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Abstract In this paper, we investigate the existence of nontrivial solutions for a class of
fractional advection—dispersion systems. The approach is based on the variational method
by introducing a suitable fractional derivative Sobolev space. We take two examples to
demonstrate the main results.
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1 Introduction

Physical models containing fractional differential operators were extensively studied in recent
years due to its capacity of simulating anomalous diffusion, i.e., diffusion which can not be
accurately modeled by the usual advection—dispersion equation. A fractional advection—
dispersion equation (ADE for short) is a generalization of the classical ADE in which the
second-order derivative is replaced with a fractional-order derivative. Anomalous diffusion
equations have been used in modeling turbulent flow [1-3], chaotic dynamics of classical
conservative systems [4], and in contaminant transport of groundwater flow [5]. For more
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background information and applications on the fractional ADE, the reader is referred to
[6-10].
Ervin and Loop [1] investigated the following fractional ADE:

d _ _
— (oD, P (1= p) Dy (1) + bty (1) + c(tu(t)
=VF(t,u(t)), ae. tel0,T] (1.1)

where oD, ~# and , Dy ~# are the left and right Riemann-Liouville fractional integral operators
respectively, with 0 < 8 < 1, p € [0, 1] is a constant describing the skewness of the
transport process, b, ¢, F are functions satisfying some suitable conditions. A special case
of the fractional ADE describes symmetric transitions, where p = % in (1.1). In this case,

1 1
poD P + (1= p)Dr P = EOD’_ﬂ + Emfﬂ : (1.2)

Another equation for a N-dimensional fractional ADE was given by Fix and Roop [7],

and the equation may be written as

¢ -8 .

3=V 69 =V (VHkV) + £ in Q. (13)
where ¢ (¢, x) is the concentration of a solute at a point x in an arbitrary bounded connected
set 2 € R” at time ¢, v is the velocity of the fluid, & is the diffusion constant coefficient,
v¢ and —kV¢ are the mass flux due to advection and dispersion respectively and f is a
source term. The operator V—# with 0 < B < 1 is a linear combination of the left and right
Riemann-Liouville fractional integral operators, and its jth component is defined by

29

VA (—kV)j = (p-oD;P + (1 = p); DL (—k ;
| Y

>, j=1,2,...,N,

where p € [0, 1] describes the skewness of the transport process, ,ooDx_jﬂ and X Dlgo
are the left and right Riemann-Liouville fractional integral operators, respectively. We take
p= % in (1.3), and get a special case of the fractional ADE (1.3) which describes symmetric
transitions. In this case, the fractional order gradient operator V—# reduces to the following
symmetric operator

- 1 _ 1 -
v ﬂ)/’ = E—OOijﬂ + EX/D+§O’

j=12,...,N.

Recently, many research results appeared for symmetric fractional ADE. By using the
mountain pass theorem and Ekeland’s variational principle, Jiao and Zhou [11] established
the existence of solution and nontrivial solution for the following symmetric fractional ADE,
respectively,

d l(D_ﬂu/)(t)—l—l(D But)) + VF(t,u) =0, ae. t €0, T]
ar \ 27 2t R )
u(©) = u(T) =0,

where oD, P and ;D7 —? denote the left and right Riemann-Liouville fractional integrals of
order S with0 < B < 1, respectively, VF (¢, x) is the gradient of F atx € R". Tengetal.[12]
proved the existence and multiplicity of solutions for a similar symmetric case for a class of
nonsmooth fractional ADEs by using a variational method based on the nonsmooth critical
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point theory. Zhang et al. [13] studied the eigenvalue problem for the following symmetric
fractional ADE:

dr
u(0) =u(T) =0,

d /1 1
— (E(OD,_ﬁu/)(t) + E(;DT_ﬂu/)(t)) +AVF(t,u) =0, ae. t €[0,T], (1.5)

where A is a real nonnegative parameter. By using the three-critical-point theorem in [14,
15] respectively, several criteria for the existence of multiple nontrivial solutions for the
eigenvalue problem (1.5) were established in [13]. For other research results about symmetric
fractional ADE, we refer the reader to [16-18] for (1.4) and to [19-23] for the eigenvalue
problem (1.5).

