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Abstract The classical Kelly investment method consists in betting a fixed fraction f ∗ of
wealth which maximizes the expected log growth rate. The strategy was introduced in 1956
by Kelly and applied effectively to financial investments by Edward O. Thorp and others. In
this paper, we determine a large class of n-valued financial games, n ≥ 3, where the use of a
simplified parameter ̂f (the so-called Fortune’s Formula) instead of f ∗, applied by investors
and recommended in investor’s guides and services, as well as in some research papers, leads
to ruin. Our theory is completed with an example and simulations.
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1 Preface

This article has been written as a result of my search for an optimal method of money
management by an investor performing consecutive transactions.

One of the popular solutions, which is recommended in the books and reputable websites
about investing , is the so-called Kelly Criterion, based on the 1956 article by Kelly [6]. The
author considers there a simple (two-valued: one win and one loss only) investment case with
a positive expected value, and proposes a method of money management, which maximizes
the growth of wealth in the long run.

However, in practice the investor is faced with more complicated scenarios. For this
reason, Thorp [13, p. 129] has proposed the investor should first simplify the distribution
of his outcomes to the case described in Kelly’s article, and next apply the solution given
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there. This method, called today ‘Fortune’s Formula’, was popularized in the 2005 book by
Poundstone [10], and was discussed further in the paper [9] (see also [4, Appendix A1]).

During my research, however, I have found many cases showing the investor does not
maximize his wealth using the Thorp’s method.

Hence, I was also curious to know whether the use of Fortune’s Formula could have
any negative effects. The point is that investors usually identify just this method with the
original solution of Kelly and its positive properties: namely that, in the long run, the investor
maximizes the growth of his assets and never goes bankrupt.

Thus, there is a natural question:

Whether the use of Fortune’s Formula in investing can lead to the exact opposite, i.e.
undesirable consequences: ruin of an investor despite the fact that he is applying a
strategy with a positive expected value?

During my research, it turned out this question has a positive answer, and I have found a
method of generating such cases.

2 Introduction and the main result

Throughout this paper, we study a class of two-person economic games with a fixed finite set
of outcomes and with a positive expected value. The symbol W0 denotes investor’s starting
capital.

Suppose an investor (a player) knows the distribution of profits and losses of a given game
� and can play it repeatedly, and that his opponent (e.g., a market) is infinitely rich. Hence,
the investor is able to decide what proportion of wealth to risk in a single bet. A natural
problem is thus to determine a betting fraction f ∗ that maximizes the investor’s expected
terminal wealth.

One of the solutions, called the Kelly Criterion, says that

(KC) The investor should maximize (after each bet) the expected log growth rate of
his wealth

([6, p. 919], cf. [19, p. 511]). This general solution, when applied properly, has many positive
properties [8, pp. 563–574], similar to the two-valued Kelly case mentioned in Sect. 1, e.g.,
the KC maximizes the rate wealth growth and minimizes the expected time to a preassigned
goal [1]; moreover, the investor applying the KC never risks ruin [5] (cf. the Proposition
below).

To be honest with the reader who is not a specialist in the Kelly criterion, wemust mention
this method has also some bad properties, listed in [8, 565–575]. Probably Samuelson, the
Nobel Prize winner in economy, was the first critic of the criterion by showing that the KC
is optimal for the log-utility function only [11], and that, in short runs, the KC may generate
big losses [12].

However, many investors use simplified histograms of outcomes reduced to two values,
one gain and one loss only, with respective average probabilities, and apply the KC just to
this case [7,13,21,22]. Moreover, the reliable services Morningstar [24] and Motley Fool
[25] recommend the simplified rule for investments, which takes the form: The optimal Kelly
bet equals

̂f := edge/odds,
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where edge is the expected gain from the current bet, and odds is the multiple of the amount
of the bet that the winning bettor stands to receive (see Sect. 3.2 for details).

The main goal of this paper is to indicate a class of financial games where an automatic
application of the above rulemay lead an investor to ruin.More exactly, we have the following
result.

Main Theorem For an arbitrary pair (N , M) of integers with N ≥ 2, M ≥ 1 there is a
class of random variables X (with corresponding probability distributions), representing N
gains and M losses of a financial game, with the expected value E(X) positive, such that the
use of the simplified parameter ̂f in investing can lead to ruin.

Thus, our result supplements the Samuelson’s criticism of the Kelly Criterion but from
another perspective.

The next sections of this paper are organized as follows. In Sect. 3 we address the con-
struction of a function describing the log growth rate of the investor’s wealth, and a process
of reduction of n-valued games to two-valued games (Fortune’s Formula). We also outline
the theory of the Kelly Criterion for n-valued games and the problem of determining an exact
value of the optimal betting fraction f ∗. In Sect. 4, Theorem 1, we present a three-valued
version of the main Theorem along with a counterexample and simulations illustrating The-
orem 1. This version is too technical to present it here, yet it is the basis of the proof of the
general case stated in the main Theorem above and, moreover, it allows us to generate many
concrete examples. In Sect. 5, we give proofs of our results.

3 Notation and preliminary results

As at the beginning of Sect. 2, we shall assume the investor knows the distribution of profits
and losses of a given game �; f is the fraction of wealth the investor risks in a single trial
(0 < f < 1), and Wk( f ) denotes the investor’s wealth after k trials when applying the
parameter f , k = 1, 2, . . . , K . Further, dk denotes the gain/loss in the kth transaction, and
δ denotes the modulus of the greatest loss among all of the K transactions; we also assume
that the outcomes dk are i.i.d.

