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Abstract The Hermite—Hadamard inequality is the first principal result for convex functions
defined on a interval of real numbers with a natural geometrical interpretation and a loose
number of applications for particular inequalities. In this paper we proposed the Hermite—
Hadamard and midpoint type inequalities for functions whose first and second derivatives in
absolute value are s-convex through the instrument of generalized fractional integral operator
and a considerable amount of results for special means which can naturally be deduced.
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1 Introduction

The Hermite—Hadamard inequality, which is the first fundamental result for convex mappings
with a natural geometrical interpretation and many applications, has drawn attention much
interest in elementary mathematics. A number of mathematicians have devoted their efforts
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to generalise, refine, counterpart and extend it for different classes of functions such as using
convex mappings.

The inequalities discovered by Hermite and Hadamard for convex functions are consid-
erable significant in the literature (see, e.g., [6,8], [13, p.137]). These inequalities state that
if f: 1 — Risaconvex function on the interval / of real numbers and a, b € I witha < b,

then

b

f <a+b> < L/ Fodx < M. (1.1)
2 —aJ, 2

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s
inequality may be regarded as a refinement of the concept of convexity and it follows easily
from Jensen’s inequality. Hadamard’s inequality for convex functions has received renewed
attention in recent years and a remarkable variety of refinements and generalizations have
been found (see, for example, [2,3,5,7,10,12,15,17-20,22]) and the references cited therein.

The overall structure of the study takes the form of five sections including introduction. The
remainder of this work is organized as follows: In Sect. 2, the generalised version of fractional
integral operator are summarised, along with the very first results. In Sect. 3 the Hermite—
Hadamard type inequalities for generalized fractional integral operators are introduced while
in Sects. 4 and 5 midpoint type inequalities for functions whose first and second derivatives
in absolute value are s-convex with generalized fractional integral operators are presented
and we also provide some corollary for theorems. Some conclusions and further directions
of research are discussed in Sect. 6.

2 Preliminaries

Now we reviewed some definitions and theorems which will be used in the proof of our main
cumulative results.

Definition 1 [4] Let s € (0, 1]. A function f : [0, c0)—[0, o0) is said to be s-convex (in
the second sense), or that f belongs to the class KXZ, if

fOx+ A =0y <A fx)+ A =0 f(y)
for all x, y € [0, 00) and A € [0, 1].

An s-convex function was introduced in Breckner’s paper [4] and a number of properties
and connections with s-convexity in the first sense were discussed in paper [9].

In addition to this, Raina [14] defined the following results connected with the general
class of fractional integral operators.

_ 0),0(1),... _ = o (k) k .
FS,(x) = FoS (x) = ]; Toksn® @h> 0; x| <R), (2.1

where the coefficients o (k) (k € No = NU{0}) is a bounded sequence of positive real num-
bers and R is the set of real numbers. With the help of (2.1), Raina [14] and Agarwal et al.
[1] defined the following left-sided and right-sided fractional integral operators, respectively,
as follows:

7 el ) = / (= PV F [0 —0P] 0, x> a.  (22)
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b
T 3] ) :/ t =) FY, [o(t = x)P] f(ndt, x <b, (2.3)

where A, p > 0, w € R, and f (¢) is such that the integrals on the right side exists.
It is easy to verify that J¢ f(x) and j/‘]" b f(x) are bounded integral operators

P a+;0
on L (a, b), if
M :=F7 ;11 [0 —a)] < . (2.4)
In fact, for f € L (a, b), we have
|78 arwr @], =& - 151, 2.5)
and
|75 0@, = ME- 1111, 2.6)
where

P

b
17l = flf(t)l”dt

The importance of these operators stems indeed from their generality. Many useful fractional
integral operators can be obtained by specializing the coefficient o (k). Here, we just point
out that the classical Riemann-Liouville fractional integrals /7, and /," of order « defined
by (see [11])

(1% f) (x) == ﬁ /ax x =0 f(ydt (x > a;a > 0) 2.7

and

a o 1 b a—1 .
(I f) (x) = @/x ¢t —x)*"Vfdr (x <b;a>0) (2.8)
follow easily by setting
A=a, 0 (0)=1, andw =0 2.9)

in (2.2) and (2.3), and the boundedness of (2.7) and (2.8) on L (a, b) is also inherited from
(2.5) and (2.6) (see [1]).