Motivated by the above works, in this paper, we will use the critical point theory to study
the following symmetric fractional ADE system:

d (1 ., L s )
T E(ODI ‘u,-)(t)-I—E(zDT u) @) |+ F, (tui (1), .., un(1))=0, ae. 1€[0,T],

ui(0) =u;(T) =0
(1.6)

forl <i <n,wheren >1,T >0,0<pg; <lforl <i <n, oD, P and ,DyFi
denote the left and right Riemann-Liouville fractional integrals of order B;, respectively,
F :[0,T] x R* — R is a given function. We will establish some conditions on F, which
are easily to be verified, to guarantee the existence of a nontrivial solution for (1.6).

Obviously, if we take B; = g € [0, 1) for 1 < i < n in (1.6), then the fractional ADE
(1.6) reduces to (1.4). If we take B; = O fori = 1, 2, ..., n, then the fractional ADE (1.6)
reduces to the classical second-order ADE of the following form

{u” + VF(t,u(t)) =0, ae. t€[0,T], (1.7)

u() =u(T) =0,

where F : [0, T] x R" — R is a given function satisfying some assumptions, n > 1, and
V F(t, u) is the gradient of F' at u € R". Many excellent results on the existence of solutions
for (1.7) have been reported in [24,25].

2 Preliminaries and the fractional derivative space

In this section, we firstly introduce some notations, definitions and preliminary results about
fractional derivative which are to be used throughout this paper, then we define a suitable
fractional derivative Sobolev space.

Various definitions for the fractional derivative have been introduced over the past years
[26]. In this paper, we focus on the Caputo fractional derivative and we refer the reader to
[26,27] for details.
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For convenience, we denote
T
LP([0,T],R) = {u ([0, T] > R | / lu()|Pdr < —|—oo} ;
0

C(0, T],R) ={u:[0,T] > R } u(t) is continuous};
C* ([0, T1.R) = {u: [0, T] - R | u®(t) is continuous}, k=1,2,...;
C&(0, T1,R) = {u |u € C*°([0, T1, R) with u(0) = u(T) = 0};

T 1/p
= 1|, = 1)|Pde .
llulloo tg{l&);]lu()l lullze (/0 lu ()] >

Definition 2.1 (Left and right Riemann—Liouville fractional integrals [26]) Let g be a func-
tion defined on [a, b]. The left and right Riemann-Liouville fractional integrals of order
y > 0 for function g, denoted by (,D, " g) and (, D, ¥ ¢) respectively, are defined by

t
(D7) (1) = %y)/ (t —5) " 'g(s)ds. y >0, 1€ la.b]

and
1
C(y)

provided that the right-hand sides are pointwise defined on [a, b], where I is the “Gamma
Function” defined by I'(y) = [;~ 17~ le™dr, y > 0.

b
((Dy7g) (1) = / (s =)’ 'g(s)ds, y >0, t€la,b]
t

Definition 2.2 (Left and right Caputo fractional derivatives [26]) Let g be a function defined
on [a,b], y > 0 and n € N. We denote the left and right Riemann-Liouville fractional
derivatives of order y > 0 for function g by (;D] g) and ({D} g) respectively.

(i) If y € (n — 1, n), then
€D/ )(1)
= (D, " gy

t
= I’(%—y) </ (t — s)"_y_lg(")(s)ds) , t €la,b]

and

EDYg)(1) = (=D)"(Dp~ " g™)(1)

(=" b vyt )
:m(/, (s =1 g (s)ds), t € [a, b).

(i) If y = n, then
EDre)(t) =™ (@) and (Dpg) (1) = (=1)"g™ (1), t € [a, b].
Remark 2.1 According to Definition 2.2, if 0 < y < 1, then
X 1 4
€Dl )(1) = (D"t = — ( / (r—sryg/(s)ds), t € [a, b]
ria—-y \Us

and

1 b
(DY) (1) =—(Dp~ g (1t) = i) ( / (s — r)*yg%s)ds) , 1€la,bl.
t
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Property 2.1 [27] The left and right Riemann—Liouville fractional integral operators have
the following property:

«Di (aDt_yzf) = aDtiyliyzf and ch_y] Dy ™) = Dy T, Yy, 2> 0
holdinallt € [a, b] for f € C([0, T], R).

Property 2.2 [27] Let0 <a < land 1 < p < oo. Forany f € LP([0, T], R), we have

o

I(ay)

laDe™* fllLrqo,m < I fllLrqo,my. & € la,tl, t € a,b].

Property 2.3 [27] The left and right Riemann—Liouville fractional integral operators have
the following property:

b b
/ (D77 f) (t)g(t)dtzf (D 7g) () f(n)de, y >0,

provided that f € LP[0, T],R), g € LY[0, T],R)and p > 1,q > 1, 1/p+1/g <14y
orp#lLg#1,1/p+q/l=1+y.

