r) if

(e s (re")) >0 212 2m)

i.e. f maps the circle dU (r) onto a closed curve that is starlike with respect to the origin. It
is easy to verify, that the above condition is equivalent to the following

Re Prf @)

15 >0 (zI=n),

where
Dy f (2) :==zh" (2) —z¢' (z) (z € ).

Ruscheweyh [20] introduced an operator D" : A — A, defined by

_ (m)
(" f(2)
D"f(z) = % (m € Ny, z €. (5)
The Ruscheweyh derivative D™ was extended in [17] (see also [6,8,10,23]) on the class of
harmonic functions. Let DY} : ‘'H — H denote the linear operator defined for a function
f=h+geHby
Dy f =D"h+ (— )"D"g.

We say that a function f € H is subordinate to a function F' € H, and write f(z) < F(z)
(or simply f < F) if there exists a complex-valued function @ which maps U into oneself
with w(0) = 0, such that f(z) = F(w(z)) (z €U).

Let A, B be complex parameters, A # B. We denote by 87”_‘( (k; A, B) the class of functions
f € H (k) such that

Dy (DY, f) (2) - 1+ Az
DY f (2) 1+ Bz

(©)
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Also, by R} (k; A, B) we denote the class of functions f € H (k) such that
Dy f(@) 1+ Az
< .
z 14+ Bz
The classes S} (k; A, B) and R (k; A, B) with restrictions —B <A < B <1,k =2,
were investigated in [8]. In particular, the class

Sh() =85QRa—1,1) O<a<l)
is related to the class of Saldgean-type harmonic functions studied by Yal¢in [22]. The classes
Ryg(k: A, B) := R}, (k; A, B), Spy(k: A, B) := S, (k; A, B), Kp((k: A, B) := S}, (k: A, B)

are defined in [6] (see also [7]).

The object of the present paper is to show that the defined classes of functions can be
presented as dual sets. Also, by using extreme points theory, we obtain estimations of classical
convex functionals on the defined classes of functions with correlated coefficients. Some
applications of the main results are also considered.

2 Dual sets

For functions f1, f> € H of the form of the form

o0

fi@) = Z (az,kzk + b[,ka) (zeU,leN) %)

k=0
we define the Hadamard product or convolution of fi and f, by

o0

fixf)@=)_ (al,ka2,k2k + bl,ka,ka) (zel).

k=0
Let V C H, Up := U \ {0} . Motivated by Ruscheweyh [19] we define the dual set of V by

Vi={feHm: )\ (fx2) (@ #0 (zelo)

gevy

Theorem 1
Spy(k; A, B) = { Dy (v) « 161 =1}",
where

_1+BE-(1+A5§(1A-2)
Ve (2) =2 122

1 BEAU+AH A7)
(1-2)?

Proof Let f € H (k) be of the form (1). Then f € S} (k; A, B) if and only if it satisfies (6)
or equivalently

(zel).

Dy (DY, f) (2) | 1+ Af -
Dy f (@) #1+Bg (zelUo, lEl=1).
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Since

Dy (Dh) (z) = Dk (2) % 2/ (1 — 2), Divh (z) = Dk (2) *

Z
11—z
the above inequality yields

(1+ BE) Dy (DY, f) (@) — (1 + A8) DY, f ()
= (1+ BE) Dy (Dh) (2) — (1 + A&) Diyh (2)
— (1" [(1+ BE) Dy (D) () + (1 + 48) D ()
(I1+B§z +A.§)z>

(1—2)>? 1—z

= Dyh () * (

mm— . (U+BHZ (1+A5HzZ
— (=D DHg(z)*( 1-27? + 11—z )

=@ *Dypye ) #0 (z€Uo, [§=1).

Thus, f € Sy (k; A, B) if and only if f (z) * D}je (z) # 0 for z € Up, [§] = 1 ie
Sh(k; A, B) = { D%, () : 161 =1} o

Similarly as Theorem 1 we prove the following theorem.