3.1 The construction of function G(N,M)

We present below a step-by-step construction of a function whose properties allow us to
determine the optimal betting fraction f ∗ in the Kelly Criterion. It is interesting to note that
the normalization process, of dividing all the outcomes dk by the modulus of the biggest loss,
is the result of this construction, and not an a priori requirement (see [20, p. 122], cf. the
remarks in [15, p. 216]).

SetW0( f ) = W0. By the definition of f , in the kth transaction we risk (i.e., we may lose)
f · Wk−1( f ) of our wealth. On the other hand, we may lose at most δ > 0 on each share,
whence the number of shares we buy equals Sk := f ·Wk−1( f )

δ
. But since our kth gain/loss

equals dk , the financial result of our kth transaction equals1 Skdk = f ·Wk−1( f ) · dk
δ
. Hence,

after the kth transaction our capital equals

1 Notice, however, that if the price of each share is Ck , the capital Tk in the kth investment involved equals

f · Wk−1( f ) · Ck
δ
. It is thus possible to be Tk > Wk−1( f ) because the fraction Ck/δ is always ≥ 1. In this

case, we should borrow to finance the kth transaction.
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Wk( f ) = Wk−1( f ) + Skdk = Wk−1( f )

(

1 + f
dk
δ

)

, (1)

k = 1, 2, . . . , K , whence, inductively,

WK ( f ) = W0

K
∏

k=1

(

1 + f
dk
δ

)

. (2)

Notice that, although dk and δ are expressed in concrete financial units, each fraction dk/δ
is a dimensionless number (i.e., a pure number without any physical units).

Now let D denote the string (dk/δ)Kk=1, and let

X(N ,M) = (A1, . . . , AN ,−B1, . . . ,−BM ) (3)

be the strictly decreasing sequence of the values of D with AN ≥ 0 > −B1; notice that

BM = 1. (4)

Further, let ni and m j , respectively, denote the cardinalities of the sets {k : dk/δ = Ai } and
{k : dk/δ = Bj }, i ≤ N , j ≤ M . Then (2) is going into

WK ( f ) = W0

N
∏

i=1

(1 + f Ai )
ni

M
∏

j=1

(1 − f B j )
m j ,

whence the K th geometric mean HK ( f ) of WK ( f )/W0 equals

HK ( f ) =
N

∏

i=1

(1 + f Ai )
νi

M
∏

j=1

(1 − f B j )
μ j , (5)

where νi = ni/K and μ j = m j/K , with ν1 +· · ·+ νN +μ1 +· · ·+μM = 1. If the number
K is sufficiently large (in the sense of the law of large numbers), or if we make only an
‘ex-post analysis’ of the game �, we replace in (5) the frequencies νi and μ j by respective
probabilities pi and q j . Then the string X defined in (3) becomes the random variable of the
game � with the probability distribution

P(N ,M) = (p1, . . . , pN , q1, . . . , qM ). (6)

Now, taking logarithms (in base e), we obtain a formula describing the log growth rate of the
investor’s wealth (depending on f ):

G(N ,M)( f ) = E(log(1 + f X))

=
N

∑

i=1

pi log(1 + f Ai ) +
M

∑

j=1

q j log(1 − f B j ).
(7)

In the particular case N = 1 or N = 2, with M = 1, we shall write G instead of G(N ,1);
similarly for X and P .

Remark 1 We will discuss now a peculiar situation that appears in the proof of the Main
Theorem, based on part (b) of the Proposition in the next subsection. From the general
form (7) of G(N ,M) it follows this function depends continuously on all the parameters
defining it. Let us consider the case when M ≥ 2 and f is a continuous function of
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(B1, . . . , BM ), with 0 < B1 < . . . < BM = 1 and each Bj converging to B0
j ∈ (0, 1],2

and such that f → f 0 := f (B0
1 , . . . , B

0
M−1, 1) ∈ (0, 1); then we are dealing with

an infinite family of functions G(N ;B1,...,BM−1,1), and not a one of them. We thus obtain
G(N ;B1,...,BM−1,1)( f ) → G(N ;B0

1 ,...,B0
M−1,1)

( f 0), and if G(N ;B0
1 ,...,B0

M−1,1)
( f 0) < 0, then, by

continuity of G(N ,·,...,·,1)( f (·, . . . , ·, 1)), there are infinite many systems (B1, . . . , BM−1, 1)
with 0 < B1 < . . . < BM = 1 and Bj �= B0

j for all j ≤ M − 1, such that
G(N ;B1,...,BM−1,1)( f (B1, . . . , BM−1, 1)) < 0. Then, for our purposes, we can choose one
of such functions G(N ;B1,...,BM−1,1).

3.2 The Kelly criterion for n-valued games

TheKelly criterion applies easily to two-valued games, where the determination of the betting
fraction f ∗ is very simple: If X = (A,−B), with A, B > 0, is a random variable of the
game with the probability distribution P = (p, q) and E(X) > 0, then

f ∗ = E(X)

A
= p − qB

A
∈ (0, 1) and G( f ∗) > 0. (8)

Indeed, by (7), the log growth rate of the investor’s wealth equals

G( f ) = p log(1 + Df ) + q log(1 − f ), (9)

where D = A/B. Hence, by the KC, solving equation G ′( f ) = 0 and noting that G is
concave on [0, 1) with G ′(0) = E(X) > 0 we obtain (8).