In order to establish a variational structure for (1.6), we must construct an appropriate
function space. By Property 2.2, when 0 < « < 1, for any f € C*([0, T'], R), we have
f e LP([0,T],R) and (D7 f) € LP([0, T], R). Therefore, we now define the fractional
derivative space E“ as the closure of C§°([0, T'], R) with respect to the norm |lul|* =
(ull2> + 1§D ull2) "2,

Property 2.4 [11] For0 <o <1,

(i) E ={u:[0,T] > Rlu € L*([0, T], R), (D:“u) € L*([0, T1, R), u(0) = u(T)
0}
(ii) E® is compactly embedded in C([0, T], R) and is a reflexive and separable Banach
space;
(iii) lullz2 < rg 6D ull 2, u € E%
. ZTafl/Q
@) ulloo = 22— §DRull 2, u € E°.
Obviously, for u € E“, if we define |lullq = |§Dfull.2, then by (iii) of Property 2.4,
|lu]|* and ||u || are two equivalent norms. Therefore, we will consider E“ with respect to the
norm | u || for simplicity in the following.

Property 2.5 [11]if1/2 < « < 1, then for any u € E%, we have

T 2
eostrallul = - [ GPImCD w0 < e
0 | cos(ma)|
Let E = EY x E*? x --- x E* endowed with norm |ju||g = ||(u1, uz, ..., ux)llg =

(Jluey ||§41 + ||u2||§2 +--+ ||un||g,n)l/2. Then, E is a reflexive and separable Banach space
and compactly embedded in (C ([0, T], R))".

Definition 2.3 u € E is a solution of (1.6) on [0, T'], if it satisfies (1.6); u € E is a nontrivial
solution of (1.6) on [0, T, if it is a solution satisfying |lu| g # O.
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Definition 2.4 u = (u1, un, ..., u,) € E is a weak solution of (1.6) if we have

1 T , . . 4
- 5/0 Z[(BDZ“’ui)(t)(fDT“'vi)(t)+(fDT"’ui)(t)(EDt“‘ v;)(2)]dt
i=l1

T
_ / FL; (611 (1), -, (D)0 ()t
0 i=1

for every v = (vy, v2,...,v,) € E.

In order to prove the equivalence between a weak solution and a solution of (1.6), we must
rewrite (1.6). To do this, foreach 1 <i <n,leta; =1 — &, then; € (2, 1]. According
to Property 2.1 and Definition 2.2, the fractional ADE (1.6) can be transformed equivalently
to the following system:

d /1 _ . ) 1 o) e )
O <20D (e (6D wi) (1) = 5:Dr (=) (“Dru;) (1)

+ F,, (tur (), ... uy (1)) =0, ae. tel0,T],
ui(0) =u;(T) =0

forl <i <n.

(2.1)

Lemma 2.1 Ifu = (uy,u2,...,u,) € E is a weak solution of (1.6), then u must be a
solution of (2.1).

Proof Suppose u = (u1, ua, ..., u,) € E is a weak solution of (1.6). Define
t

w; (1) :/ Fy (s,ui(s), ... un(s))ds, t€[0,T], 1<i=<n.
0

For any v = (vy, v2, ..., v,) € E, noting that v; (T) = 0 for 1 <i < n, we obtain

T T '
/ w; (t)vf(t)dt = / {v;(t) / F,;[ (s, u1(s), ..., uy (s))ds} dt
0 0 0

T ( T
= / {/ vf(t)dsdt} Fo (s, u1(s), ..., un(s))ds
0 s

T
= —/ Fu/,- (s,u1(s),...,uy(s))vi(s)ds, 1<i=<n. 2.2)
0

On the other hand, by Property 2.3, considering u;, v; € E%, we have
T T
/ (6D ui) (1) (EDr% ;) (1)dt = / (6D u;) (1) (—tDT_(l_“")v;) (H)dr
0 0

T
- - / (6P~ ) (v (e, 1 =i <
0

and
T

T
/0 ((Dr%ui) (1) (6D i) (1)d (EDr%u;) (1) (—o Dy ') (1)dr

0

T
:/ (1 "")(CDT""M)) (Hvi(ndt, 1<i<n.