Yaldiz and Sarikaya [21] gave the following Hermite—Hadamard inequality for the gen-
eralized fractional integral operators:

Theorem 1 Let f : [a, b] — R be a convex function on [a, bl witha < b, then the following
inequalities for fractional integral operators hold

f(a+b) < 1 [T it O+ T o @]
2 ) T200-a) FY, (o — )] LTOHAT pohb—io
_f@+f)
- 2
with A > 0.

The main purpose of this paper is to introduce new type Hermite Hadamard and midpoint
integral inequalities with the aid of generalized fractional integral operators and establish
some results connected with the them.
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3 Hermite—Hadamard type inequalities for generalized fractional integral
operators

In this section, we will present a theorem for Hermite—Hadamard type inequalities with
generalized fractional integral operators which is the generalization of previous work.

Theorem 2 Let f : [a,b] — R be a function with O < a < band f € Li[a,b]. If f

is a s-convex function on [a, b], then we have the following inequalities for generalized
fractional integral operators:

: b 2*
() f [f’x SO+ T f<a>}
(b—a) px+1[ (*z*) ] o (24 )i o (#4) o

2
27 b—a
< — — [Al(x— Ls) +F [a)( 5 )H[f(aHf(b)]
T o+ [w(T) ]
(3.1
where o s (k) = pk‘l(g_)\, k=0,1,2,...and
1 ) )
AL(h,s) = /t}‘ Q2=0"F) ;4 |:a) (%a) t”] dt.
0
Proof Since f is s-convex function on [a, b], we have for x, y € [a, b]
7 x+y - f(X)+f(y)_
2 28
Forx = ta+ %band y = %a + 5b, we obtain
a —|— b 2 — 2—t t
2f <f +—b +f( et 3p) (3.2)

Multiplying both sides of (3.2) by *~' 77, [a) (b52)” tp] , then integrating the resulting
inequality with respect to ¢ over [0, 1], we get

1
_ 14
2 (50) [ e () e
0
P 4 b—a pt" f ia—i—ib dt
pa |9\ 2 2
1 Fe b-a ptp f 2_ta—i—ib dt
2 2 27 )

Foru = 5a + %b and v = %a + 5b, we obtain

=

St~

+

St~
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a+b\ b—a\’
21 (*57) 7 o (73°) ]
b
2 2 A=l ” b—a\” P
Sb—a/(b— (b_’/l)> p,)h|:a)<T> <bf(b—u)>i|f(u)du

2 2 A—1 b_ P 2 P
o) 5 e e

b
/ b — w75, [0 —w’] f (u)du

u+b

( ) /(v—a)k ! x| —a)] f @ dv

2 \"| ., i
- <m> [jp,x,(a;b)wf ®)+ Jp,h(%_;wﬂm}

and the first inequality is proved.
For the proof of the second inequality (3.1), we first note that if f is a s-convex function,
it yields

t 2 2 t)‘
f(ia‘f‘Tb) < ?f(a)-i‘ fb)

and

2t L <(2_t)s (a) ﬁ(b)
f Satob)<—; fa—i—zsf.

By adding these inequalities together, one has the following inequality:

t 2
r(Ger i) e (3

Then multiplying both sides of (3.3) by 1~ F7 [a) (b52)" 1 ] and integrating the resulting
inequality with respect to ¢ over [0, 1], we obtain

1
b—a\” t 2—t
a1
Joo 5 (5
0
1

b—a\” 2—t t
+/t)‘71fg’k|:a)( 2a> zpi|f< 3 a+§b>dt

0

: o
@)+ FB)] / [+ @] 72, [a)(l’%") fﬂ]dt
0

a+ %b) <27 [f@+ fOI[F +2-0']. (33)
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[Al(x — 1)+ F [ (blm [f(a)+ F(b)].

2
That is,
2 \*
( b a) {Jj n(22) O (H;I,);wf(a)}
[AI(A — L) +F)5 [ (b%“m [f (@) + f®)].
Hence, the proof is completed. O

Corollary 1 If we take s = 1 in Theorem 2, then we have the following inequality

2 N (b—a) f k+l|: (b%a)p] p,)h(a-é—h)+;w p’)h(a-é—h)i;w

fla) + f(b)
5 .