One should note that formula (8), for A = B = 1, appears (implicitly) for the first time
in the 1956 paper by Kelly [6, p. 920] (here f ∗ = p − q = E(X)), and its general form can
be obtained from the form of G( f ) [as in (9)] on page 129 of the 1984 book [17] by Thorp.

For n-valued games, with n > 2, the f ∗-problem is much more complex: in Sect. 3.1,
formula (7), we showed that the log growth rate of the investor’s wealth equals

G(N ,M)( f ) =
N

∑

i=1

pi log(1 + f Ai ) +
M

∑

j=1

q j log(1 − f B j ),

where N + M = n with N , M ≥ 1, the gains Ai and losses Bj (i.e., the elements of the
random variable X of the game) are positive and pairwise distinct, respectively, and the
probabilities pi and q j are positive and sum up to 1; we have also shown we may assume
that max j≤M Bj = 1, in general.3 It is easy to check that the function G(N ,M) is concave on
[0, 1) and since, by our general hypothesis, G ′

(N ,M)(0) = E(X) > 0, we obtain that

(P1) G(N ,M) attains its maximum at some f ∗ = f ∗
(N ,M) ∈ (0, 1), which is a unique

solution of the equation G ′
(N ,M)( f ) = 0;

and that

(P2) G(N ,M)( f ∗) > 0.

The determination of an exact value of f ∗ is thus equivalent to solving of a polynomial
equation of the n − 1 degree. The task is complicated even for n = 4 and n = 5 and, by
the celebrated Galois theory, has no general solution for n ≥ 6 by means of the parameters

2 We thus allow the case B0
1 = · · · = B0

M−1 = 1.
3 In fact, the gains and losses are dimensionless numbers calculated with respect to the biggest loss of the
game—see the remarks following formula (2) in Sect. 3.1.
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defining the game [14]. Although the Cover’s algorithm [3] gives us a numerical value of
f ∗, it does not tell us about the dependence of f ∗ on the form of X .
The knowledge about the value of f ∗ is important to investors because of the following

property, which is a simple consequence of amore general result obtained in 1961 byBreiman
[1, Proposition 3] (cf. [16, Theorem 5] or [18, Theorem 1] for two-valued games):

Proposition Let f ∈ (0, 1), let Wk( f ) denote the investor’s wealth after k trials applying
f , and let Pr[A] mean “the probability of event A”.
(a) If G(N ,M)( f ) > 0, then limk→∞ Wk( f ) = ∞, almost surely, i.e., for each M > 0,

Pr[lim infk→∞ Wk( f ) > M] = 1.
(b) If G(N ,M)( f ) < 0, then limk→∞ Wk( f ) = 0, almost surely, i.e., for each ε > 0,

Pr[lim infk→∞ Wk( f ) < ε] = 1.

In other words, applying f1 with G(N ,M)( f1) > 0 the investor’s capital can grow unlimitedly,
while applying f2 with G(N ,M)( f2) < 0 the investor will achieve ruin in proper time.

3.3 The Fortune’s Formula: a simplification of the f ∗-problem

The f ∗-problem has thus caused the need of replacing the exact value of f ∗ by a simpler
parameter but ’almost as good as’ f ∗. Some traces of this idea can be found at the end of
page 926 of the Kelly paper [6]. Probably Thorp is the author of such a parameter, ̂f , but the
historians Christensen [2] and Poundstone [10] do not mention about that. The parameter ̂f
is of the form edge/odds, defined already in Sect. 2. This formula, called by Poundstone the
Fortune’s Formula [10, p. 72], has more exact form, similar to (8): if X denotes the random
variable of the game � and ˜A := E(X > 0) denotes the average of profits of the game, then

̂f = edge/odds = E(X)/˜A. (10)

Poundstone, in his book [10], writes about the career ̂f has made in the world of investors,
and the pioneering role of Thorp in that field. The use of ̂f in investing is recommended in
the books by Kaufman [7, p. 624], Schwager [13, pp. 194–198] (in an interview with Thorp),
on internet sites [21,22], and in research papers, e.g. [4,9].

By (8) and (10), for two-valued games we have the identity ̂f = f ∗ , yet ̂f �= f ∗, in
general, and it has never been proved that G(N ,M)( ̂f ) > 0 for every n-valued game with
n ≥ 3. Moreover, in the counterexample in Sect. 4 below we illustrate numerically that the
uncritical use of ̂f in investing may have a negative consequence.

4 The results

The main result of this paper is the main Theorem stated in Sect. 2. In Theorem 1 below, we
present a detailed 3-valued version of the main Theorem. The parameters of Theorem 1 will
be applied essentially in the proof of the general case (see Sect. 5). In Sects. 4.1 and 4.2, we
present a numerical counterexample to the Fortune’s Formula investment method, based on
Theorem 1.

Let (A1, A2) be a pair of positive numbers with A1 > 1 > A2 such that

(A1 − 1)(1 − A2) > 2. (11)
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We shall consider the random variable X = (A1, A2,−1) of a game with probability distri-
bution Ps = (p1(s), p2(s), q1(s)) of the form

p1(s) = (0.5 + s) · 1 − A2

A1 − A2
,

p2(s) = (0.5 + s) · A1 − 1

A1 − A2
, (12)

q(s) = 0.5 − s,

where 0 < s < 0.5. Moreover, Es(X) denotes the expected value of X with respect to Ps ,
and Gs( f ), defined in (7) for N = 2 and M = 1, has a similar meaning.

