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Abstract The main propose of this article is to investigate and modify Hermite type poly-
nomials, Milne-Thomson type polynomials and Poisson–Charlier type polynomials by using
generating functions and their functional equations. By using functional equations of the
generating functions for these polynomials, we not only derive some identities and relations
including the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the
Stirling numbers, the Poisson–Charlier polynomials, the Milne-Thomson polynomials and
the Hermite polynomials, but also study some fundamental properties of these functions and
polynomials. Moreover, we survey orthogonality properties of these polynomials. Finally,
by applying another method which is related to p-adic integrals, we derive some formulas
and combinatorial sums associated with some well-known numbers and polynomials.

Keywords Generating function · Functional equation · Orthogonal polynomials · Bernoulli
numbers and polynomials · Euler numbers and polynomials · Stirling numbers · Milne-
Thomson polynomials · Poisson–Charlier polynomials · Hermite polynomials · Special
functions · Special numbers and polynomials · p-adic integral
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1 Introduction

Special polynomials and numbers with their generating functions have many applications in
mathematics, physics, engineering and other sciences areas. Polynomials are among the most
important tools for constructingmathematicalmodels, computational algorithms, and solving
engineering problems. Those polynomials have many basic algebraic operations which are
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finite evaluation schemes, closure under addition, multiplication, differentiation, integration,
and composition (cf. [1–41]; see also the references cited therein).

By using generating functions with their functional equations and derivative operator
and p-adic integral, we give various identities and relations including Bernoulli numbers
and polynomials, Euler numbers and polynomials, Stirling numbers, Milne-Thomson poly-
nomials, Poisson–Charlier polynomials, Hermite polynomials, and other special numbers
and polynomials. Those identities and relations are of potential usefulness in mathematics,
physics, engineering and other research areas.

Throughout this paper, we use the following notations:
N = {1, 2, 3,…}, N0 = {0, 1, 2, 3,…} = N∪ {0} and Z− = {−1,−2,−3,…}. Z denotes

the set of integers, R denotes the set of real numbers and C denotes the set of complex
numbers. We assume that ln(z) denotes the principal branch. Furthermore, 0n = 1 if n = 0,
and, 0n = 0 if n ∈ N. (

x
v

)
= x(x − 1) · · · (x − v + 1)

v! = {x}v
v!

(cf. [1–41]; see also the references cited therein).
The Bernoulli polynomials are defined by means of the following generating function:

FB(t, x) = text

et − 1
=

∞∑
n=0

Bn(x)
tn

n! . (1a)

Substituting x = 0 into (1a), we have the Bernoulli numbers, that is,

Bn = Bn(0).

The Euler polynomials are defined by means of the following generating function:

FE1(t, x) = 2ext

et + 1
=

∞∑
n=0

En(x)
tn

n! . (2)

Substituting x = 0 into (2), we have Euler numbers of the first kind, that is,

En = En(0).

(cf. [1–41]; see also the references cited therein).
Euler numbers of the second kind are defined by means of the following generating

function:

FE2(t) = 2

et + e−t
=

∞∑
n=0

E∗
n
tn

n! (3)

(cf. [1–41]; see also the references cited therein). The numbers E∗
n are related to the polyno-

mials En(x), i.e.

E∗
n = 2n En

(
1

2

)

(cf. [1–41]; see also the references cited therein).
Stirling numbers of the second kind are defined by the following generating function:

FS(t, v) =
(
et − 1

)v

v! =
∞∑
n=0

S2(n, v)
tn

n! , (v ∈ N0) (4)

(cf. [1–41]; see also the references cited in each of these earlier works).
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Stirling numbers of the first kind are given by

FS1(t, v; λ) = (ln (1 + t))v

v! =
∞∑
n=0

S1(n, v)
tn

n! , (v ∈ N0) (5)

(cf. [1–41]; see also the references cited therein).
Two-variable Hermite polynomials are defined by means of the following generating

functions:

ext+yt j =
∞∑
n=0

H ( j)
n (x, y)

tn

n! (6)

(cf. [2,8,9,28,30]).
Using (6), it is easy to see that

H ( j)
n (x, y) = n!