Corollary 2 Ifwe take . = o, 0(0) = 1, w = 0 in Theorem 2, then we have the following
inequality for Riemann—Lioville fractional integral operators

fa+b\ 2T (a+1)
28 L)+ I°
f( . )5 by [( O )f(a)}

<a2”* [Bl(a — 1,8+ ;] [f(a)+ f(b)]

where
1
Bi(a,s) = ft"‘ 2 —1)’dt.
0
Remark 1 Choosing s = 1 in Corollary 2, then we have the following inequality for

Riemann-Lioville fractional integral operators

a+b 29 Ir (@ 4+ 1) fla)+ f®)
NIOEY & e
f(2>5 b_aF [<2)f()+( )f()} >

which was given by Sarikaya and Yildirim [16].

4 Midpoint type inequalities for differentiable functions with generalized
fractional integral operators

In this section, firstly we need to give a lemma for differentiable functions which will help us
to prove our main theorems. Then, we present some theorems which are the generalization
of those given in earlier works.
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Lemma 1 Let f : [a,b] — R be differentiable function on (a,b) witha < b. If f' €
L [a, b], then we have the following identity for generalized fractional integral operators:

21 a+b
J° . f)y+J° . fla) —f< )
b ar T [0 (5] Ty P 0 1 (5

b— b—a\’ t 2—1t
= “bi ; fﬂfg,m [w<Ta> tp]f/(ia—ka)dt
4T [0 (23)]

1

b—a\’ 2—t t
A
—/tfg,H][a)( 5 ) t/’]f’( 3 a+§b>dt . 4.1
0
Proof Integrating by parts gives
1
b—a\’ t 2—1t
A
v/tfg’)\_i_l[w( 5 )tp:lf/<§a+Tb)dt
0
2, b—a\’ o 2—t
b—atfg’*“[‘”< 2 )’p]f<5“+ 2 b)o
2 : b o 2
oo —a\’ , t —t
— |t t —a+——>b)dt
o [ (5) ] (G
0

2 b—a\’ a+b 2 A\
e [‘”(T) }f ( 2 >+(b—a> T (s2)r0” @

4.2)

I

1

and similarly we get

1
b—a\” 2—t t
/IAFZ,A+1 |:a)< 3 > tp] f/ (Ta‘i‘il?)dl‘
0

2 b—a\"] . (a+b 2\
e [ ()2 o

I

(4.3)
By subtracting equation (4.3) from (4.2), we have
(5 ()
2 A+l
= [J/jx. sy O+ T, (ﬂ;,,>_;wf(a)} .
By re-arranging the last equality above, we get the desired result. O

Theorem 3 Let f : [a, b] — R be differentiable function on (a, b) with a < b. If |f’| is
s-convex function in the second sense, then we have the following inequality for generalized
fractional integral operators:
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2A—l

+b
T7 BT f@) —f(“ )
b=y s [ (bE“)p][ N a} 2

b—a “)H[\f/ @] +1f @]

b —
= [AI(A S)Jr}_mx#l[ (
20277 [0 (552 2
(4.4)

where o1 s (k) = % k=0,1,2,...and A\(x,s) is defined as in Theorem 2.
Proof Taking modulus of (4.1) and using s-convexity of | bl |, we have

2A—1 |:JG f(b)—i—ja f(a)] _f<a+b>
T e | T AR R

2
1
b—a N b—a\’ St 2
<] [ b 250
45 [0 (559)'] [/ ' 2 22
1
b—a\’ 2—
oo e (s )]
0
1
b—a N b—a\” N\,
ot [ ) @ e
AT [“’ (bTa)p] |:0/ ’ 2 2
2=V ] a
+(557) 17 @]
! _ P A\ s
e (Y AL s vl
0

B 1

b—a b—a\’
= Al(x,s)+/ PHF G |:w <—> zp] dt:| [/ (@]
2S+2fg,x+1 [a) (bfa)P] 2

L 0

dt

+11' @]

- boe b—a\P _Al()» S)+~7:m)f+l|: (b%a>i|i| Uf’ (a)|+|f/(b)|]
25+2‘7_—qu+1 [w(%a) ] -

where o1 5 (k) and A1 (X, s) are defined above. Thus, the proof is completed. ]

Corollary 3 If we take s = 1 in Theorem 3, then we have

- [»7” fBY)+T° f(a)} y (a +b>
(b—a)* F pA+1[ ( a) ] 0 (%”)—Q—a) py)h(a;h)_;w 5
_ ]—' a
< 4a s [ : )] [|f @] +]f ®]]- @5
fp A1 [ (T) ]
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Corollary 4 If we take . = o, 0(0) = 1, w = 0 in Theorem 3, then we have the following
inequality for Riemann—Lioville fractional integral operators

20710 (a0 + 1)

2 etl) FB+12f(@) —f<ﬂ>
b —a) ( o) (42) 2

— ][!f’(a)!Jrlf’(b)\]

1
B -
[ 1(a, ) + v

= 2s+2
where B (w, s) is defined as in Corollary 2.