Theorem 1 Let X = (A1, A2,−1) be the random variable fulfilling inequality (11). Then
there is s1 ∈ (0, 0.5) such that, for every s ∈ (0, s1) and the probability distribution Ps of
the form (12),

(i) Es(X) = 2s = ̂fs > 0 and Gs( ̂fs) < 0, whence (by the Proposition, part (b)) the
investor applying ̂fa will achieve ruin almost surely (a.s.) despite the fact that

(ii) Gs( f ∗
s ) > 0 for a positive f ∗

s < ̂fs maximizingGs, whence (by theProposition, part (a))
the capital of the investor applying f ∗

s will grow unlimitedly a.s.

Moreover, there is s0 ∈ (0, 1/2) such that Gs0(
̂fs0) < 0 is the minimum of the numbers

Gs( ̂fs), s ∈ (0, 1/2).

4.1 The counterexample

Nowwe shall present only one numerical illustration of Theorem 1, because other counterex-
amples can be obtained by means of the method described below.

Let us consider a game with two wins d1 = $216, d2 = $3 and one loss d3 = −$24, and
with some probabilities p1, p2, q , respectively. Then, by definition, δ = |d3| = $ 24, whence
A1 = d1/δ = 9, A2 = d2/δ = 0.125, and B1 = −d3/δ = 1. Since the pair (A1, A2) fulfills
inequality (11), Theorem 1 can be applied with a suitable probability distribution.

We shall apply the notation as for Theorem 1, yet in this case we do not use the subscript
s, i.e., we simply write E(X) instead of Es(X), etc.

Claim Let � denote a game with X = (A1, A2,−1) = (9, 0.125,−1) and P =
( 4.621471 , 42.2528

71 , 0.3398), and let G denote a function of the form (7) defined by the pair
(X,P):

G( f ) = 4.6214

71
log(1 + 9 f ) + 42.2528

71
log(1 + 0.125 f ) + 0.3398 log(1 − f ). (13)

Then:

(i) E(X) = 0.3204 = ̂f > 0,
(ii) G( ̂f ) = −0.01961 < 0, and
(iii) G attains its maximum at f ∗ = 0.1032 with G( f ∗) = 0.0133 > 0.

Hence, by Theorem 1, the investor applying ̂f = 0.3204 achieves ruin a.s., while applying
f ∗ = 0.1032 the investor’s capital can grow unlimitedly.

Figures 1 and 2 contain simulations of the game � for the above parameters ̂f and f ∗
illustrating the ruin and increase of wealth, respectively.
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Fig. 1 Five simulations of the capital of an investor applying ̂f = 0.3204, after consecutive k transactions

Comparing the values of the parameters ̂f and f ∗ we obtain

̂f / f ∗ = 0.3204/0.1032 = 3.104 · · ·

This shows that ̂f lies far away from f ∗ and, along with part (ii) of the Claim, disproves
the belief that investing using ̂f is as profitable as investing by means of f ∗ (see, e.g., [4,
Appendix A1]).

4.2 Simulations

From part (ii) of the Claim and from part (iii) of Theorem 1 it follows that the investor
applying ̂f will achieve ruin almost surely. This is illustrated in Fig. 1 containing five sample
simulations of our game � obtained by means of the inductive formula (1), with starting
capital of 1000 units and 300 trials. Figure 2 shows the wealth paths of the investor applying
f ∗ = 0.1032. We have accepted only the simulations passed positively through the Bartels
Rank Test of randomness [23] applied to the appearance of the outcomes 0.125, 9, and −1 in
game � in consecutive trials. Notice high local fluctuations in the graphs caused by the high
variance of X , Var(X) = 5.518 · · · , relative to E(X) = 0.3204.

5 The proofs

5.1 Proof of Theorem 1

At first, we present an idea of the proof. For clarity we shall simplify notation: we write
below X , G, E(X ), etc., instead of X(N ,M), G(N ,M), E(N ,M)(X(N ,M)), etc.
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Fig. 2 Five simulations of the capital of an investor applying f ∗ = 0.1032, after consecutive k transactions

Let � be a fixed game defined uniquely by a random variable

X = (A1, . . . , AN ,−B1, . . . ,−BM ),

where the string X is strictly decreasing with AN ≥ 0 > −B1 and BM = 1, and by
the respective probability distribution P = (p1, . . . , pN , q1, . . . , qM ), N , M ≥ 1 and
N + M > 2. We also assume that the expected value E(X ) = ∑N

i=1 pi Ai − ∑M
j=1 q j B j is

positive.