Theorem 2
Ry (k; A, B) = {8¢ : €] =1},
where
1+ B — (1+ A&) (1 — )™ ! _ 1+ B¢
8¢ (2) == Y U).
£(2) =z (1o + ( )Z(l—z)’”“ (zel)

In particular, by Theorems 1 and 2 we obtain the following results.

Theorem 3
Sfy(@) = { Dy (ve) = &l =1}",
where
o I+E—(1—-&+2a)(1—2)
vel = (127
_21+§+(1—§4:ia§)(1—z) zel).
(1-2)
Theorem 4
Spik: A, B) = |y : £l =1}",
where
_ . B-A)E+(1+A45z 2+ (A+B)E—(1+AHZ
Ve (2) i=2 1_2? Z 1-77 (zel).
Theorem 5
Ky(k; A, B) = {ye : 1E] =1},
where
wg(z);:Z(B_A)$+(2+A$+BS)Z+§2+(A+B)§+(B_A)SZ Zel).

(1-2)° (1-32)°
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Theorem 6
Ry(k; A, B) = {8 : €] =1},
where 5
1+ BE) -1+ A8 (1 —2) (1+B&)z
0t (2) ==z - (zel).
) (1-2)? (1-2?
3 Correlated coefficients
Let us consider the function ¢ € H of the form
o o
p=u+v, u@) =Y ", v@) =y v" (zeU). ®)

We say that a function f € H of the form (4) has coefficients correlated with the function
@, if
upay = — |ug|layl, vaby = vyl byl (n € Ng). 9

In particular, if there exists a real number 1 such that

¢ () = I_Z + : Ze’(" D" +7%) (zel),

I—eiz
. =1

then we obtain functions with varying coefficients defined by Jahangiri and Silverman [11]
(see also [7]). Moreover, if we take

(z)—zvt— Y (" +7") (e,
n=1

then we obtain functions with negative coefficients introduced by Silverman [21]. These
functions were intensively investigated by many authors (for example, see [5-9,11,13,25]).

Let 7™ (k, n) denote the class of functions f € H (k) with coefficients correlated with
respect to the function

z -n"z
(] _ einz)erl (1 _ einz)erl

(@)= (zeU). (10)

Moreover, let us define
St(k,n; A, B) :==T" (k, n)ﬁSH(k A, B), R7(k,n; A, B) :==T" (k, n)ﬁR (k; A, B),

where n; A, B are real parameters with B > max{0, A}.
Let f € H (k) be of the form (4). Thus, by (5) we have

oo oo
DY f @) =24 ) It + (=" Y ab2" (z€l),

n=k n=k

where . '
pg o= A Db m ) Ny (11)
n—1)!
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Theorem 7 If a function f € H (k) of the form (4) satisfies the condition

D (@ lanl + Bulbal) < B — A, (12)
n=k
where
ap=x{n(1+B)—(1+A4)}, Bp=Xy{n(1+B)+(1+A)}, (13)

then f € S8y (k; A, B).

Proof 1t is clear that the theorem is true for the function f (z) = z. Let f € H (k) be a
function of the form (4) and let there exist n € Ny such that a, # 0 or b, # 0. Since
An > Ar > 1,we have

n, >n, nelNg, (14)

Thus, by (12) we get
o0
> lanl +nlbyl) < 1 (15)

n=k
and

o0 o o0
W @] =g @ = 1= nlayllzl" =Y nlballzl" = 1=z Y _ (nlan| +nbal)

n=k n=k n=k

o Nk
- B-A

oo

> (@ lanl + Bulbal) = 1 =121 >0 (z D).

n=k

Therefore, by (2) the function f is locally univalent and sense-preserving in U. Moreover, if

21,22 € U, z1 # z2, then.
_ n

a-4 <>l " <n (i eNy.
I=1

le

71 — 22
Hence, by (15) we have
[f (1) — f (@) = |h(z1) —h(22)| = |g (z1) — g (z2)]

o0
ZI_ZZ_Zan (Zrll_Zz Zb —Z2
n=k
o0
> |z — 22l = Y lanl |2} — 25| — Zlbnl |2} — 25
n=k =k
S n
g - Zl %
=|Z1—z2|(1—2|an| Zw | )
Z
n=k
oo
> |21 — 22| (1 - nlal —Zn|bn|) > 0.
n=k n=k

