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Abstract Given f : d(—1, 1)" — R, consider its radial extension 7 f (X) := f(X/|| Xllco)>
VX € [—1, 17"\{0}. Brezis and Mironescu (RACSAM Rev. R. Acad. Cienc. Exactas Fis.
Nat. Ser. A Mat. 95:121-143, 2001), stated the following auxiliary result (Lemma D.1). If
0<s <1,1 < p<ooandn > 2aresuchthat ] < sp < n, then f — Tf is a
bounded linear operator from W* 7 (d(—1, 1)) into WP ((—1, 1)"). The proof of this result
contained a flaw detected by Shafrir. We present a correct proof. We also establish a variant
of this result involving higher order derivatives and more general radial extension operators.
More specifically, let B be the unit ball for the standard Euclidean norm | | in R”, and set
Usf(X) = |X|* f(X/1X]),VYX € B\{0O},Vf:9B - R LetaecR,s>0,1<p<o0
and n > 2 be such that (s —a)p < n. Then f — U, f is a bounded linear operator from
WS-P(dB) into W*P(B).
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In [1], the first two authors stated the following

Lemmal [I,LemmaD.1]LetO <s < 1,1 < p <oocandn > 2 be suchthat1 < sp < n.
Let

Q:=(-1,D" (D
Set
TF(X) = f(X/IIXllec), YX € O\0}, Vf:00—>R; (2)

here, || ||oo is the sup normin R™. Then f + T f is a bounded linear operator from W* P (3 Q)
into W5P(Q).

The argument presented in [1] does not imply the conclusion of Lemma 1. Indeed, it is
established in [1] (see estimate (D.3) there) that

p
TP C/ / [f(x) = fO)I do ()do (v).
| le 2(Q) = 20tso Ix— y”an o(x)do(y)

However, this does not imply the desired conclusion in Lemma 1, for which we need the
stronger estimate

If () = fFODIP
Ty <C/ / " do (x)do (y).
O Jag Jag i - yis

In what follows, we establish the following slight generalization of Lemma 1.

Lemma2 Let0 <s < 1,1 < p <ooandn > 2 be such that sp < n. Let Q, T be as in
(1), (2). Then f +— Tf is a bounded linear operator from W* P (3 Q) into WP (Q).

Lemma 2 can be generalized beyond one derivative, but for this purpose it is necessary
to work on unit spheres arising from norms smoother that || ||o.. We consider for example
maps f : 0B — R, with

= the Euclidean unit ball in R". 3)
Fora € R, set
Uaf(X) :=|X|°f(X/IX]), YXe€B\{0}, Vf:0B—>R; “4)

here, | | is the standard Euclidean norm in R".
We will prove the following

Lemma3 Leta e R, s > 0,1 < p < ooandn > 2 be such that (s — a)p < n. Then
f +— U, f is a bounded linear operator from W* P (3 B) into W* P (B).

It is possible to establish directly Lemma 2 by adapting some arguments presented in Step
3 in the proof of Lemma 4.1 in [2]. However, we will derive it from Lemma 3.

Proof of Lemma 2 using Lemma 3 Let
| X1

?:R'->R" &X):=1I1Xloo
0, ifX=0

X, ifX#0
, A= <D‘§ and ¥ = Pyp.

Clearly,

CU \
lQ

: dB — 0 Q are bi-Lipschitz homeomorphisms 5)



Radial extensions in fractional Sobolev spaces 709

and
Tf =1Uo(fow)loA™". ©)
Using (5) and the fact that 0 < s < 1, we find that
[+ f oW isabounded linear operator from W*?” (3 Q) into W*” (3 B) @)
and
g go A~ !is a bounded linear operator from W*?(B) into W*7(Q). )

We obtain Lemma 2 from (6)—(8) and Lemma 3 (with a = 0). The same argument shows
that the conclusion of Lemma 2 holds for the unit sphere and ball of any norm in R”. O

Proof of Lemma 3 Consider a, s, p and n such that
aeR, s>0, 1<p<oo, n>2and (s—a)p < n. )

Considering spherical coordinates on B, we obtain that
1
1Ua £ ) =/ [ e o do s
0 JoB
1
:/ / rIP | £ ()P do (x)dr
0 JoB

1
n+a ||f||Lp(3B) (10)

Here, we have used the fact that, by (9), we haven +ap >n — (s —a)p > 0.
In view of (10), it suffices to establish the estimate

Ua fpncy < CIEWsnomy Y f € WHP@B), (11)

for some appropriate C = C s p,, and semi-norm | |ys.p on W57 (B).
Step 1. Proof of (11) when 0 < s < 1. We consider the standard Gagliardo semi-norm on
W*:P(B). We have

|Ua f(X) = Ua f(X)IP
|Uaf|Wsp(B) / 4 X — Yt axdy

//// 1 ,,1|Uf(rx) Uaf(py)|pda(x)da(y)drdp
3B JaB lrx — p y|rtsp

//// n=l pn— 1 fe0) — paf(,y)|pdcr(x)d6(y)drdp
28 Jon lrx — py|rTsp

=2/ /f/r"_lp"_1|raf(x)_paf(y)|pd,odrda(x)da(y).
: 0

Irx —py|"*se

With the change of variable p =t r, ¢ € [0, 1], we find that

Vs f|wsp(3)_z/ oty [ /03/ @ =t SO o)

|x _ ty|”+51’