From the Taylor formula for log(1+x)we obtain the inequality log(1+x) ≤ x− x2
2 + x3

3 ,
for x > −1, with equality only for x = 0. Hence, for every f ∈ (0, 1), Ai and Bj ,

log(1 + f Ai ) ≤ f · Ai − f 2 · A2
i

2
+ f 3 · A3

i

3
, and (14)

log(1 − f B j ) < − f · Bj − f 2 · B2
j

2
− f 3 · B3

j

3
. (15)

Applying inequalities (14) and (15) to the form of G = G(N ,M) in (7) we obtain a basic
inequality:

G( f ) < f · E(X ) − f 2

2
· E(X 2) + f 3

3
· E(X 3), f ∈ (0, 1), (16)

where E(X 2) and E(X 3) denote the second and third moment of X , respectively. Set
m = E(X ) and f = ̂f = m/˜A, where ˜A = E(X > 0) is the average gain of � [see
(10)]. Then, by (16),

G( ̂f ) <
m2

˜A

(

1 − E(X 2)

2˜A
+ m

E(X 3)

3˜A2

)

. (17)

Hence, we obtain
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Main idea If 1− E(X 2)

2˜A
+m E(X 3)

3˜A2 < 0 then G( ̂f ) < 0, too. It is thus enough to find a pair

(X ,P) such that 1− E(X 2)

2˜A
< 0 and the value m E(X 3)

3˜A2 is sufficiently small to get G( ̂f ) < 0.

The proof of Theorem 1, presented below, is thus based on the Main Idea and consists in
finding suitable estimates of E(X2) and E(X3), where the random variable X = X = X2,1 is
fixed and P = P2,1 depends on a parameter allowing to get m = E(X) as small as possible.

Let, as in the hypothesis of Theorem 1, X = (A1, A2,−1) with A1 > 1 > A2 > 0, and
let P = (p1, p2, q), with p1, p2, q positive, be an arbitrary fixed probability distribution.
Our considerations will be simpler for

˜A = 1. (18)

In our case, ˜A = p1
p1+p2

· A1+ p2
p1+p2

· A2 = p1
1−q · A1+ p2

1−q · A2. Hence, from the assumption
(18) we obtain a system of two equations:

p1A1 + p2A2 = 1 − q

p1 + p2 = 1 − q.
(19)

Let us treat p1, p2 as unknown values and q as a parameter. Then (19) has a solution

p1 = (1 − q) · 1 − A2

A1 − A2
and p2 = (1 − q) · A1 − 1

A1 − A2
. (20)

Moreover, from the assumption E(X) > 0 and from (19) we obtain

E(X) = p1A1 + p2A2 − q = 1 − 2q > 0. (21)

It follows that q < 0.5, thus q = 0.5 − s for some s ∈ (0, 1/2). Hence, by (20), we obtain
(12):

p1 = p1(s) = (0.5 + s) · 1 − A2

A1 − A2
,

p2 = p2(s) = (0.5 + s) · A1 − 1

A1 − A2
,

q = q(s) = 0.5 − s.

Since now P = (p1(s), p2(s), q(s)) depends on s, we write Ps instead of P , and Es(X)

denotes the expected value of X with respect to Ps ; similarly for Es(X2) and Es(X3).
Consequently, by formula (10) and the assumption ˜A = 1 we obtain ̂fs = Es(X)/˜A =
Es(X). Hence, by (21) and the proved above identities (12),

Es(X) = 2s = ̂fs . (22)

Lower estimate of Es(X2). Setα = 1−A2
A1−A2

andβ = A1−1
A1−A2

, and notice that q = 1−(0.5+s).

Then, since 0.5 + s > 0.5 and αA2
1 + βA2

2 = A1 + A2 − A1A2, by identities (12),

Es(X
2) = (0.5 + s)

(

αA2
1 + βA2

2

) + 1 − (0.5 + s)

> 0.5(A1 + A2 − A1A2 − 1) + 1

= 0.5(A1 − 1)(1 − A2) + 1. (23)

Upper estimate of Es(X3). By (12) and the form of α and β again, and since s < 0.5 and
−q < 0,
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Es(X
3) < αA3

1 + βA3
2 = 1

A1 − A2

(

(1 − A2) · A3
1 + (A1 − 1) · A3

2

)

= A2
1 + A1A2 + A2

2 − A1A2 · (A1 + A2)

= A2
1 − (A1 − 1) · (A1A2 + A2

2)
A1>1
< A2

1. (24)

Set m(s) = m; thus m(s) = Es(X). From (22), (23) and (24) we obtain

1 − Es(X2)

2
+ m(s) · Es(X3)

3
< �(s) := − (A1 − 1)(1 − A2) − 2

4
+ 2s · A2

1

3
. (25)

Now, if (A1 − 1)(1− A2) > 2 [condition (11) of Theorem 1], the equation �(s) = 0 has
a solution s1 such that

0 < s1 = 3

8
· (A1 − 1)(1 − A2) − 2

A2
1

< 3/8

because (A1−1)(1− A2)−2 < A1 and A2
1 > 1; hence�(s) < 0 on the interval (0, s1)with

s1 ∈ (0, 1/2). But, by (22), (17) and (25), we have Gs( ̂fs) < 4s2 · �(s), thus Gs( ̂fs) < 0
for every s ∈ (0, s1). This proves part (i) of Theorem 1.

Part (ii) follows from properties (P1) and (P2) in Sect. 3.2:

(a) G ′
s(0) = Es(X)(= 2s) > 0 for every s ∈ (0, s1), whence Gs is increasing on the right

neighborhood of 0,
(b) Gs is concave (as G ′′( f ) < 0 on (0, 1)), and
(c) Gs(1−) = −∞;

hence there is f ∗
s ∈ (0, 1) such that Gs attains its maximum at f ∗

s with Gs( f ∗
s ) > 0 (the

latter follows from G ′
s(0) > 0), cf. Fig. 2.