[ nj ]∑
r=0

xn− jr yr

r ! (n − jr)! , ( j ∈ N \ {1}) (7)

(cf. [2,8,9,28,30]).
Setting y = j = 1 in (7), one has the Hermite polynomials

Hn (x) = H (1)
n (x, 1)

(cf. [8,9,28,30]).
The Rodrigues formula for the Hermite polynomials is given by

e−x2Hn (x) = (−1)n
dn

dxn

{
e−x2

}
, (n ∈ N0)

(cf. [8,9,28]).
By using the above formula, the orthogonality property of the Hermite polynomials is

given as follows:
∞∫

−∞
e−x2Hn (x) Hm (x) dx = 0,

where m, n ∈ N0 and m �= n (cf. [8,9,28]).
Setting x = 0, y = −1 and j = 2 in (6), we have the generating function for the Hermite

numbers as follows:

FH (t) = e−t2 =
∞∑
n=0

Hn
tn

n! (8)

(cf. [2,8,9,13,28,30]).

1.1 p-adic integral

In order to give combinatorial identities and sums including Bernoulli numbers and poly-
nomials, Euler numbers and polynomials, Stirling numbers, Milne-Thomson polynomials,
Poisson–Charlier polynomials, Hermite polynomials, and other special numbers and poly-
nomials, we need p-adic integral and its integral equations.

Let Zp be a set of p-adic integers. Let K be a field with a complete valuation and
C1(Zp → K) be a set of continuous derivative functions. That is C1(Zp → K) is contained
in

{
f : X → K : f (x) is differentiable and d

dx f (x) is continuous
}
.Kim [17] introduced and



934 Y. Simsek

systematically studied the following family of the p-adic q-integral which provides a unifi-
cation of the Volkenborn integral:

Iq( f (x)) =
∫
Zp

f (x)dμq(x) = lim
N→∞

1

[pN ]q
pN−1∑
x=0

f (x)qx , (9)

where q ∈ Cp , the completion of the algebraic closure ofQp , set of p-adic rational numbers,
with |1 − q|p < 1, f ∈ C1(Zp → K),

[x] = [x : q] =
{

1−qx

1−q , q �= 1
x, q = 1

and μq(x) = μq
(
x + pNZp

)
denotes the q-distribution on Zp , defined by

μq

(
x + pNZp

)
= qx[

pN
]
q

,

(cf. [17]).

Remark 1 If q → 1, then (9) reduces to the Volkenborn integral:

lim
q→1

Iq( f (x)) = I1( f (x))

where

I1( f (x)) =
∫
Zp

f (x) dμ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) . (10)

and μ1 (x) denotes the Haar distribution. I1( f (x)) is so-called the bosonic integral (cf.
[31]); see also the references cited therein). This integral has many applications not only
in mathematics, but also in mathematical physics. By using this integral and its integral
equations, various different generating functions have been constructed.

Remark 2 If q → −1, then (9) reduces to the p-adic fermionic integral:

lim
q→−1

Iq( f (x)) = I−1( f (x)),

where

I−1( f (x)) =
∫
Zp

f (x) dμ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)x f (x) (11)

and

μ−1

(
x + pNZp

)
= (−1)x

pN

(cf. [16]). By using the p-adic fermionic integral, various different generating functions have
been constructed.

The following p-adic integrals formulas are of importance for the following sections.
The p-adic bosonic integral representation of the Bernoulli numbers is given by

Bn =
∫
Zp

xndμ1 (x) , (12)
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(cf. [16,17,31]; see also the references cited therein).
The p-adic fermionic integral representation of the Euler numbers is given by

En =
∫
Zp

xndμ−1 (x) , (13)

(cf. [10,14–17], [29, p. 45]; see also the references cited therein).
The p-adic integrals representations of the falling factorials are given by

∫
Zp

{x}ndμ1 (x) =
n∑

k=0

S1(n, k)Bk = (−1)nn!
n + 1

, (14)

and ∫
Zp

{x}ndμ−1 (x) =
n∑

k=0

S1(n, k)Ek = (−1)n2−nn!, (15)

(cf. [10,14–17], [29, p. 45]; see also the references cited therein).
Results of this paper are summarized as follows:
In Sect. 2, we give some survey on the Poisson–Charlier polynomials with their orthog-

onality property with respect to the Poisson distribution. We also give derivative formulas
with a recurrence relation.