0
(2.4)
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From (2.2) to (2.4), considering u is a weak solution of (1.6), we have

AR ~(—e) (e ~(—e) (e,
/0 [EZ[(ODI 6D i) (@) — (Dr (D u) ()]
i=1

+> " wi()}vj(t)dr = 0. (2.5)

i=1
Now, for any v; € E* (1 <i < n), we substitute v = (0, ..., v;,...,0) € E into (2.5) to
obtain
LD , _
/0 {S16D = 6D u) @) = (Dr == (D u) (0] + i 1)
vi()dt =0 (2.6)

foranyi =1, 2, ..., n. The theory of Fourier series and (2.6) imply that

1 . o; —(1l—a; C o
5[(01?:*‘1*“')(6@; u))(t) — (Dr T EDr%u)) (0] + wi () = G,
ae. tel0,T],

where C; € R is a constant. Hence, from u; € E% and the definition of w;, we have

d /1 3 e o 1 (=) (e @
@ (507)17(17%) (()Dt ’ui) ) — EIDT (1=e) (,DT '“i) (t))
+F,;I_(t, ur(t),...,u,(1)) =0, ae. tel0,T],

ui(0) =u;(T) =0

foranyi =1, 2, ..., n, which means thatu = (u(¢), ux(t), ..., u,(t)) € E is a solution of
2.1). 0
Lemma 2.2 Suppose s; > 0 and ¢; > 0 are constants for | < i < n with Z?:l ci2 > n.

Then

n n 50/2
son(Se)
i=1 i=1

where so) = maXi<j<; §j.

Proof Without loss of generality, suppose ¢; > 1, then c‘io > l.Foranyi € {1,2,...,n},if
¢; > 1, then

n
G ==y ah @.7)
i=1
if ¢; < 1, then
n
¢l <l<c) < Zcfo. (2.8)
i=1

It follows from (2.7) and (2.8) that

=

Si N .
¢ < c®, 1<ic<n,

i
i=1
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and thus we have

n n n 50/2
>enyarn(Yd)
i=1 i=1

i=1

3 Existence of nontrivial solutions

We study the existence of nontrivial solutions for the fractional ADE (1.6) in this section.
Our tool is a critical point theorem which was developed by Bonanno and D’ Agui [28].

Lemma 3.1 [28] Let X be a reflexive real Banach space, ¢ : X — R be a sequentially
weakly lower semicontinuous functional, and  : X — R be a sequentially weakly upper
semicontinuous functional such that ¢ — is coercive. Assume that there exist a sequentially
weakly continuous function I : X — Randr € (infx (¢ + I), supx (¥ + I)) such that

W+D(y) — SUP(¢+1)(X)§r(1/f + D(x) -

1.
(p+1)(y)>r @+ D) —r

p,r) =

Then the restriction of the function ¢ — ¥ to (¢ + I)~1(r, +00) has a global minimum.

Theorem3.1 Letn > 1, T > 0, 5 <o < Lfor 1 <i <n, F(oup,u, ..., up) :
[0, T] x R" — R is measurable with respect to t € [0, T] for every (uy, us, ..., u,) € R",
and F(t,-,...,") is continuously differentiable with respect to (uy, uz, ...,u,) € R" for

a.e.t € [0, T). Assume that

(H1) F(t,0,...,0) =0foranyt €[0,T];
(H2) There exists w = (w1, wa, ..., w,) € E such that

T
0 < lw|% <2 min |cosnot,-|/ F(t,w1(1), ..., wn(0))ds;
I<i<n 0

(H3) There exist ¢; € [0, | cos(ma;)|T2(a; + 1)/2T%%), b;(r) € L¥ @) ([0, T1,R) and
si €(0,2)for1 <i <nandk@t) e L'([0, T1,R") such that

n n
F(t,un,un, -uy) < ) cilugl 4 ) bi@)ui |7 + k()

i=1 i=1

(t,uy,uz, ..., uy) €0, T] x R".
Then (1.6) has at least one nontrivial solution u* € E.

Proof In order to apply Lemma 3.1 to the system (2.1), we introduce the functionals ¢, ¥
and [ for u € E as follows:

1 (T e o e
ou) = —E[) Z(E)Dta'”i) (1) (;DTOltui) ()dt;
i=1
T
W(M)Z/O F(t,ui(t), ..., un(1))ds;

n
Ty =Y lluill3.
i=1
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Since E is compactly embedded in (C ([0, T, R))", it is well known that ¢ is a sequentially
weakly lower semicontinuous function, ¥ is a sequentially weakly upper semicontin-
uous function, and [ is a sequentially weakly continuous function. Moreover, both ¢
and i are Gateaux differentiable functions whose Gateaux derivatives at the point u =
(uy,uz,...,u,) € E are the functions ¢’(u) € E* and ¥/ (1) € E* respectively, given by

1 (TS _ _ _
¢ W) =3 [O > LGP ) O D v (1) + CDrun OGP v (O1dr - (3.1)
i=1
and
T n
I/I/(M)(v)=/0 ZFL;.(I,M(I),.--,un(l))vi(t)dt (3.2)
i=1

for every v = (vy, v2, ..., v,) € E.