The last part of Theorem 1 follows from the continuity of the function s 
→ Gs( ̂fs) on
the compact interval [0, 1/2].
5.2 Proof of the Claim

Since the pair (A1, A2) = (9, 1/8) fulfills inequality (11), by Theorem 1, we shall consider
the probability distribution Ps of the form:

p1(s) = (0.5 + s)
7

71
,

p2(s) = (0.5 + s)
64

71
, and

q1(s) = 0.5 − s.

Hence, by (7) for N = 2 and M = 1 and by Theorem 1, we have to find ’bad’ functions Gs

of the form

Gs( f ) = (0.5 + s)
7

71
log(1 + 9 f ) + (0.5 + s)

64

71
log(1 + 0.125 f )

+ (0.5 − s) log(1 − f ). (26)

From the proof of the last part of Theorem 1 it follows that a continuous function ϕ defined
by the formula

ϕ(s) := Gs( ̂fs), s ∈ [0, 1/2],
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Fig. 3 The graph of ϕ

Fig. 4 The graph of G0.1602

attains its minimum at some s0 ∈ (0, 1/2) with Gs0(
̂fs0) < 0. In our case, by (22) and (26),

we obtain:

ϕ(s) = (0.5 + s)
7

71
log(1 + 18s) + (0.5 + s)

64

71
log(1 + 0.25s)

+ (0.5 − s) log(1 − 2s).

The graph of ϕ is given in Fig. 3. Analyzing it numerically we obtain that ϕ is strictly
negative on the open interval (0, 0.2679), and that s0 = 0.1602 with ϕ(s0) = −0.01961.
Hence, setting G = Gs0 , E(X) = Es0(X) and ̂f = ̂fs0 , by Theorem 1 and the form of ϕ,
we obtain parts (i) and (ii) of the Claim:

̂f = E(X) = 2s0 = 0.3204, and G( ̂f ) = ϕ(s0) = −0.01961 < 0. (27)

By (26), G = G0.1602 is thus of the form (13) and it is the ‘worst’ element of the class
{Gs} in the terms of the value of Gs( ̂fs). Its graph is given in Fig. 4 and proves part (iii) of
the Claim: G attains its maximum at f ∗ = 0.1032 with

G( f ∗) = 0.0133 > 0. (28)
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5.3 Proof of the main Theorem

By Theorem 1, we shall consider the case n = N + M > 3, where N (gains) ≥ 2 and
M (losses) ≥ 1.

Let X = (A1, A2,−1) and P = (p1, p2, q) be the random variable and probability
distribution defined in Theorem 1, and let G be a function of the form (13). Thus,

G( f ) = p1 log(1 + f A1) + p2 log(1 + f A2) + q log(1 − f ), (29)

E(X) = p1A1 + p2A2 − q > 0, and (30)

G( ̂f ) < 0 < G( f ∗), (31)

with the parameters A1, A2, p1, p2, q, ̂f , f ∗ fixed, e.g., as in the Claim. By means of these
values, we shall construct a new random variable X(N ,M) with corresponding probability
distribution P(N ,M) of the form

X(N ,M) = (α1, . . . , αN ,−β1, . . . ,−βM ), (32)

where αi > 0 and 0 < β j ≤ 1 for all i ≤ M, j ≤ N , with βM = 1, and

P(N ,M) = (π1, . . . , πN , q1, . . . , qM ), (33)

such that X(2,1) = X , and P(2,1) = P . Then the function G(N ,M) below of the form (7),
defined by X(N ,M) and P(N ,M):

G(N ,M)( f ) =
N

∑

i=1

πi log(1 + f αi ) +
M

∑

j=1

q j log(1 − fβ j ), f ∈ [0, 1), (34)

is the sum of the ‘win’ WN and ‘loss’ LM functions:

G(N ,M)( f ) = WN ( f ) + LM ( f ), (35)

where

WN ( f ) :=
N

∑

i=1

πi log(1 + f αi ) and LM ( f ) :=
M

∑

j=1

q j log(1 − fβ j ). (36)

We obviously have G = G(2,1) = W2 + L1, see (29), thus G(N ,M) is a generalization of G.

Plan of the proof We are looking for X(N ,M) and P(N ,M) fulfilling the following two condi-
tions below:

E(X(N ,M) > 0) = E(X > 0) = ̂A = 1; (see (18)), (37)

and
E(X(N ,M)) = E(X) + θM , (38)

where
θM ≥ 0, with θM = 0 iff M = 1 and θM independent of N , (39)

and such that
G(N ,M) < G in a neighborhood of ̂f . (40)

Then, by (10), (37) and (38), we would have

̂f(N ,M) = ̂f + θM , (41)
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and hence, by (31), (40) and (41), for θM sufficiently close to 0,

G(N ,M)( ̂f(N ,M)) < 0. (42)

Remark 2 The latter inequality finishes the proof of the main Theorem. Indeed, by (30) and
(38), we obtain E(X(N ,M)) > 0, whence, by property(P2) in Sect. 3.2, G(N ,M)( f ∗

(N ,M)) >

0; this, along with (42), yields

G(N ,M)( ̂f(N ,M)) < 0 < G(N ,M)( f
∗
(N ,M)),

and we can apply the Proposition in Sect. 3.2 for f1 = f ∗
(N ,M) and f2 = ̂f(N ,M).