This leads to the univalence of f i.e. f € Sy. Therefore, f € S™(k; A, B) if and only if
there exists a complex-valued function w, w(0) =0, |w(z)| < 1 (z € U) such that

(D'" @ 1+ Aw@)

Dy f (@) " 14+ Bw(z)

=

21— 22

(zel),
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or equivalently
Dy (D3, f) (2) — Dy f (2)
BDy (DY f) (z) — AD3, f (2)

Thus, it is suffice to prove that

|D3 (D, f) () = Dy f ()| — |BDy (DY f) (2) — ADY f ()| <0 (z € Up).

Indeed, letting |z] =7 (0 <r < 1) we have

|D3 (DY, f) (z) — DYy f ()| — |BDy (DY f) (2) — ADYL f ()]

‘<1 (zelU). (16)

o o0 o
=Y (=D hpan" = (=1)" Y (0 + 1) kybyZ"
n=k n=k

o0 oo
(B—A)z+ ) (Bn—A)hnanz" + (=" ) (Bn+ A) knbyZ"
n=k n=k

o o0
<Y =D alanlr" + ) (4 1) Ay Ibal 7" — (B = A)r
n=k n=k

o0 [e.¢]
+ Y (Bn— A)hylan| r" + Y (Bn+ A) Ay |by] 1"
n=k n=k

00

=r {Z(an lan| + Bn |bn|)rn_1 —(B—A)¢ <O0.
n=k

whence [ € S;’;(k; A, B). O

The next theorem, shows that the condition (12) is also the sufficient condition for a
function f € H of correlated coefficients to be in the class S;’—(k, n; A, B).

Theorem 8 Let f € T™ (k,n) be a function of the form (4). Then f € S}(k,n; A, B) if
and only if the condition (12) holds true.

Proof In view of Theorem 7 we need only show that each function f € S7(k,n; A, B)
satisfies the coefficient inequality (12). If f € S7(k, n; A, B), then it is of the form (4) with
(9) and it satisfies (16 ) or equivalently

Zfﬁ:k (n —1) Apanz" — (=" Z:O:k (n+ 1))%5?1

— <1 (zel).
(B—A)z+ Y 02, (Bn— A) Apan + (—1)" X020, (Bn + A) hybyZ"
Therefore, putting z = rem (0 <r<1) by (10) and (9) we obtain
Yok (1= 1) dp lan] + (1 + 1) Ay by ! L an

(B—=A) = 302 {(Bn = A) hy la| + (Bn + A) Ay [by]} !
It is clear that the denominator of the left hand side cannot vanish for r € (0, 1) . Moreover,
it is positive for r = 0, and in consequence for » € (0, 1) . Thus, by (17) we have

o0
D (@nlanl +Bulba) "M <B—A O <r <1 (18)
n=k
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The sequence of partial sums {S,} associated with the series Z;’f’:k (o lan| + By |byl) is
nondecreasing sequence. Moreover, by (18) itis bounded by B — A. Hence, the sequence {S, }
is convergent and

oo
> @ lanl + Bulbal) = lim S, < B — A,
ek n—oo

which yields the assertion (12). O

The following result may be proved in much the same way as Theorem 8.

Theorem 9 Let f € H be a function of the form (4). Then f € R’ (k,n; A, B) if and only
if

A ay| + b .
~ n n nit) = 1 B

By Theorems 8 and 9 we have the following corollary.

Corollary 1 Let

=/ 1 1, 144
¢>(z>=z+n§<n_az +n+az> (zeU,a_H—B), (19)
w(z)=z+Z((n—a)z"+(n+a)E") (zeUazi%;)

I
~

n

Then
feRTk,n;A,B) & fx¢ STk, n A, B),
feSrk,n; A,B) & f+weRT(k,n; A, B).