Remark 2 Chosing s = 1 in Corollary 4, we obtain following inequality

27T+ 1) <a+b>
- 7 +f V& B _
G—a" [(;) fb)+ (e22) f(a)} =
Pl @]+ | o)
_m[f(a)-i-f()]

which was given by Sarikaya and Yildirim in [16].

Theorem 4 Let [ : [a, b] — R be differentiable function on (a, b) with a < b. If |f/|q ,
q > 1, is s-convex function in the second sense, then we have the following inequality for
generalized fractional integral operators:

2 [J“ FO)+T° f(a)} —f (“ * b)
b= 7y [ (B2) | Lo (55 e 0552 o 2

2
(b—a)Ci(x, p)

2 4 1)1 7 [0 (452)]

<[ @+ =117 @)+ @ =17 @F | @) ]

(4.6)
1 1 _
where » + 7= 1 and

1
_A\P P
Ci(h.p) = /tk [ px+1|: (b2“> zpﬂ d
0

Proof Taking modulus of (4.1) and using well-known Holder inequality, we obtain

Ci [J" FO)+T° f(a)i|—f (““’)
b—a) 7y /\+1[ (b_a)p] o (3o po(44) 10 2

2
t 2—t
1 <fa+—b>‘dt

1
b—a\”
o p
e (54" / ”’“l[w< 2 )t] 27 2

pk+1 2
2—t 1
! —b||dt

1

o[ [ (f’;“YrP]

0
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1
b—a 14 P
s [ e (55) ] e
AT [w(T)] 0
1
(a2t @ q+ flf’ 2=t )
) 2 473
0

Since |f’}q ,q > 1, is s-convex, we have

[l (o250 o= J[5) 17+ (52 1o

1
e @+ [ —1]|f »)]]  @.8)

dt . @)

dt

IA

and similarly

1
, 2—t t
0

By substituting inequalities (4.8) and (4.9) into (4.7), we get the desired result (4.6)

q

dt < ; [[2S+1 _
25 (s +1)

1| @+ ®»|"]. @9

O
Corollary 5 If we take s = 1 in Theorem 4, then we get
241 a+b
J° b)y+T° - < )
0= 7 [0 (552 [ (s O 2) 0 (“)} "5
b—a)Ci(), 1 , 1
QG [ (( @l 4315 Gff) + 61 @l + | )]
2 o (54)]
b—a)Ci(x,
o D17 @+ 15 o] (4.10)
qung[ (T) ]
Proof The proof of the first inequality in (4.10) is obvious. For the proof of second inequality,
leta; =3|f @|", b1 = | ®|", a2 = |f' (@]" and by = 3| f’ (b)|? . Using the fact
that,

n n n
Z(ak‘f‘bk)s = Zai-l-Zb;i, 0<s<1
k=1 k=1 k=1
the desired result can be obtained straightforwardly O

Corollary 6 Ifwe take . = o, 0(0) = 1, w = 0 in Theorem 4, then we have the following
inequality for Riemann—Liouville fractional integral operators



On generalization of midpoint type inequalities...

+b
NIOES! -f(a)}—f(a )‘
) () 2
b —a) < 1 )é
2+§(s+1)% ap +1

<[ @I+ 2 =117 @)+ (2 = 11 @l L @]

Remark 3 Choosing A = «, 0(0) = 1, w = 0 in Corollary 5, we have the following
inequality

779

(b—a)*

20~ (e + 1) {
(44

2971 (e + 1)

a+b

- - LfB) 1% —fl—=

oo [(;) f()+( )f(a)} f( 5 )‘

<b—a< 1 )} <|f’(a)|"+3|f’(b)}")" <3|f’(a)}"+|f’(b)|">"
_l’_

- 4 ap + 1 4

4

b—a 4 v, ,
< b)||.
<22 (G) @l o)
which is the same result given by Sarikaya and Yildirim [16].