Obviously, from (3.1), (3.2) and Definition 2.4, we get that a critical point u* € E of
¢ — ¥ must be a weak solution of (1.6). In the following, we will apply Lemma 3.1 to prove
the existence of a critical point for ¢ — .

For any u € E, from Property 2.5, (H3), the Holder inequality and (iii) of Property 2.4,
we get

o) — ¥ u)
1 T n e . . r
=3 > (6D ui) () (D% us) (0)dr — R RTIORSNAOIL
i=1
" | cos wa; | 1 T nooaT T
2D il —Zc,-/ |"i(f>|2dt—2/ bi(t)|“i(f)|sidf—/ k(r)dt
i=l i=1 0 i=170 0
" | cos wa;| - n T
> il = D cilluiliga = 3 Ibill e il = /0 k(t)dt
=1 i=1 i=1

n

n n 2a: s

| cos ma| 2 c;T-% 2 T¥|bi || 27— .

> E — Nuillg, — E Ta D Nuillg, — E — i I3}
i=1 i=1 i=1

Zai 4+ 1) i +1)
T
—/ k(t)dt
0
n 2a; n a;s; T
| cos o | c; T4 TS5 1bill 2ra-s ,
=> S - lilly, =Y o il — [ k()dr
= 2 I'*(a; +1) ! P ISi(a; +1) ! 0
n n T
> MY ully, = N il — f k(t)dt, (33)
i=1 i=1 0
where
' 720 TYsi || b s,
M = min lcosma] __ci >0 and N := max M
1<i<n 2 F2(O[,' +1) 1<i<n ISi(o; +1)

From Lemma 2.2, when Z?:l [|u; ||§l_ > n, we have

n n 50/2
D il < n (Z I ||?,,.> : (3.4)
i=1 i=1
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where sp = maxj<;<, s; € (0, 2). Hence, when Z?:l llu; ||gi > n, we substitute (3.4) into
(3.3) to obtain

T
o) — () = Mllulll — nAJull2 —/0 K(r)dr.

Thus, by M > 0 and 59 € (0, 2), we have

m (o) =¥ @) = +oo,

lulle—+

which means ¢(u) — ¥ (1) is coercive.
Next, we will prove p(I,r) > 1 for some r € (infg (¢ + 1), supg (¢ + I)).
Firstly, by Property 2.5 and (H2), we have

T
(l/f—w)(w)Z/O F(t, w1(1), ..., o, (1))dt
1 TS . 4
) (‘z |3 o) 0 (or ) “’“)
i=1

>/TF(zw(t) wn(1))dt — 12%
= | yo1(1), ..., 0y 2 | cos(ra;)]

i=1

2
el

T
> / F(t,w1(t), ..., w,(t))dt — >0 (3.5)
0

2 min |cos(ma;)|
1<i<n
and

1 T n . ‘ n
(@ + D) =— /0 D (D) 1) ((Drer) (Ode + ) uill3,
i=1

i=1

v

1 n n
2 2
5 > " eosra)llells, + D luill
i=1 i=1

v

1. -
5 min | cos(ran)lwlf + Y lluillZ, > 0. (3.6)

i=1
From (H1), (3.5) and (3.6), we have

W+ D@ — [y max  F(t.&.... &) — I
lim 5 _ W+
r=0 (p+D(w) —r (¢ + D(w)
Y —p)() 3.7)

=1 _— 1,
T oD@

M=

. NT2 (s .
where g = min) <<, [T @@L |

47
Secondly, from (¢ 4+ I)(w) > 0, combining (3.7), we may choose a constant ryp € R
satisfying

O0<rg<(p+ 1w 3.8)
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and

F(t,?;'],.. gn)dt 1+CO

+ D) — [T .
W+ D) — [, max g,

i=1

12 0
i<l

> 1. (3.9)

(p+ D(w) —ro

For x € {x|x € E, (¢ + I)(x) < ro}, by Property 2.5 and (iii) of Property 2.4, we have