The proof Set k = N−1
2 for N odd (then k ≥ 1 because N ≥ 2), and k = N−2

2 for N even
(then k ≥ 0). Let us fix two finite sequences {ci }ki=1 and {b j }Mj=1 of real numbers such that

0 < c1 < · · · < ck < A1 − A2 (thus {ci }ki=1 = ∅ for k = 0, by definition), (43)

and
1 > b1 > · · · > bM−1 > bM = 0 for M ≥ 2, and bM = 0 for M = 1. (44)

We shall consider the cases N odd and N even separately.
Case N odd. Set

αi =

⎧

⎪

⎨

⎪

⎩

A1 + ck+1−i for i = 1, . . . , k

A1 − ci−k for i = k + 1, . . . , 2k

A2 for i = 2k + 1 = N ,

πi =
{

p1/2k for i = 1, . . . , 2k = N − 1

p2 for i = 2k + 1 = N ,

β j = 1 − b j (with βM = 1 − 0 = 1), and q j = q
M for all 1 ≤ j ≤ M .

Then, by (32) and (33),

X(N ,M) =
(

A1 + ck, . . . , A1 + c1
︸ ︷︷ ︸

k

, A1 − c1, L . . . , A1 − ck
︸ ︷︷ ︸

k

, A2

︸ ︷︷ ︸

2k+1=N

,

−1 + b1, . . . ,−1 + bM−1,−1
︸ ︷︷ ︸

M

)

, (45)

and

P(N ,M) =
(

p1
2k

, . . . ,
p1
2k

, p2
︸ ︷︷ ︸

2k+1=N

,
q

M
, . . . ,

q

M
︸ ︷︷ ︸

M

)

. (46)

Hence, by (35), (36) and the formulas defining αi , πi , β j , q j , we obtain G(N ,M)( f ) =
WN ( f ) + LM ( f ), where

WN ( f ) = p1
2k

k
∑

i=1

(log((1 + f A1) + f ci ) + log((1 + f A1) − f ci ))

+ p2 log(1 + f A2), (47)
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and

LM ( f ) = q

M

M
∑

j=1

log(1 − f + f b j ). (48)

Now shall show that X(N ,M), P(N ,M) and G(N ,M) fulfill our requirements (37), (38), (40),
(41), and (42).

Indeed, by (45) and (46),

E(X(N ,M) > 0) = p1
2k

k
∑

i=1

(A1 + ci + A1 − ci ) + p2A2

=p1A1 + p2A2 = E(X > 0) = 1,

which proves (37), and, by (30),

E(X(N ,M)) = E(X > 0) + q

M

M
∑

j=1

(−1 + b j ) = E(X > 0) − q + θM

= E(X) + θM > 0, (49)

where the parameter

θM := q

M

M
∑

j=1

b j (with θ1 = 0 because bM = 0, see (44)) (50)

is nonnegative and independent of N , which proves (38); then, obviously, (41) holds true,
too, with ̂f + θM ∈ (0, 1).

For the proof of (40), we shall evaluate the difference G(N ,M)( f ) − G( f ), where the
parameter f ∈ (0, 1) is arbitrary fixed. By (29) and (35), we have G = G(2,1) = W2 + L1,
where W2( f ) = p1 log(1 + f A1) + p2 log(1 + f A2), thus from the identity

log(u + v) + log(u − v) = 2 log u + log(1 − (v/u)2), for u > v > 0, (51)

applied in (47) for u = 1+ f A1 and v = f ci (and keeping in mind that WN ( f ) and W2( f )
have the common component p2 log(1 + f A2)) we obtain

WN ( f ) − W2( f ) = p1
2k

k
∑

i=1

(

2 log(1 + f A1) + log

(

1 −
(

f ci
1 + f A1

)2
))

− p1 log(1 + f A1) = TN ( f ), (52)

where

TN ( f ) := p1
2k

k
∑

i=1

log

(

1 −
(

f ci
1 + f A1

)2
))

. (53)

By (43), we have 0 <
f ci

1+ f A1
< 1, thus log(1 − (

f ci
1+ f A1

)2) is well defined and is negative
for all 1 ≤ i ≤ N . Hence

TN ( f ) < 0. (54)
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Moreover, by (48) and (50),

LM ( f ) − L1( f ) = q

M

M
∑

j=1

log(1 − f + f b j ) − q

M

M
∑

j=1

log(1 − f )

= q

M

M
∑

j=1

log

(

1 + f b j

1 − f

)

<
f

1 − f
· θM for M > 1. (55)

Now, by (52), (54) and (55), we obtain a basic inequality involving functions GN ,M and G:

G(N ,M)( f ) < G( f ) + f

1 − f
· θM , (56)

where f ∈ (0, 1) is arbitrary fixed.

Subcase M = 1 For one loss only, i.e., when M = 1, by (50) and the just proved identity
(41) [see the lines below (50)], we have θ1 = 0 and

̂fN ,1 = ̂f . (57)

Thus, by (56),
G(N ,1)( f ) < G( f ) for all f ∈ (0, 1), (58)

and we obtain

G(N ,1)( ̂fN ,1)
(57)= G(N ,1)( ̂f )

(58)
< G( ̂f )

(31)
< 0 with E(X(N ,1)) > 0 (by (49)). (59)

By inequalities (59) and Remark 2, the proof of subcase M = 1 is complete.