In particular,
Rl (k,n; =1, B) = S3(k, n; =1, B).

4 Topological properties

We consider the usual topology on H defined by a metric in which a sequence { f;;} in H
converges to f if and only if it converges to f uniformly on each compact subset of U. It
follows from the theorems of Weierstrass and Montel that this topological space is complete.

Let F be a subclass of the class H. A functions f € F is called an extreme point of F if
the condition

f=vA+0=-»fr (fi.LeF, 0<y<])

implies fi = f» = f. We shall use the notation EF to denote the set of all extreme points
of F.Itis clear that EF C F.

We say that F is locally uniformly bounded if for each r, 0 < r < 1, there is a real
constant M = M (r) so that

lf@l=M (feF, lzZl=r).
We say that a class F is convex if

vf[+(l—y)geF (figeF, 0=y =<1
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Moreover, we define the closed convex hull of F as the intersection of all closed convex
subsets of H that contain F. We denote the closed convex hull of F by coF.
A real-valued functional 7 : H — R is called convex on a convex class F C H if

Jyf+A=-pe=yIJNH+U-y)TE (f,geF, 0<y=<1).

The Krein—Milman theorem (see [14]) is fundamental in the theory of extreme points. In
particular, it implies the following lemma.

Lemma 1 [6, pp.45] Let F be a non-empty compact convex subclass of the class H and
J : H — R be a real-valued, continuous and convex functional on F. Then

max{J(f): feF}=max{J(f): f € EF}.

Since H is a complete metric space, Montel’s theorem (see [16]) implies the following
lemma.

Lemma 2 A class F C H is compact if and only if F is closed and locally uniformly
bounded.

Theorem 10 The class S7(k, n; A, B) is convex and compact subset of H.

Proof Let f1, f> € S7(k, n; A, B) be functions of the form (7), 0 < y < 1. Since

YA@+A=1)f2 @) =2+ Y {(varn+ 1 =) aza) " + (vbra+ (1 = y)b2n) '}

n=k
and by Theorem 8 we have

o0

law |yain + A = y)azn| + Bu |ybra + (1= ) b2az"|}

=k
! o0 o0
<y Z {an |al,n| + ﬂn |b1,n|} + 1 - V) Z {an ‘02,}1‘ + IBn |b2,n|}
n=k n=k

syB-A)+U-y)(B-A)=B-A,

the function ¢ = y f1 + (1 — y) f> belongs to the class ST (k, n; A, B). Hence, the class is
convex. Furthermore, for f € S?—(k, n; A, B), |z| <r, 0 <r <1, we have

[f@) < r+2(|an| + b " < r+Z(an lan| + Bu lbul) <7+ (B —A). (20
n=k n=k

Thus, we conclude that the class S (k, n; A, B) is locally uniformly bounded. By Lemma 2,
we only need to show that it is closed i.e. if f; € ST (k,n; A, B) (I e N)and f; — f, then
f € SF(k,n; A, B). Let f; and f are given by (7) and (4), respectively. Using Theorem 8

we have
o0

(|otnarn| + |Bubin]) <B—A (1 €N). 1)
=k

n

Since f; — f, we conclude that |a; ,| — |a,| and |b;,| — |by| as{ — oo (n € N). The
sequence of partial sums {S, } associated with the series ZZO:/( (otn lan| + B lnbyl) is nonde-
creasing sequence. Moreover, by (21) it is bounded by B — A. Therefore, the sequence {S,}
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is convergent and

oo
D @nlanl + Bu lbal) = lim S, < B — A.
—k n—oo

This gives the condition (12), and, in consequence, f € 5’7’1(k, n; A, B), which completes
the proof. O