Theorem 5 Let [ : [a, b] — R be differentiable function on (a, b) with a < b. If |f’}q

q > 1, is s-convex function in the second sense, then we have the following inequality for
generalized fractional integral operators:

2)»71

+b
T o FOIFT - f@ —f(“ )
b= a) 75, [ (554)] [ o () e o ()0 ] 2
b—a ( b—a\” -7
. #oa[o(7) )
e IC O A 2
O1.s b—a / q / q é
x (fp,m [”(T)}'f @|"+ A1, 9) | f )] )
44 Ol b—a / q %
(oo lr @+ w7 o (550 [l or)

where o1 5(k), k =0, 1,

2,...and A (X, s) are defined as in Theorem 3.

Proof Taking modulus of (4.1), using well-known power mean inequality and s -convexity
"1, we obtain

+b
Je at fo)+J° at fla|=f <a )
(b—a) FO A+1|: (bga)/)] |: p,k,(T”)—Hw p,A,(T”)_;w a] 2

1
b—a\’ t 2—t
e [ ECS O
4fpx+1 =" 1)
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1

: (fm[ (55 () o+ (5 o]

. ( / o [o(252) ][50 1ror (3) |f/<b>w]dz)
W (o (5]

1
q

245 b—
2 q]:(rk—&-lli (%3

b— q
x |:<fz,l/\+1 [w (%)] If' @[+ aGus) | (b)|")

b— 7
+ <A1(A,s)|f’(a)|"+f"'x+1[ ( 2”>]|f’<b>|”> }

which completes the proof.

Corollary 7 If we take s = 1 in Theorem 5, then we get

- a—+b
+;wf(b)+jp,x,("f’);wf(a):| f( )
b—a ( b—a\’ -7
ot (e (57
)P] L 2

b—a

[l o s (e o (5]
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1

= Fin [“’ (b 3 a)]) K (b>|q)a
Graale (5] o (5 rer
+F [w (b 5 a)} | (b)yq)"} .

Corollary 8 Ifwe take . = o, 0(0) =1, w = 0 in Theorem 5, then we have the following
inequality for Riemann—Liouville fractional integral operators

(b—a)

27 M@+ 1) |, w a+b

_b—a (1 =3 | 7
T o2 \a+1 a+s+1

x [(‘f/ @|"+ (@+s+1) Bi(a,s) ’f/(b)‘q)é

1
+ (@+s+DBies) | @] +]f (b)\q)q]
where B («, s) is defined as in Corollary 4.

Remark 4 Choosing s = 1 in Corollary 8, we have the following inequality

+b
f)+1¢ -f(a)} —f (“ )’
(%) 2

IO{

atb +
2

<b—a 1 1
- 4 <a+1><2(a—|—2)>

1
+(@+ 3| f @ + @+ |f/<b>|q)"]-

21 + 1)
(b—a)”

Q=

1
[((a +D | @[ + @+ 3 [f ®B)|)

which is the same result given by Sarikaya and Yildirim [16].

S Midpoint type inequalities for twice differentiable functions with
generalized fractional integral operators

In Sect. 5, firstly we need to give a lemma for twice differentiable functions which will help
us to prove our main theorems. Then, we present some theorems which are the generalization
of those given in earlier works.

Lemma?2 Let f : [a,b] — R be twice differentiable function on (a,b) with a < b.
If f"" € Lla,b), then we have the following identity for generalized fractional integral
operators:

241 a+b
VAR f@+J° /. f ) —f< )
b—a)Fy 4 [w (hia)p] [ oo (132) o ’ oo (25410 } 2

2
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o, x+1

14+¢ —1
xf(+ -1,

1
_ p _
+/( —OMES L, w(b ") (1—z)”} V& <Ha+1+’b)dz] 5.1
2 2 2
0

Proof

1
—_4\P
1:/(1—t)*+1fg,m[w<b7“> (l—t)p]f (1;” +1Tb>dt
0

1
. b—a\’ S 1—1 1+1
+/(1_I)Hl}-p,,\+2[w< 2a> (l—t)p}f ( 5 +—b>d
0

= Il =+ 12. (52)