1
ro=(@+Dx)=—= (6D xi) (1) ({Dr* x;) (Hdr + ||xz 12
2 0 i=1

v

1 n
5 Z | cos(ra)|[lxi |12, + Z 113
i=1 i=1

1 () (i — 1)/2+1) -
> 5 ) leostran)|——— 5= Ixi i3, + Y Ixll3,
i=1 =
n
> (1+co) Y il (3.10)

i=1

By (3.10), we conclude

{x|x € E, (<p+1)(x)<r0}c[ x € E, an,nm_ 1106 }
i=1

Then,

T n
sup (Y + D)= sup {/0 F(r,xlm,...,xn<r>)dz+2||xi||§o}

(p+1)(x)=ro (p+1)(x)=ro i=1

T
< sup /F(t,xl(t),...,x,,(t))dt—i— sup an,noo

(p+I)(x)=ro (p+D(xX)=ro ;4

T
Sf max F(t,&,...,& . (3.11)
0 31l = I+eo
Therefore, by (3.8), (3.11) and (3.9), we get
pr) = sup (Y 4+ DY) = SUP(y 1y@)y<r (¥ + D (X)
(p+D (>0 (o + D) —ro
- W + D(@) = sup(yy 1y (xy<r (¥ + D(X)
- (¢ + D) —ro
W+ D) = fy maxa  F(&, ..., &)dr — {2
VZI "=
> =l >1. (3.12)

(p+ D(w) —ro
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So Lemma 3.1 guarantees that ¢ — v has a critical point u* = (u}, u3, ..., u;) € E such
that (¢ + I)(u™) > ro. By Property 2.5 and (iv) of Property 2.4, we get
T n

1 : ) -
m<@+nwﬂ:_iﬁ XXHVmﬂmGDﬁwﬂ®m+§:Wmé
i=1

i=1

Ion lfllg o~ 27!
e i o S N L1 1
2 | cos(may)| (o) (e + 1)

i=1 i

i=1
Z( N iz
_ ut|
— \2|cos(a)| I2(ei)(a; + 1) L

2 1 272!
< 1% max +— ,
1<i<n \ 2| cos(mwa;)| (i) (a; + 1)

which means that

. % 1 2T2a,-—1 %
e > ro / max <2|cos(nai)| T M@ + 1)) ’

and thus u* € E is a nontrivial solution of (1.6). O

Now we deduce a particular but verifiable consequence of Theorem 3.1 where the test
function w is specified. For convenience, put

16 T 16 T T 2(1—a;) T 1—o
B(wi, T) :—2/ 1= dr 4 —2/ (r - —) -2 <t2 - —t) dr
T I—a;
n &/ =30 o (23T,
2 Jir/4 4 4
3T2 1—a;
+2 <t2 —Tr+ l—6> dr

Corollary 3.1 Let F be as that defined in Theorem 3.1, and both (HI) and (H3) of Theorem
3.1 hold. Assume that

(H4) There existd; > 0 for 1 <i < n such that
(i) F(t,&1,....60) > O forall (t,&1,....&) € (0, ) ULEF. TD x [0,diT (2 —
a] x [0, (2 - Otz)%TX4~ < x[0,dyI'(2 = o)
(i1) 2minj<;<p | cos o | fT/4/ F, TQR—-—a)d,I'Q—wp)d>r,...,T'Q2—ay)d,) >
S d?B(a;, T).

Then (1.6) has at least one nontrivial solution u* € E.

forl <i <n.

Proof We only need to show that (H2) of Theorem 3.1 are fulfilled by choosing o =
(01 (1), 02(1), ..., 0y (1)) With

4d;T (2 —
%t, t e |:O7 %] ,

wi(t) =1 diT 2 —a;), te[L, 3], (3.13)
4dl-I‘(2—a,-) 3

- (T —1),te[3,T]

forl <i <n.
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We calculate directly that

]
ad; | e (=L o telL, 3]
(D wi) (1) = — 4 ’ s b

T 1—q; 3T 1—a;
1—a; T
=t = — — |t —— ,te|=,T
( 4) ( 4) 5 7]
forl <i <n.

Obviously, w; € L*([0,T1,R) and ({D,“w;) € L*([0, T],R) for 1 < i < n. Noting
w;(0) = w;(T) =0for1 <i < n,weconclude w; € E*,andthusw = (w1, w2, ..., w;) €
E.