Subcase M ≥ 2 Identity (41) and inequality (56) yield

G(N ,M)( ̂f(N ,M))
(41)= G(N ,M)( ̂f + θM )

(56)
< G( ̂f + θM ) + ̂f + θM

1 − ̂f − θM
θM . (60)

By (50), θM depends continuously on b j ’s, j = 1, . . . , M , so, by (41), ̂f(N ,M) does too.Hence
we can write ̂f(N ,M) = F(β1, . . . , βM ), where F is a continuous function and β j = 1 − b j

for all j ≤ M . Notice also that, by (35), (36) and (48), G(N ,M) := G(N ;β1,...,βM ) is a function
depending continuously on b j ’s (hence on β j ’s) too.

Now, taking θM → 0 with bM−1 strictly positive4 [see (44) and (50)] we obtain b j → 0
(hence β j → 1) for all j ≤ M and, by (60) and (41),

lim
θM→0

G(N ,M)( ̂f(N ,M)) ≤ G( ̂f )
(31)
< 0. (61)

4 For example, b j = ε/2 j , j = 1, . . . , M − 1, where ε ∈ (0, 1), whence θM = θM (ε) < ε and
limε→0 θM (ε) = 0.



A counterexample to the Fortune’s Formula investing method 765

By Remark 1, inequality (61) implies there is a system (β1, . . . , βM ), with β j = 1 − b j for
all j ≤ M and β1 > · · · > βM−1 > βM = 0 (whence θM > 0), such that, for the parameter
̂f(N ,M) := ̂f + θM ∈ (0, 1), we have G(N ,M)( ̂f(N ,M)) = G(N ;β1,...,βM )( ̂f(N ,M)) < 0. By
(49), we also have E(X(N ,M)) > 0. Now we apply Remark 2, which finishes the proof of
subcase M ≥ 2.

Case N evenWe thus have N = 2k + 2 with k ≥ 0. Similarly as for N odd, by means of the
numbers defined in (43) and (44),we shall construct a randomvariable X(N ,M) and probability
distribution P(N ,M) such that, the function G(N ,M) determined by the pair (X(N ,M),P(N ,M))

fulfills inequality (56). Then we can follow the arguments as in case N odd to complete the
proof.

To this end, for k = 0 (whence M ≥ 2 because N + M > 3, by hypothesis), by (32) and
(33), we set

X(2,M) = (A1, A2,−1 + b1, . . . ,−1 + bM−1,−1),

and

P(2,N ) =
(

p1, p2,
q

M
, . . . ,

q

M
︸ ︷︷ ︸

M

)

.

Then

G(2,M)( f ) = p1 log(1 + f A1) + p2 log(1 + f A2)

+ q

M

M
∑

j=1

log(1 − f + f b j ). (62)

For k ≥ 1 (then N ≥ 4 and M ≥ 1), since A1 + c1 > A1 > A1 − c1, we can define a random
variable X(N ,M) with strictly increasing values as follows:

X(N ,M) =
(

A1 + ck, . . . , A1 + c1
︸ ︷︷ ︸

k

, A1, A1 − c1, . . . , A1 − ck
︸ ︷︷ ︸

k

, A2

︸ ︷︷ ︸

2k+2=N

,

−1 + b1, . . . ,−1 + bM−1,−1
︸ ︷︷ ︸

M

)

,

and the corresponding probability distribution we define as:

P(N ,M) =
(

p1
4k

, . . . ,
p1
4k

︸ ︷︷ ︸

k

,
p1
2

,
p1
4k

, . . . ,
p1
4k

︸ ︷︷ ︸

k

, p2

︸ ︷︷ ︸

2k+2=N

,
q

M
, . . . ,

q

M
︸ ︷︷ ︸

M

)

.
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Then G(N ,M) takes the form

G(N ,M)( f ) = p1
4k

(

k
∑

i=1

log(1 + f A1 + f ci ) + log(1 + f A1 − f ci )

)

+ p1
2

+ p2 log(1 + A2) + q

M

M
∑

j=1

log(1 − f + f b j ). (63)

It is easy to check that, both for k = 0 and k ≥ 1, as in case N odd, E(X(N ,M) > 0) = 1
and E(X(N ,M)) = E(X) + θM , where θM is defined in (50). Thus (41) holds true, i.e.,
̂f(N ,M) = ̂f + θM with θ1 = 0.

Moreover, since the ‘loss’ part of G(N ,M) does not depend on k, we obtain inequality (55)
for N even: LM ( f ) − L1( f ) < f θM/1 − f for M > 1. For the ‘win’ part of G(N ,M), we
obviously have WN ( f ) − W2( f ) = 0 when k = 0, while for k ≥ 1, following the method
of proof for N odd, it is easy to check that

WN ( f ) − W1( f ) = p1
4k

k
∑

i=1

log

(

1 −
(

f ci
1 f A1

)2
)

= 1

2
TN ( f ),

whence, by (54), WN ( f ) − W1( f ) < 0 for all f ∈ (0, 1). Summing up,

G(N ,M)( f ) =
{

LM ( f ) − L1( f ) <
f

1− f · θM , for N = 2 with θM > 0,
1
2TN ( f ) + LM ( f ) − L1( f ) <

f
1− f · θM , for N ≥ 4 with θM ≥ 0.

We thus have obtained inequality (56), as claimed. Now, applying the same arguments as for
M = 1 and M > 1 in case N odd we conclude the proof.

The proof of the main Theorem is complete.
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