Theorem 11
EST(k,n; A,B) ={h,: n e Nj_1}U (g, : n e Nt},

where

A B

hi-1(z) =z, ha(2) =z — ", gn@) =z+ mi” (zel). (2
n

O{nei(”_l)”
Proof Suppose that 0 < y < 1 and

gn=vh+U=y) f,

where f1, f> € SQm—(k, n; A, B) are functions of the form (7). Then, by (12) we have ’b1,n| =
‘bz’n‘ = B/S;HA, and, in consequence, aj; = az; = 0 forl € Ny and by = by, = O for
[ € N\ {n}. It follows that g, = fi = f2, and consequently g, € ESy}(k,n; A, B).
Similarly, we verify that the functions £, of the form (22) are the extreme points of the class
SH(k,n; A, B). Now, suppose that a function f belongs to the set ESTF (k, n; A, B) and f
is not of the form (22). Then there exists m € Ny such that

—A
0 < lam| < or0 < |by| < .
Um m
If0 < |an| < Z=4, then putting
Ay | 1
= . = — —_ h s
B_A 4 11—y (f —vhm)

we have that0 < y < 1, h;,;, # ¢ and
f=vhm+0=y)o.
Thus, f ¢ ESS(k, n; A, B). Similarly, if 0 < |b,,| < Bﬂ;A then putting

_ B |b
T B-A"

1
Y
we have that 0 < y < 1, g, # ¢ and

f=v8m+U—-y)¢.
It follows that f ¢ ES7 (k, n; A, B), and the proof is completed. O

5 Applications

It is clear that if the class
F={fneH: neN},
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is locally uniformly bounded, then

C()fz[zynfn: Zyn:L y,le(neN)}. (23)
n=1

n=1

Thus, by Theorem 6 we have the following corollary.

Corollary 2

o0 o0
Sq"}(k,n;A,B)z{ 3 Gubn g s Y s =1 (i =0,yn,6n20)},
n=k—1 n=k—1

where hy,, g, are defined by (22).

For each fixed value of m,n € Ny, z € U, the following real-valued functionals are
continuous and convex on H:

T ) =lanl, _T()=1bul, T =1f DI T)=IDnf @ (feH). 24
Moreover, for y > 1, 0 < r < 1, the real-valued functional

¥4%

2
J(f) = %f‘f(re”)’ycw (f €H) (25)
0

is also continuous and convex on H.
Therefore, by Lemma 1 and Theorem 6 we have the following corollaries.

Corollary 3 Let f € S5 (k, n; A, B) be a function of the form (11). Then

n n

where oy, B, are defined by (13). The result is sharp. The functions hy, g, of the form (22)
are the extremal functions.

(n € Np), (26)

lan| <

Corollary 4 Let f € ST (k,n; A, B), |z] =r < 1. Then

E-A Ff@lere— b4 k
r— r r re,
mk—14+kB—aA) = =TTk 1+kB - A4)
k(B — A) k(B — A) .

< IDuf@|<r+

’

T M k—1+4kB—A) mk—1+kB—A)

where Ay is defined by (11). The result is sharp. The function hy of the form (22) is the
extremal function.

Corollary 5 LetO <r <1, y > 1.If f € S?(k, n; A, B), then

! 2w ] 2
. Y . A
2—/‘f(re’@)’ do < 2—/‘hk(re'@)‘ do,
T T
0 0

2 2
1 1 IPNL4
[ 1Drf @17 d6o < o [ | Drhitre®|” e,
27 2

0 0

where hy is the function defined by (22).
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The following covering result follows from Corollary 4.

Corollary 6 If f € ST (k,n: A, B), then U (r) C f (U), where
B—A
mk—1+kB—A)

By using Corollary 1 and the results above we obtain corollaries listed below.