In Sect. 3, we constructMilne-Thomson type polynomials includingMilne-Thomson base
Poisson–Charlier type polynomials, Milne-Thomson base Laguerre polynomials, andMilne-
Thomson base Lah numbers. We also give some properties of these polynomials with their
generating functions.

In Sect. 4, by using p-adic integral, we derive various identities and relations includ-
ing Bernoulli numbers and polynomials, Euler numbers and polynomials, Stirling numbers,
Milne-Thomson polynomials, Poisson–Charlier polynomials, Hermite polynomials, and
other special numbers and polynomials.

2 The Poisson–Charlier polynomials

The Poisson–Charlier polynomials are among the family of Sheffer sequences. These polyno-
mials have been studied, recently, by Jordan, Erdelyi, Szgö,Roman and othermathematicians.
These polynomials are defined by means of the following generating function:

Fpc(t, x; a) = e−t
(
t

a
+ 1

)x

=
∞∑
n=0

Cn(x; a)
tn

n! (16)

(cf. [30, p. 120]).
We now give explicit formula for the Poisson–Charlier polynomials. Applying binomial

theorem for the series to Eq. (16), we obtain

∞∑
n=0

Cn(x; a)
tn

n! =
∞∑
n=0

(−t)n

n!
∞∑
n=0

{x}n
an

tn

n! .
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By using the Cauchy product rule to the above equation, we have

∞∑
n=0

Cn(x; a)
tn

n! =
∞∑
n=0

n∑
j=0

(−1)n− j
(
n
j

) {x} j
a j

tn

n! .

Equating the coefficients of tn
n! on both sides of the above equation, we have an explicit

formula for the polynomials Cn(x; a) as follows:

Cn(x; a) =
n∑
j=0

(−1)n− j
(
n
j

) {x} j
a j

(17)

(cf. [30, p. 120]).
By using (16), we also have the following alternative equation:

Fpc(t, x; a)et =
(
t

a
+ 1

)x

.

By using the above equation, we have

∞∑
n=0

n∑
j=0

(
n
j

)
C j (x; a)

tn

n! =
∞∑
n=0

{x}na−n t
n

n! .

Therefore, we get the following identity:

Theorem 1

an
n∑
j=0

(
n
j

)
C j (x; a) = {x}n . (18)

2.1 Derivative formulas for the polynomials Cn(x; a)

In this section, we give some partial differential equations of the generating function of the
function Fpc(t, x; a). By using these equations, we derive a recurrence formula and derivative
formula for the polynomials Cn(x; a).

We set

∂v

∂tv
{
Fpc(t, x; a)

} =
v∑
j=0

(−1)v− j
(

v

j

)
a− j Fpc(t, x − j; a)

j∏
l=1

(x + 1 − l), (19)

where the empty product is understood to be unity, i. e., 1. Here and in the following,

0∏
l=1

(x + 1 − l) = 1.

By using the above equation, we derive the following recurrence for the polynomials
Cn(x; a) relation:

Theorem 2 Let v ∈ N. Then we have

Cn+v(x; a) =
v∑
j=0

(−1)v− j
(

v

j

)
a− jCn(x − j; a)

j∏
l=1

(x + 1 − l). (20)



Formulas for Poisson–Charlier, Hermite, Milne-Thomson… 937

Proof Combining the above equation with (16) and (19), we get

∞∑
n=0

Cn(x; a)
tn−v

(n − v)! =
v∑
j=0

(−1)v− j
(

v

j

)
a− j

j∏
l=0

(x + 1 − l)

×
∞∑
n=0

Cn(x − j; a)
tn

n! .

Equalizing the coefficients tn
n! on the both sides of the equation yields the assertion of

theorem. �	
Remark 3 Substituting v = 1 into (20), we get

Cn+1(x; a) = −Cn(x; a) + a−1xCn(x − 1; a),

(cf. [30, p.121, Eq-(4.3.10)]).

Theorem 3 Let v ∈ N. Then we have

∂v

∂xv
{Cn(x; a)} = v!

n∑
j=0

(
n
j

)
a j−nC j (x; a)S1(n − j, v).

Proof We set the following functional equation:

∂v

∂xv

{
Fpc(t, x; a)

} = v!Fpc(t, x; a)FS1

(
t

a
, v; λ

)
.