=7/ / /k(x,y,t)dzda(x)do(y),
n—(s—a)p JypJa Jo
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with
net 1 f Q) =4 f(y)IP

k(x,y,t) =t
(x,y,1) PP

, Vx,yedB,Vtrel0,1].
In order to complete this step, it thus suffices to establish the estimates
1/2
I = / / / k(x,y,1)dtdo (x)do (y) < CIfII]psp>

1 14
12—/ // O =TV s (1) (1) = C1 By

|x—ty|"+5p
1 a
(1= 1) FG)IP
he [ f/ O ddo (5)do (5) < CI Wy

here, | |ws.»(3) is the standard Gagliardo semi-norm on 0 B.

12)

(13)

(14)

In the above and in what follows, C denotes a generic finite positive constant independent

of f, whose value may change with different occurrences.
Using the obvious inequalities

lx —ty|>1—t>1/2, Vx,yedB, YVt €[0,1/2],
[f) =t fDM <A+ AL+ DD,
and the fact that, by (9), we have n 4+ ap > 0, we find that

12
n=c /0 W+ ) A 1 < CL I mye

so that (12) holds.
In order to obtain (13), it suffices to establish the estimate

/l ! dt < ¢ v 0B
s X, S .
12 lx —ry[ntse Ty — y|ne e Y

(15)

Set A :=(x,y) e [-1,1].If A <0, then |x —ty| > 1,V € [1/2, 1], and then (15) is

clear. Assuming A > 0 we find, using the change of variablet = A + (1 — Az)l/2 T,

1 1 1
/ 7dt</ — dt
12 |x =ty tse T Jg |x — ¢ y|rtsp

1
R 24+ 1 =241 0nt+sp)/2 di
1 1
= =1 2 2 5 dt
(1 = A2Y(n=1+sp)/2 Joo (22 4 1)(n+sp)/
_ C - c
(1 = A2(n=1+4sp)/2 = (2 — 2 A)(—14sp)/2

C
- lx — y|n—l+sp ’

and thus (15) holds again. This completes the proof of (13).
In order to prove (14), we note that

L—tP <Ccd—-nPf, Vrell/2,1],
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and that the integral

! (I-nr
= T ieydt
12 Jap 1x —t y|ntsp

does not depend on y € 9B.
By the above, we have

L < c/ / A =D ydo ()
12Jas Jan

I
=CJ ”f”Ll’(aB)’
and thus (14) amounts to proving that J < oo. Since J does not depend on y, we may
assume that y = (0, ..., 0, 1). Expressing J in spherical coordinates and using the change

of variablet = 1 — 7, t € [0, 1/2], we find that

Lo P sin*~ 1@
I=c — dodr.
12Jo (2 +4(1 — 7)sin® 6/2)n+sp)/2

When 7 € [0, 1/2] and 6 € [0, 7], we have

7P sin" 1o <C 7P sin" 19
(2 4 4(1 — 1) sin?0/2)(n+sp)/2 = 7 (7 + sin 6 /2)" 5P
TP sin" "' 0/2 cos6/2
- (t + sin@/2)ntsp
< C(t +sin6/2)P =P~ cos /2.

Inserting the last inequality into the formula of J, we find that
1/2
J < c/ / (T +sin6/2)P =P~ cos0/2 dodt

1/2
= c/ / (T +&P*P N dedr < oo,
0 0

the latter inequality following from p — sp > 0. This completes the proof of (14) and Step
1.

Step 2. Proof of (11) when s > 1. We will reduce the case s > 1 tothe case 0 < s < 1.
Using the linearity of f — U, f and a partition of unity, we may assume with no loss of
generality that supp f is contained in a spherical cap of the form {x € dB; |x —e| < ¢} for
some e € d B and sufficiently small ¢. We may further assume thate = (0,0, ..., 0, 1), and
thus

feW>P@B;R), supp f CE:={xe€dB;|x—(0,0,...,0,1) <¢}. (16)
Let
={x€dB; |x—(0,0,...,0,1)] <2} and H:= R x {1}.
Consider the projection ® with vertex 0 of

R% :={X = (X', X,) e R" ! x R; X, > 0}
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onto H, given by the formula @ (X', X,,) = (X'/X,, 1). The restriction IT of ® to S maps
Sonto N := B x {1}, with

B:={X eR" 1 |X| <r:=2ev1—¢62/(1 —2&%)},

and is a smooth diffeomorphism between these two sets. We choose € such that r = 1/2, and
thus B C {X' e R" 1 | X/|loo < 1/2}.
Set