Corollary 7 The class R’q"—(k, n; A, B) is convex and compact subset of H. Moreover,
ERF(k,n; A, B) ={h,: n e Np_1}U{g, : n e N},

and

o0 o0
Bk AB)Y =1 Y (hn+8ng): D a+8) =1 Gk1 =0,7,.8, 2 0) ¢,
=k—

n 1 n=k—1

where
(B _ A) ei(l—n)n (B _ A) ei(n—l)n

hi1@) =2z, hyi@)=72————F—7", gn(@®) =z +

1+ B) i axmn, ° @b

€2

Corollary 8 Ler f € R (k,n; A, B) be a function of the form (4). Then

anl < 2"A < BTA ey
M= AEBa M S adx By, SR
V—er<|f(2)|<r+;rk (lzl =7r < 1),
0+ B = =TT 0 B
(B— Ak (B— Ak ,
_ B AR D BZAR —r <1
r (1+B)Akr <| Hf(z)|§r+(1+3)kkr (lzl =r < 1),

| 2 | 2w
. . A
—/‘f(re“g)‘yde < —/)hk(rele)‘ do,
21 21
0 0

| 2T | 2
. y . Y
—/‘Dﬁf(re'e)‘ o < —/ ’Dﬁhk(re“g)‘ de,
27 2
0 0

where A, is defined by (11). The results are sharp. The functions h,,, g, of the form (27) are
the extremal functions.

Corollary 9 If f € R (k,n; A, B), then U (r) C f (U), where
B—A
(1+B)r

r=1

The classes Sj,(k; A, B) and R}, (k; A, B) are related to harmonic starlike functions,
harmonic convex functions and harmonic Janowski functions.

The classes Sy (@) := 870_( (2;2a—1, 1) and Ky (a) := 8711(2; 2a—1, 1) were investigated
by Jahangiri [9] (see also [2, 18]). They are the classes of starlike and convex functions of order
o, respectively. The classes Ny («) 1= R%i (2;20 — 1, 1) and Ry (@) := R%{ 2;20—1,1)
were studied in [1] (see also [13]). Finally, the classes Sy := S»(0) and Ky := K2 (0)
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are the classes of functions which are starlike and convex in U (r), respectively, for all
r € (0, 1) . We should notice, that the classes S(A, B) := S (2; A, B)N Aand R(A, B) :=
R~ (2; A, B) N A were introduced by Janowski [12].

Using Theorems 1 or 2 to the classes defined above we obtain corollaries listed below (see
also [6]).

Corollary 10
Snl@) = {yz : €l =1},

where
. 2(1—0{)$+(1—$+2a§)z_72—1—20{5—(1—5—{-20{5)2
Ve (2) i=2 1_2? Z 1_27 (zel).
Corollary 11
Krle) = {yz : €] =1},
where (- +(+ad)z  _1+as+(1—a)§z
—a af)z  _ o — )&z
Ve (2) =12 12 Z 127 (zeU).
Corollary 12
Nrg(o) = {8 : &l = 1}",
where
2(1— — Qut — D=2
SE(Z)::Z( @) —QuE—£E+1)(z Z)_,1+S zel).

Z
(1—z)> (1-7)?
Corollary 13
Sro={ve: [E1=1}",

where
2%+0-9z 2-(1-§z

Ve (2) =12 1_2? z 1-27 (zel).
Corollary 14
Kr = {ve : [E1=1}",
where B
Ve @ =t 7 P ey

(1-2° -2

The class S;’1 (k; A, B) generalize also classes of starlike functions of complex order.
The class CSx(y) = S (2;1=2y,1) (y € C~ {0}) was defined by Yal¢in and
—o

Oztiirk [24]. In particular, if we put y := 11+ein’ then we obtain the class RSy (o, 1) =

Sn (2; 2a—liell 1) studied by Yalcin et al. [25]. It is the class of functions f € Ho such

14-ein
that b
Re{(l—i—e”’)%—ei"} >a (zeU, neR).

Thus, by Theorem 4 we have the following two corollaries.

Corollary 15
CSn(y) = {ve : €l =1},



1328 J. Dziok

where
2vE+(1+& -2y8)z _22+2(1 -y)E—-(1+&-2y8)z
(1-2)? (1-2)°

zel).
(28)

Ve (z) =2

Corollary 16
n k
CSy () = [y = £l =1},

where V¢ is defined by (28) with y = 11;—;‘”

Remark 1 By choosing the parameters in the defined classes of functions we can obtain new
and also well-known results (see for example [1-3,5-13,18,21-25]) .
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