By combining the above equation with (16) and (5), we get

∞∑
n=0

∂v

∂xv
{Cn(x; a)} t

n

n! = v!
∞∑
n=0

Cn(x; a)
tn

n!
∞∑
n=0

a−n S1(n, v)
tn

n! .

By Cauchy product in the above equation, we obtain

∞∑
n=0

∂v

∂xv
{Cn(x; a)} t

n

n! = v!
∞∑
n=0

n∑
j=0

(
n
j

)
a j−nC j (x; a)S1(n − j, v)

tn

n! .

Equalizing the coefficients tn
n! on both sides of the equation yields the assertion of

theorem. �	
2.2 Orthogonality property of the Poisson–Charlier polynomials with respect to

the Poisson distribution

Here, we survey orthogonality property of the Poisson–Charlier polynomials with respect to
the Poisson distribution, which is defined as follows:

Let λ > 0 and let X be a random variable of the Poisson distribution with mean λ. The
Poisson distribution is defined by

f (x |λ) =
{
e−λ λx

x ! , x ∈ N0

0, otherwise
(21)

(cf. [6, p. 288, Def. 5.4.1]).
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Substituting λ = a and x = k, (k ∈ N0) into (21), and combining with the polynomials
Cn(x; a) yields the following relations:

f (k|a) = e−a a
k

k! .

Therefore, we have the following orthogonality properties:

∞∑
k=0

Cn(k; a)Cm(k; a) f (k|a) = a−nn!δn,m

where

δn,m =
{
0, m �= n
1, m = n.

In [35], we give relations between the Bernstein basis functions, the binomial distribution and
the Poisson distribution. Let a and b be real numbers. Let 0 ≤ x−a

b−a ≤ 1 and 0 ≤ b−x
b−a ≤ 1.

The Bernstein basis functions, related to a and b, are defined by

Bn
k (x; a, b) =

(
n
k

) (
x − a

b − a

)k (
b − x

b − a

)n−k

. (22)

Substituting a = 0 and b = 1, (22) reduces to the binomial (Newton) distribution or the
Bernstein basis functions:

Bn
k (x) =

(
n
k

)
xk(1 − x)n−k,

(cf. [21]).
Let E(x; a, b) be expected value or mean of the function Bn

k (x). We have

E(x; a, b) =
n∑

k=0

kBn
k (x; a, b) = n

(
x − a

b − a

)
,

(cf. [35]). Since
x − a

b − a
+ b − x

b − a
= 1,

we have

Bn
k

(
b − a

n
E(x; a, b) + a; a, b

)
= {n}k

k!nk Ek(x; a, b)

(
1 − E(x; a, b)

n

)n−k

.

If n → ∞ in the above equation, we have the well-known Poisson distribution; that is

lim
n→∞ Bn

k

(
b − a

n
E(x; a, b) + a; a, b

)
= Ek(x; a, b)e−E(x;a,b)

k! , (23)

(cf. [6, p. 291], [35]).

3 Milne-Thomson type polynomials and numbers

In this section,we constructMilne-Thomson type polynomials. These polynomials are related
to the very well-known polynomials and numbers so-called Hermite base Poisson–Charlier
type polynomials, Milne-Thomson base Laguerre polynomials, and Milne-Thomson base
Lah numbers. We also give some observations on these polynomials and numbers.
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We define the following generating functions for three-variable polynomials y6
(
n; x, y, z;

a, b, v
)
:

G (t, x, y, z; a, b, v) = (b + f (t, a))z ext+yh(t,v) =
∞∑
n=0

y6 (n; x, y, z; a, b, v)
tn

n! . (24)

where f (t, a) is a member of family of analytic functions or meromorfic functions, a and b
are any real numbers, v is positive integer.

Writing x = 0, y = z = 1 in (24), we get the following new numbers

y6 (n; 0, 1, 1; a, b, v) = y6 (n; a, b, v) .

Therefore, the numbers y6 (n; a, b, v) are defined by the following generating function:

J (t; a, b, v) = (b + f (t, a)) eh(t,v) =
∞∑
n=0

y6 (n; a, b, v)
tn

n! .