dt

1
— )2 _ o
8}' . a)” <) U(l_n faﬁz[w(bTa) (1_t)p}
0

Integrating by parts we have
1
b—a\” s 1+t 1—1t
0
2 b p 1 1—
=_ﬁ(l )M_1 pk+2|:w<72a> [)p]f/<7;rta+—2 tb)
2 P 1 1—
_b—a/(l 0T 1[w(b2a) (1—t)p}f/(—;ta+Ttb>dt
0
2 P, (a+
(52 ]2
4 —a\” 141 1—1
o AV
(b_ )2(1 t)fx+1[w< )(1 t)]f<2a+ 2b>0
—a\” _
+(b_4a)2/(1")kflfg,x [w (Lza) (l—t)”}f<—1;ta+—12tb)dt
0
2 - b—a\P] ,(a+b
=i () 1 (457)
4 ot b—a\” a+b
Cb—a)? ““[ ( 2 )]f< 2 )

atb

5 \M2 ]
+<b—a> /(x‘“’A_IFZ,A[w<x—a>"]f<x>dx' (53)

1
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Similarly, we have

1
b—a\’ S (1—t 1+¢
a0z, [’” (T) ”‘””]f (T“*T@”’f
0
2 b—a\’1 ., (a+b
e[ (5 ] (57)

4 +b
(b a)zfo)»-H [w (b— a)p] f (%)

6]

2 A2
+<b—a> / b= F [w b —0”] f () dx. (5.4)

atb
2

Combining of (5.2), (5.3) and (5.4), we obtain

atb

2 A2
IZ(b—d) /(x_a)k_l}-g,k[w(x_a)p]f(X)dx

2 A2
+<b_a> /(b—x))‘_l 7w ® =] f (x)dx

a+b
2

8 b—a\’ a+b
= )2’%“[ ( 2 )]f( 2 )
5\ M2
- (b - a> |:Jp,k,(“§b)—;w1 flay+ jﬂﬁw(%”)ﬁw] f(b):|
8 b—a\’ a+b
= a)zfg“l[ ( 2 )]f< 2 ) G

Mutiplying both sides of (5.5) by E;F’U)[_W completes the proof. O
+1

Theorem 6 Let f : [a, b] — R be twice differentiable function on (a, b) witha < b. If|f”|
is s-convex function in the second sense, then we have the following inequality for generalized
fractional integral operators:

=1 |:jg fla)+J° f(b)i|_f(a+b)
(b—a) F° o At [ (b%a)ﬂ] p,)\,(a;h)_;w p’)\!(a;h)_i_;w )

(b—[l)z [Az()\’ S)J’_]:ng [ (b—a)p}} [|f//(a)|+|f// (b)|]
—a A2

e [w ()] ?

(5.6)

S

where o, (k) = pkf;% k=0,1,2,...and A>(X, s) is defined by

1
_ P
Az(k,s):/(l —M A+ FL L, |:w (bT“) ( —t)p] dr. (5.7)
0
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2! {J" f@)+J° f(b)} f(““’)
a o
(b—ay 75, 4y [w (252)] L on(25) = o (2 ) o
1
—a)? _N\»p B
e e e (5 0o (e )
8]:)0)»4*1 0
S .
w—aﬂ 1 b—a\?
= /ufn“4 4w( 2) ufoq
8]:/0/\+1 0

o |:(1+t) ‘f//( )‘+(1T) ‘f”(b)}]dt
o 5 (2 (2 o]

0

1
2 —a\”
(b a) [Az(k,S)-i-/(l—t)‘HH]:gHZ[ <b a) (1_,)/)][”}
2s+3_7:6 2
)\+1 0
WWM+W%H
b—a)? b—a\P
O [+ £ [w (55) U @l 1 o).
23+-7: )\+1[w< 2 ) ]
Thus, the proof is completed. O

Corollary 9 If we choose s = 1 Theorem 6, then we have the following inequality

2}\71 a+b

s f()+5ﬂ ot f () —f< >

b—a) 77 A-HI: bTa)p] |: ol Tb S p’)"(Tb)Jr;w :| 2
<w—m2pH{ w(%59)’]

8 Fn|w(559)]

Corollary 10 Ifwetake . = «, 0(0) = 1, w = 0 in Theorem 6, then we have the following
inequality for Riemann—Liouville fractional integral operators

[/ @]+ |f"®]].