Furthermore, we have

T
arl2, = f D% ) (0)[2dt

0
T/4 3T/4 T
:/ +/ +/ | (5D % w;) (1)]*dr
0 T/4 37/4
2 T 2 T 2(1—a;) 1—a;
_ 1od; / 20— gy 4. 19 / - oL dr
T Jo T2 Jrsa 4 4

164> T 37\ 2(1-e) 37\ 372\
i r— —2(r - =t 2(2 —Tr 4+ — dr
N /3T/4< 4) ( 4 ) * < "6

=d?B(a;, T).

On the other hand, according to (3.13), we get0 < w; (t) <diI'QC—o;) (i =1,2,...,n)
for all ¢+ € [0, T']. Then condition (i) of (H4) ensures that

T T/4 3T /4 T
/ F@t,w(t),...,w,))dt :/ +/ +/ F(t, w1(t),...,w,(t)dt
0 0 T/4 3T/4

3T/4
z/ Fi,dir—ay),...,d;I'C —ay))dt. (3.14)
T/4

Condition (ii) of (H4) and (3.14) ensure that

T
2 min |cos71a,~|/ Ft,wi(t),...,w,()dt
1<i<n 0

1<i<n

3T/4
> 2 min |cosma;| / Fit,diIrQ—oay),...,d, T2 — ay,))dt
T/4

n n
> B Ty =Y lleill2, = ol
i=1

i=1

which means that w satisfies (H2) of Theorem 3.1. ]
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Remark 3.1 Other candidates for the test function w in (3.13) can take other forms. For
example,

164,T(1 —a;) (T -
T<E—t)t, ref0, %],
(1) = { diT(1 — o), te[f. 3], (3.15)
164,71 —a;) (T 3
T<E—t)(t—T),te[T,T]
forl <i <n.
In this case,
e 32d;
@D @) () = —7
127% (T — 4p)pl—%
4 LA tefo, L],
2-ai 40— o)
y 12 (4 — T)pl~w (4t — T)%~%) re[L, 3]
2—a; Al —a) (1 —a) (2 — a4’ el
7Y (4 =TT (4 — T)2 % — (4t — 3T)> E
2—qa; 41 —ap) (1 — )2 — )42 4
and
— 32247 (T [ 2Cme) (T/4 —1)22Cme) (T /4 — )P
Blos.T) = 41/ i (T/4—1) i (T/4—1) ,
T Jo \2—w) 2—a) (1 —a)2—a)

32%d? /T ( (t — T/4)2%2) 212 — T /4r)>~* 2(t—T/4)3°‘itl""') dr
774\ (

T Jru\(1—0)?@-a)?  (-a)@-a)?  (1—e)>Q2—a;)

322d? (T [ (¢t —3/4T)*2~%) (12 — 3/4T1)>
T4 /m I—e)?2—0a)?  (I—a)2—a)?
20t — T/4)(t — 3/AT)> %! =% 2> — Tt +3/16T%)>%
(1 — 022 —a;) (- )22 — )2 )

forl <i <n.

Remark 3.2 If we take 8; = B € [0, 1) for 1 < i < n in (1.6), then (1.6) reduces to (1.4).
The result about (1.4) in [11, Theorem 5.1] is that (1.4) has at least one solution u* € E if

|F(t,u)| < alul> + b(0)|ul® +¢@), (3.16)

where @ € [0, |cos(mar|T% (e + 1/2T2%), s € (0,2), b € L¥@=9([0,T],R), and ¢ €
L' ([0, T], R).

The restriction on F in (3.16) is similar to the (H3) in Theorem 3.1. Obviously, comparing
with the fact that (1.6) has a nontrivial solution u* € E satisfying

1 2T2a,'—l %
‘- )
2|cos(mey)]  T2(ai)(e; + 1)

1
lu*llg > ry / max <
1<i<n

in our paper, it can not be ruled out that u™* is a zero solution for (1.4) in [11].
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Example 3.1 Consider the following fractional advection-dispersion equations:

d /1 1
75 <0D,_O'5u/1) 0+ (,Df“u’l) (t)) + Fy, (t,u1,u2) =0, ae. t €0,1],
d /1

_ 1 _
< E(ODf 044) (t)+§(zDT 04uL) (r)>+Fu2(t,u1,uz>=o, ae. t€[0,1],

ur(0) =u;(1) =0, uz(0) =uz(1) =0,
(3.17)

where F : [0, 1] x R? — R is the function defined by

1
F(t,up,uy) = |1 —2t| {Z (u% + u%) sin\/u% + u% +2€/u% + u%e—('l%w%)} . (3.18)

Comparing (3.17) with (1.6), we have T = 1,n = 2, 1 = 0.5 and 8, = 0.4, which lead
toa; = 0.75and ap = 0.8 in (2.1).
Obviously, both (H1) and (H3) of Theorem 3.1 are satisfied since F (¢, 0, 0) = 0 and