Some special cases of these numbers give well-known numbers such as the Milne-Thomson
numbers, the Hermite numbers, the Bernoulli and Euler numbers, the Lah numbers, and the
others.

For example, writing b = 0 in the above equation, we have the Milne-Thomson numbers
of order a, φ(a)

n , that is
y6 (n; a, 0, v) = φ(a)

n

(cf. [23, p. 514, Eq-(2)]).
Motivation of the above generating functions is briefly given as follows:
Setting z = 1 and b = 0 into (24), we get a relation between the y6 (n; x, y, z; a, b, v)

and the polynomials Ψ
(a)
n (x, y, v):

Ψ (a)
n (x, y, v) = y6 (n; x, y, 1; a, 0, v) ,

which is associated with the Hermite base Bernoulli type numbers and polynomials, the gen-
eralizedMilne-Thomson’s polynomials, the two-variable Hermite polynomials, the Laguerre
polynomials, and the others (cf. [7,11]).

Setting z = 1, b = 0, y = 1 and h (t, 0) = g (t) into (24), we get a relation between the
y6 (n; x, y, z; a, b, v) and the Milne-Thomson polynomials Φ

(a)
n (x) :

y6 (n; x, 1, 1; a, 0, 0) = Φ(a)
n (x)

(cf. [23]).
Setting z = 1, b = 0, y = 1, f (t, a) = 1 and h (t, v) = − vt2

2 in (24), we get a relation

between the y6 (n; x, y, z; a, b, v) and the Hermite polynomials H (v)
n (x):

y6 (n; x, 1, 1; a, 0, v) = H (v)
n (x)

(cf. [13,28,30]) and for x = 0 and v = 2, the polynomials H (v)
n (x) reduce to the Hermite

polynomials. That is
y6 (n; 0, 1, 1; a, 0, 2) = Hn

where Hn denotes the Hermite numbers which are defined by

H2n = (−1)n (2n)!
n! , H2n+1 = 0
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for n ≥ 0 (cf. [13,28,30]).
Derivative formula with respect to x of the polynomials y6 (n; x, y, z; a, b, v) is given by

the following theorem:

Theorem 4

∂k

∂xk
y6 (n; x, y, z; a, b, v) = {n}k y6 (n − k; x, y, z; a, b, v) .

Proof By applying derivative operator to (24) with respect to x , we get

∂k

∂xk
G (t, x, y, z; a, b, v) = tkG (t, x, y, z; a, b, v) .

By using the above partial derivative formula, we have

∞∑
n=0

∂k

∂xk
y6 (n; x, y, z; a, b, v)

tn

n! =
∞∑
n=0

y6 (n; x, y, z; a, b, v)
tn+k

n! .

Equalizing the coefficients tn
n! on the both sides of the equation yields the assertion of theorem.

�	
The other derivative formulas with respect to y and z of the polynomials y6

(
n; x, y, z;

a, b, v
)
can be easily obtained by the same method.

3.1 Milne-Thomson base Poisson–Charlier type polynomials

Here, we define Milne-Thomson base Poisson–Charlier type polynomials with help of gen-
erating function for the Milne-Thomson type polynomials and numbers. We also give some
formulas and identities related to the Milne-Thomson base Poisson–Charlier type polynomi-
als.

Theorem 5

y6 (n;−x, 1, z;−a, 1, v) = n!
[ n

v

]∑
j=0

Cn− j (z; a) (−x)n−v j

j !(n − v j)! ,

where [x] denotes the greatest integer function.

Proof Setting b = 1, y = 1, h (t, v) = tv , f (−st,−a) = 1 + st
a and x = −s in (24), we

get the following functional equation:

G (t, x, y, z; a, b, v) = Fpc(st, z;−a)et
v

Combining the above equation with (24) and (16), we obtain

∞∑
n=0

y6 (n;−x, 1, z;−a, 1, v)
tn

n! =
∞∑
n=0

Cn(z; a)
tn

n!
∞∑
n=0

tvn

n! .

Again combining the above equation with the following well-known series identity

∞∑
n=0

∞∑
k=0

A(n, k) =
∞∑
n=0

[ n
v

]∑
k=0

A(n, n − vk),
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(cf. [28, Lemma 11, Eq-(7)]), we get

∞∑
n=0

y6 (n;−x, 1, z;−a, 1, v)
tn

n! =
∞∑
n=0

[ n
v

]∑
j=0

Cn− jv(z; a) (−x)n− jv tn

j ! (n − jv)! .