227 M@+ 1) (a+b)
T h—a® by+1% _

T ey ey ) 1 (%5
P Gl
RERSICER

]Uf%mkwf%mﬂ

1
Bo(a, —_—
|: 20 g)+s+a+2

where

By(a, ) = / (1 =02t A 4+ 1) dr.
0
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which is the same result in [12]

Theorem 7 Let f : [a,b] — R be twice differentiable function on (a, b) with a < b. If
‘ F"7, g > 1, is s-convex function in the second sense, then we have the following inequality
for generalized fractional integral operators:

i a+b
NS f@+J% ..\ f®) _f( )
(b —a) 77 A+1|: (b%a)p] |: p’k’<%b)_;‘” ¢ P’N(%’)Hw :| 2

1

(b—a)zcz(x,p) ( 1 )2
St [w ()] M

% {((25+1 _ 1) }f// (a)}q + |f// (b)|¢])$ + (}f// (a)}q + (2s+l _ 1) |f// (b)|l])%}

(5.8)

where % + é = 1 and C> (X, p) is defined by

; b 4 p
Cy(h, p) = /(1—;)1’(“‘) |:fg,x+2|:w<%a> (l—t)pi|j| dt| . (5.9
0

Proof Taking modulus both sides of (3.1) and using well-known Holder inequality, we have

2)»71 ath
T e f@+J% /.. F(b) _f< )
(b—a)* F° A+1|: (b;ﬂ)ﬂ:| |: p.A.(Tb)—;w “ p.A,( 2b)+;w ] >

2
T+ 1
—b
(a5

1
(b —a)* / A1 o [ (b—“>p ]
<— 2 1 [a=-M'F w 1—-n*
§F° [w (b;a)p] |:0 pA+2 B
d }

A+ 2
1—1t 141
2 a+Tb)
(b —a)? ! P
e [ [ () ][
8F° [w(b;“)]

1
b — P
foo (5 0]
0
p.A+1 2 0
1

« (I //(%w%b)q ) ( ( 1*’)qdz)q . (5.10)
0

Since’ f |q is s-convex function in the second sense, we get
1+ 1-— 1 : 1+1\° : 1 '
t AN —r\
719 /" q / - dt " b q / - dt
<2 at— ) |7 @] o) drt @) .
0 0
1 [( s+1
25 (s + 1)

dt

f//

1
»

dt

IA

_ 1) |f// (a)|q + |f// (b)|‘1]
(5.11)
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and similarly
: 1
—t +1
—b
[l (e 550)
0
(5.12)

If we substitute the inequalities (5.11) and (5.12) in (5.10), we obtain desired result (5.8). O

q

- " q s+1 _ " q
df_zy( D [1F" @]+ (2 )| @]

Corollary 11 If we choose s = 1 Theorem 7, then |f// q
following inequality

= [7” oy F@FTT f(b)i|—f(a+b)
b-ayFp A+l[ (b%a)p] p’A’(T>_"" "’}‘*( 2 )+»‘” 2
(b~ P Co. p) :(3 @]+ | f” (b)")é N (f @] +3|f" (b)lq>é}
) 2“”:;“1 [ (b%a)p} 4 4
(b —a)2Cy(r, p)
. 21+4ng+1 [ (2%) }

% + é = 1 and Cy(p, )) is defined as in (5.9).

, q > 1, is convex and we have the

[l @]+ |f" ®]]

Proof The proof can be done by following the similar steps with Corollary 5. O

Corollary 12 [fwetake .. = «, (0) = 1, w = 0in Theorem 7, then we have the following
inequality for Riemann—Liouville fractional integral operators

22T (@ + 1) 1 w a+b
(b—a)“|: +fb)+1 )f(a)i| f< )‘

(+4) (o4 2

o () )
@1y \s+1 p(x+1)+1

:([(2s+1 |f// (a)’q + ‘f// (b)’ ] ql [‘f// (a)’q 2s+1 ‘f” (b)V])%}

which is the same result in [12].