F(t,u1, up) < ciut + cou3 + by (t)/|ur| + ba(t)y/|ual,

. 2 . 2
where ¢] = i € [0, M) ~ [0, 0.2986), ¢y = i e [0, M) ~

[0,0.3509) and by (1) = by(r) = 2|1 — 2¢] € L%([0, 1], R).
Next, we will show that (H2) of Theorem 3.1 is also satisfied.
We choose

w1 () =T1.25t(1 —1t) and wr(t) =T1.2)t(1—1), te][0,1],

then, one has w = (w1, w2) € E = Ey75 X Egg. We then have
cr 0.75 0.25 8 1.25 cr 0.8 0.2 5 1.2
D Ton@) =177 — gf and ((D; ")) =177 — gt ,
and thus we have |1 |3 ;5 ~ 0.1181 and ||ws |13 4 & 0.1424. Hence

lwllg = llwilI3 75 + lwall3 g & 0.2605. (3.19)

Moreover,

1
2 min |cosnai|/ F(t, w1 (1), w2(r))dt
0

1<i<2

dr

1 4/~ 3 —
ZZCos%/ § —2t|2\/r (1.25) + T2(1.2)/t(0d — 1)
0

o(T2(1.25)+T2(1.2)2(1-1)2

4
~ 0.5123. (3.20)

1 2 2
2(1.25) + I2(1.2
—1—2005%/ 11— A2 FIPAD) oy 2= e
0

Hence, we conclude that (H2) of Theorem 3.1 is satisfied from (3.19) and (3.20).
Therefore, from Theorem 3.1, the fractional ADE (3.17) has a nontrivial solution u* =

(ut,u3) € Eg75 x Eog.
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Example 3.2 Consider the following fractional advection-dispersion equations:

d /1 1
— <— (0D ") 0+ 5 (Dr~u) () ) + Fuy (1, u1,u2) =0, ae. 1 €0, 1],

dr \2
d /1 1
" (5 (0P ") 0+ 5 (Dr~%ud) () ) + Fup(t, 41, u2) =0, ae 1 €0, 1],
u1(0) =u1(1) =0, u2(0) =uz(1) =0,
(3.21)
where F : [0, 1] x R? — R is the function defined by
_ =2 2, 2 2, 23 2,4
Fit,ur,uz) = —5 In (14 uj+u3)+8(uj +uz)® (¢t —1°)2. (322

Comparing (3.21) with (1.6), wehave T = 1,n = 2, 1 = 0.6 and B, = 0.8, which lead
toa; = 0.7and ap = 0.6 in (2.1).
Obviously, both (H1) and (H3) of Theorem 3.1 are satisfied since F (¢, 0,0) = 0 and

3 3
F(t,uy, uz) < ciu? + coud + by (0)|ur|2 + ba(0)|uz|?,

where ¢ = & € [0, LTI @HD)  [0,0.2425), 5 = 15 € [0, LeostralP@athy

[0, 0.1233) and by (t) = ba(t) = 8( — 12)7 € L2([0, 1], R).
Next, we will show that (H2) of Theorem 3.1 is also satisfied.
We choose

o) =Tt —1) and wr(t) = T(1.he(1 —1), tel0,1],

then, one has w = (w1, ) € E = Eg7 X Eg6. We then have

10
'3 and (D, "Cwr) () = 14 — =114,

20
Do) =19 = = -

13
and thus we have [|o; |3 ; ~ 0.0989 and [|ws 13 ; ~ 0.0723. Hence
ol = w157 + lloali§e ~ 0.1712. (3.23)

Moreover,

1
2 min |cosmx,-|/ F(t, w1(1), wp(1))dt
1<i<2 0

2 (V1 =21
=2c0os —

2 2 232
5 ), 0 In[1 4+ (I'“(1.3) + T'“(1.4))(t — ¢7)"]dt

27 (! 2 2 3 2,2
+16cos?/ [T7(1.3) + T (1.4)]4(t — t7)"dt
0
~ (0.2346. (3.24)

Hence, we conclude that (H2) of Theorem 3.1 is satisfied from (3.23) and (3.24).
Therefore, from Theorem 3.1, the fractional ADE (3.21) has a nontrivial solution u* =
(u7, u3) € Eo7 x Eg.
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