Equalizing the coefficients tn on the both sides of the equation yields the assertion of
theorem. �	
Theorem 6

y6 (n;−1, 1, z; a, 1, v) =
[ n
2

]∑
j=0

(
n
2 j

)
Cn−2 j (z; a)H2 j

Proof Substituting f (t, a) = t
a , h (t, v) = t , x = −1, y = 1 and v = 2 into (24), we obtain

the following functional equation:

G (t,−1, 1, z; a, 1, 1) = Fpc(t, z; a)FH (t).

Combining the above functional equation with (24) and (8), we have

∞∑
n=0

y6 (n;−1, 1, z; a, 1, v)
tn

n! =
∞∑
n=0

Cn(z; a)
tn

n!
∞∑
n=0

H2n
t2n

(2n)! .

Therefore
∞∑
n=0

y6 (n;−1, 1, z; a, 1, v)
tn

n! =
∞∑
n=0

[ n
2

]∑
j=0

Cn−2 j (z; a)H2 j

(2 j)! (n − 2 j)! t
n .

Equalizing the coefficients tn on the both sides of the equation yields the assertion of
theorem. �	
3.2 Milne-Thomson base Laguerre polynomials

Here, we defineMilne-Thomson base Laguerre polynomials with help of generating function
for the Milne-Thomson type polynomials and numbers. We also give some formulas and
identities related to the Milne-Thomson base Laguerre polynomials.

Setting f (t, a) = 1
(1−t)a+1 , h (t, 1) = t

t−1 also x = b = 0, and z = 1 into (24), we have

generating function for the Laguerre polynomials as follows:

G (t, 0, y, z; a, 0, 1) = 1

(1 − t)a+1 e
xt
t−1 =

∞∑
n=0

y6 (n; 0, y, 1; a, 0, 1)
tn

n!
therefore

L(a)
n (x) = y6 (n; 0, y, 1; a, 0, 1) .

That is

FLg (t, x; a) = e
xt
t−1

(1 − t)a+1 =
∞∑
n=0

L(a)
n (x)

tn

n! . (25)

L(a)
n (x) =

n∑
k=0

n!
k!

(
a + n
n − k

)
(−x)k . (26)
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The Rodrigues formula for the Laguerre polynomials is given by

xae−x L(a)
n (x) = 1

n!
dn

dxn
{
xn+ae−x} , a > −1, x ≥ 0, n ≥ 0.

(cf. [4,8,9,20,28]).
Byusing the above formula, orthogonality properties of the classical Laguerre polynomials

is given as follows:
∞∫

−∞
xae−x L(a)

n (x)L(a)
m (x)dx = 0

where m, n ∈ N0 and m �= n (cf. [8,9,28]).

Theorem 7

L(x−1)
n (a) =

n∑
k=0

n!
k!

(
n − 1
n − k

)
akCk (x, a) . (27)

Proof Substituting (16) into (25)

Fpc

(
az

1 − z
, x; a

)
= FLg (z, a; x − 1) .

Combining the above equation with (16) and (25), we get

∞∑
n=0

Cn(x; a)

(
az
1−z

)n
n! =

∞∑
n=0

L(x−1)
n (a)

zn

n! .

Therefore ∞∑
n=0

Cn(x; a)
(az)n

n!
∞∑

m=0

(
n + m − 1

m

)
zm =

∞∑
n=0

L(x−1)
n (a)

zn

n! .

By combining the above equation with the following series identities ( cf. [28, p. 56, Lemma
10]):

∞∑
n=0

∞∑
m=0

A (k, n) =
∞∑
n=0

n∑
k=0

A (k, n − k) , (28)

we obtain ∞∑
n=0

n∑
k=0

Ck(x; a)

k! ak
(
n − 1
n − k

)
zn =

∞∑
n=0

L(x−1)
n (a)

zn

n! .

Equalizing the coefficients zn
n! on the both sides of the equation yields the assertion of

theorem. �	
Theorem 8

n∑
j=0

(−1) j
(
n
j

)
{a + 1} j L(a)

n− j (x) =
n∑

k=0

(−1)k
(
n − 1
n − k

)
n!
k! x

k .