/ a 1y’ : /
o) ::iux,m FOTIXL D), i X € B )

0, otherwise -
By the above, there exist C, C’ > 0 such that for every f € W*P?(3B) satisfying (16),
the function g defined in (17) satisfies
Cliglwsr@n-1y < I fllwsr@) < C'llglwsr@n-1)- (18)
On the other hand, set C := {(t Y',t); Y € B, t > 0} and
(Xn)* g(X'/ Xy), if (X', Xn) €C
0, otherwise '

Vag(X', X) = {

Then we have U, (X', X)) = Vug(X’, X»), VY (X', X,) € B\{0}.
Write now s = m + o, withm € Nand 0 < o < 1. When s = m, we consider, on
W*:P(B), the semi-norm

Fllysrmy = D N0°FI7, ) (19)
aeN"\{0}

|| <m

When s is not an integer, we consider the semi-norm

Fllny = D I0F 1+ D 10 Flenm (20)
aeN"\{0} aeN"
|| <m ler]=m

(the semi-norm on W??(B) is the standard Gagliardo one.)
By the above discussion, in order to obtain (11) it suffices to establish the estimate

Vagliys.ripy < C gy p gty V8 € WHPR™™ ) with supp g € B, 21)

Let @ € N"\{0} be such that || < m. By a straightforward induction on ||, the distribu-
tional derivative 0%[V, g] satisfies

0 IVagl (X', Xa) = D Varjui[Pap 0¥ g1(X, Xa) inD'(B\(O),  (22)
1B'1<]|

for some appropriate polynomials P, g/ (Y"), Y’ € R*~!, depending only on a € R, o € N”
and g/ e N*~ 1,

Thanks to the fact that g(X’/ X,,) = 0 when (X', X,,) ¢ C, we find that for any such a we
have

/ 0°[VagllPdx <C ) / (X)) @71DP1F g(X'/ X,)|P dXd X,
B <l
1B'1=I | (23)
= ' g(YH|P dy'.
n+<a—|a|)p 2 f' sl

1B|<le]
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Here, we rely on

1
—_— <
n+(a—la))p
thanks to the assumption (9), which implies that (|o| —a)p < n.

Using (23), the fact that V, g € WP (B\{0}) and the assumption that n > 2, we find that

loc

the equality (22) holds also in D’(B), that V,g € W™ ”(B) and that

)

1
/ (Xn)n—l+(a—\a\)p dX, =
0

”Vag”‘p/vm.li(B) = C||g||€vm,p(Rn—l)’ Vg (S Wm’p(Rnil) with supp g C B. (24)

In particular, Eq. (21) holds when s is an integer.
Assume next that s is not an integer. In view of (18), (22) and (24), estimate (21) will be
a consequence of

Vo[ Ph]l3yo gy < C lIAll VheWrP R

P
Wer @) 25)
with supp i C B,

under the assumptions
O<o<l, 1<p<oo, n>2, (6 —b)p<n (26)
and
P e C®R" . (27)

(Estimate (25) is applied with b :=a —m, P := P, g and h := Bﬂ/g.)

In turn, estimate (25) follows from Step 1. Indeed, consider k : B — R such that
supp k C B and Upk = V[ Ph]. (The explicit formula of k can be obtained by “inverting”
the formula (17).) By Step 1 and (18), we have

p — p P p
|Vb[Ph]|W:p(B) - |Ubk|Ws.p(B) = C||k||W.v.p(33) =< C”Ph”W.\-,p(Rn—l)

S C”h”‘p/v.y,p(Rn—l)'

This completes Step 2 and the proof of Lemma 3.
[}

Finally, we note that the assumptions of Lemma 3 are optimal in order to obtain that
U, f € WHP(B).
Lemmad4 Leta e R, s > 0,1 < p < ocoandn > 2. Assume that for some measurable
function f : 0B — Rwe have U, f € W*P(B). Then:
1. f e WSP(dB).
2. 1If, in addition, U, f is not a polynomial, we deduce that (s — a)p < n.

Proof 1. LetG:(1/2,1) xdB — R, G(r,x) :==r U, f(rx).IfU, f € W*P(B), then
G € WP((1/2, 1) x dB). In particular, we have G (r, -) € W% P (dB) for a.e. r. Noting
that G(r, x) = f(x), we find that f € WSP(3B).

2. Let

Qj={XeR, 27 <|X| <27/}, jeN

We consider on each £2; a semi-norm as in (19), (20). Assuming that U, f is not a
polynomial, we have |U, f|ws.r(2, > 0. By scaling and the homogeneity of U, f, we have

14 — 2Jjls—a)p—n] 14
|Uaf|WS'p(~Qj) - 2j ST |U(lf|Ws.])(QU)-
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Assuming that U, f € W*?(B), we find that

00 > Uaflypnpy = 2 Wa sy = D2 ™" MWaf sy > 0.
j=0 j=0

so that (s —a)p < n. ]
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