Corollary 13 Ifwe take . = a, 0(0) = 1, w = 0in Corollary 11, we have
29I (@ + 1)

FO I f@ f(”b)
(b—a) (%)+ (42) 2

2
b —a) ( 1 );‘
21“‘3(0,4_1) pla+1)+1

1 1
(3 | @+ | (b>|q>q N (!f” @\ +3| 1" <b>|‘1)q

4 4

_ - ( ! )é |7 @]+ |7 )
—2§(a+1) pla++1 2 '
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Theorem 8 Let f : [a,b] — R be twice differentiable function on (a, b) with a < b. If
| 1 |q ,q > 1, is s-convex function in the second sense, then we have the following inequality
for generalized fractional integral operators:

2)\—1 atb
J° . f@+J° fb) —f( )
o= 5 [ wﬂ O ) -1 (55

st (e [ (5 )
= 23+;’17:g,x+1 [w (b%a)p:l p.A+3 2

/" q 2,5 b—a\’ " q ql
x [Aza,s)lf ()| +f;’m[ ( 5 )]If (b)l]

02,5 b—a ’ 1" q 7 q é
sl R L [f" @]" + A ) [ £ )] (5.13)

where o2 5(k), k =0, 1,2, ... and A2(A, s) are defined as in Theorem 6.

Proof Taking modulus both sides of (3.1) and using well-known power mean inequality, we
have

2! a+b
NASRN f@+J°% /. f ) 7f( )
6= af 70 o <bz“>”}[ (o) T (o } 2

1
_a)? o B
8 8F° - a)b Sa) {/(I_NH pA+2[ < 2(1) (1—1)"] f”<%a+%h>
px+1 0
_\P B
+/(l—t)>»+l]—';“2 |:w (bTa) (1_t)pj| " (%a 1+tb> dti|
0
— )2 B 0
< - (b Ll) (/ 1 - px+2|: (bTa> (l—z)/’j|dt)

P )»+l

1
_A\P
(/ =0 F, ., [w (b 5 “) (1- ,)p]
0
; p
+ (/(1 — 0 F [w (%) a —z)ﬂ]
0

By a simple computation, we obtain

dt

1—1¢ 1+t \|*
(s 1)

1
b — P
/( — Mt ,)Hz[ (%) (1—z)”}dt=fgyx+3[w(b—a)/’]. (5.14)
0

Using the equality (5.14) and s-convexity of ‘ f "q , we have
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A—1
2 o

T (558) oy T @O F T i) SO —f<a+b>
o [ (052) Lo (5 ) R (5 e 2

(b —a)? 7
o izy] (e[ (5° )
8‘7:/))\+1|:
[l o
[(57) rrr« (557) 1 opar)
1
b — 1—1\’ M
T T (et
0
(3ol
b — a)> ( b—a\ T\ "4
("3 ])
i, [w )]V 2
07 b— e 7 %
(ool ar sz fo (5 Jiror]

02,5 b—a\’ ” q /) q 5
+ |:]:p,x+2 [w (T) i|}f @[T+ A2, 9) | £ ®)] :|

which completes the proof.

(b —a) F°

X

m}

Corollary 14 Ifwe choose s = 1 Theorem 5, then | f |q , q > 1, is convex and we have the
following inequality

2A—1 |:L7U f(a)—i—j" f(b)i|_f (a +b)
b—a) FJ, [ (b%a)ﬂ] P (442 ) =0 oo (452) 50 5

) 23*40(;:[61)2(%”] ([ (b?)D
N[0 (52 -2 o (55 Dot

+F 2 [w (’7;“)”} 7 (b>|q];

+[FZ,ZXI+2 [w (bz )p]lf”( | + < pm[ (b;C’)”]
f?ﬁz[ (b;a p])lf”(b)ﬂ;}.
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Corollary 15 [fwetake . = «, 0(0) = 1, w = 0in Theorem 7, then we have the following
inequality for Riemann—Liouville fractional integral operators

2710 (@ + 1)
(b—a)

atb atb 2

2

N -1
5 (b: a) ( 1 ) 7
2T (@4 1) \a+2

x [Bz(oe, )| @]+

a+b
I9 L f®»)+17 _f(a) —f<7>
(44) (44)

2

1
1 7 q 7
s+oa+2 |f (b)‘ ]
1

- [m |/ @] + Ba(e. )| f” (b)ﬂ

which is the same result in [12].

6 Concluding remarks

In this study, we consider the Hermite—Hadamard and midpoint type inequalities for func-
tions whose first and second derivatives in absolute value are s-convex and related results to
establish new type inequalities involving generalised fractional integral operator. The results
presented in this study would provide generalizations of those given in earlier works.
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