Proof From (25), we have

(1 − t)a+1
∞∑
n=0

L(a)
n (x)

tn

n! =
∞∑
n=0

(
xt

t − 1

)n 1

n! . (29)



Formulas for Poisson–Charlier, Hermite, Milne-Thomson… 943

Thus,

∞∑
n=0

n∑
j=0

(−1) j
(
n
j

)
{a + 1} j L(a)

n− j (x)
tn

n!

=
∞∑
n=0

(−xt)n

n!
∞∑
k=0

(
k − 1 + n

k

)
tk .

By combining the above equation with (28), we get

∞∑
n=0

n∑
j=0

(−1) j
(
n
j

)
{a + 1} j L(a)

n− j (x)
tn

n!

=
∞∑
n=0

n∑
k=0

(−x)k

k!
(
n − 1
n − k

)
tn .

Equalizing the coefficients tn on the both sides of the equation yields the assertion of
theorem. �	
3.3 Milne-Thomson base Lah numbers

Here, we define Milne-Thomson base Lah numbers with help of generating function for the
Milne-Thomson type polynomials and numbers. We also give some formulas and identities
including the Laguerre polynomials, the Poisson–Charlier polynomials and the Lah numbers.

Setting f (t, a) = 1
a!

(
t

1−t

)a
, also x = b = y = 0, and z = 1 into (24), we have

generating function for the Lah numbers, L(n, a) as follows:

G (t, 0, 0, k; a, 0, 1) = 1

a!
(

t

1 − t

)a

=
∞∑
n=0

y6 (n; 0, 0, 1; a, 0, v)
tn

n!
where a ∈ N0. Therefore,

L(n, a) = y6 (n; 0, 0, 1; a, 0, 1) .

That is, the Lah numbers are defined by

(
t

1 − t

)k

= k!
∞∑
n=0

L(n, k)
tn

n! . (30)

A relations between the Lah numbers, the Poisson–Charlier polynomials and the Laguerre
polynomials are given as follows:

Theorem 9 Let m ∈ N. Then we have

n+m+1∑
k=0

(−a)n L(n + m + 1, k + m + 1) =
n∑

k=0

1

k!
(
n − 1
n − k

)
akCk (m + 1, a) .

Proof Substituting a = m ∈ N into (25) and after some elementary calculation, we get

∞∑
v=0

{v}m+1L
(m)
v−m−1(x)

tv

v! =
∞∑

v=0

v∑
n=0

(n + m + 1)!L(v, n + m + 1) (−x)n
tv

v! .
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Comparing coefficient tv
v! on both sides of the above equation and setting x = a, we have the

following presumably known result:

L(m)
v−m−1(a) = (n + m + 1)!

{v}m+1

v∑
n=0

L(v, n + m + 1) (−a)n . (31)

On the other hand, by substituting x = m + 1 into (27), we get

L(m)
n (a) =

n∑
k=0

n!
k!

(
n − 1
n − k

)
akCk (m + 1, a) . (32)

Combining (31) with (32), we get desired results. �	

Combining (30) with (29), we get the following result:

(1 − t)a+1
∞∑
n=0

L(a)
n (x)

tk

k! =
∞∑
k=0

k∑
n=0

xnL (k, n)
tn

n! .

Therefore,

∞∑
n=0

n∑
j=0

(−1) j
(
n
j

)
{a + 1} j L(a)

n− j (x)
tn

n! =
∞∑
k=0

k∑
n=0

xnL (k, n)
tn

n!

Equalizing the coefficients tn on the both sides of the equation, we obtain the following
theorem:

Theorem 10
n∑
j=0

(−1) j
(
n
j

)
{a + 1} j L(a)

n− j (x) =
k∑

n=0

xnL (k, n) .

4 Identities and relations including p-adic integrals

In this section, by using p-adic bosonic and fermionic integrals with falling factorials poly-
nomials, we derive some new identities and relations including the Bernoulli numbers and
polynomials, the Euler numbers and polynomials, the Stirling numbers, the Poisson–Charlier
polynomials, the Milne-Thomson polynomials, the Hermite polynomials and also the com-
binatorial sums.

By applying bosonic p-adic integral to (17), respectively we have

∫
Zp

Cn(x; a)dμ1 (x) =
n∑

k=0

(−1)n−k
(
n
k

)
a−k

∫
Zp

{x}kdμ1 (x)

By combining the above equation with (14), we obtain the following results, respectively:

∫
Zp

Cn(x; a)dμ1 (x) =
n∑

k=0

(−1)n
(
n
k

)
k!

(k + 1) ak
, (33)
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and ∫
Zp

Cn(x; a)dμ1 (x) =
n∑

k=0

(−1)n−k
(
n
k

)
1

ak

k∑
j=0

S1(k, j)Bj . (34)

Combining the above equations, we get the following theorem:

Theorem 11

n∑
k=0

(−1)k
(
n
k

)
1

ak

k∑
j=0

S1(k, j)Bj =
n∑

k=0

(
n
k

)
k!

(k + 1) ak
.

By applying the fermionic p-adic integral to (17), respectively we have

∫
Zp

Cn(x; a)dμ−1 (x) =
n∑

k=0

(−1)n−k
(
n
k

)
a−k

∫
Zp

{x}kdμ−1 (x) .

By combining the above equation with (15), we obtain

∫
Zp

Cn(x; a)dμ−1 (x) =
n∑

k=0

(−1)n
(
n
k

)
k!

(2a)k
, (35)

and ∫
Zp

Cn(x; a)dμ−1 (x) =
n∑

k=0

(−1)n−k
(
n
k

)
1

ak

k∑
j=0

S1(k, j)E j . (36)

Combining the above equations, we get the following theorem:

Theorem 12
n∑

k=0

(−1)k
(
n
k

)
1

ak

k∑
j=0

S1(k, j)E j =
n∑

k=0

(
n
k

)
k!

(2a)k
.

Theorem 13 Let a be an integer. Then

Cn(x; a) = a−n
a∑
j=0

(
a
j

)
j !

n∑
k=0

(−1)k
(
n
k

)
{x}n−k S2(k, j).

Proof We set the following functional equation:

Fpc(at, x; a) = (t + 1)x
a∑
j=0

(
a
j

)
j !FS(−t, j)

Combining the above equation with (4) and (16), we get

∞∑
n=0

Cn(x; a)
(at)n

n! =
a∑
j=0

(
a
j

)
j !

∞∑
n=0

S2(n, j)
(−t)n

n!

×
∞∑
n=0

{x}n t
n

n! .
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By using the Cauchy product in the above equation, after some elementary calculation,
equating coefficient of tn

n! on both sides of the above equation, we obtain the desired results
of the theorem. �	

By applying bosonic and fermionic p-adic integral to Eq. (18) and combining (33), (34),
(35), and (36), after some elementary calculation, we get the following theorem:

Theorem 14 The following identities hold true

n∑
j=0

(
n
j

) j∑
k=0

(−1) j
(
j
k

)
an−kk!
k + 1

= (−1)nn!
n + 1

,

n∑
j=0

(
n
j

) j∑
k=0

(−1) j
(
j
k

)
an−kk!
k + 1

=
n∑

k=0

S1(n, k)Bk,

n∑
j=0

(
n
j

) j∑
k=0

(−1) j
(
j
k

)
an−kk!
2k

= (−1)n2−nn!,

n∑
j=0

(
n
j

) j∑
k=0

(−1) j
(
j
k

)
an−kk!
2k

=
n∑

k=0

S1(n, k)Ek,

n∑
j=0

(
n
j

) j∑
k=0

(−1) j−k
(
j
k

)
1

ak

k∑
m=0

S1(k,m)Bm =
n∑

k=0

S1(n, k)Bk ,

n∑
j=0

(
n
j

) j∑
k=0

(−1) j−k
(
j
k

)
1

ak

k∑
m=0

S1(k,m)Em =
n∑

k=0

S1(n, k)Ek ,

n∑
j=0

(
n
j

) j∑
k=0

(−1) j−k
(
j
k

)
1

ak

k∑
m=0

S1(k,m)Bm = (−1)nn!
n + 1

,

and
n∑
j=0

(
n
j

) j∑
k=0

(−1) j−k
(
j
k

)
1

ak

k∑
m=0

S1(k,m)Em = (−1)n2−nn!.
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