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Abstract This is a pseudo-historical survey about some aspects of lens spaces and their
relations with cyclic quotient singularities. References are ordered by the year of publication.
Their list is not exhaustive.
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1 Introduction: definition of lens spaces as a quotient

Let me begin with a remark. Sometimes, it is the case that topologists write Lens spaces as
if a mathematician named Lens had existed and had invented them. This is not the case. The
name comes from the German “Linsen Räume”, introduced by Threlfall–Seifert [8]. A Linse
is an optical lens. In German, names begin with a capital letter. Not in English, nor in French
where “espace lenticulaire” is used. So I will write lens spaces.

Definition 1 Let n ≥ 2 be an integer and let q be a residue mod n, prime to n. Let ζ be a
n-th root of unity. Consider the linear automorphism of C2 given by (z1, z2) �→ (ζ z1, ζ q z2)
for (z1, z2) ∈ C2. The set of all these linear automorphisms as ζ varies among n-th roots of
unity make up the cyclic group Cn,q ⊂ U (2) ⊂ GL2(C).

The sphere S3 ⊂ C2 is invariant by the action of Cn,q and since q is prime to n, the action
on S3 is free.

Definition 2 The lens space L(n, q) is the quotient of S3 by this action.

This definition has the advantage of endowing L(n, q) with a (canonical) orientation as
follows. We orient C2 with the orientation given by its complex structure. This orients the
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unit ball B4 ⊂ C2 and S3 has the boundary orientation. Since the action of Cn,q preserves
the orientation of S3, the quotient inherits one.

This definition is due toHopf [6], de Rham [7],WilliamThrelfall and Seifert [8,9], without
taking too much care of orientations. But we maintain that lens spaces are oriented as above.
Lens spaces were known earlier under different disguises. Here is a list of five instances
where lens spaces appear.

(1) As we have seen, as a quotient of S3 by the action of a cyclic group of GL2(C). In other
words as a spherical space form.

(2) As a quotient of a “lens”, i.e. of a flattened 3-ball, with identifications on the boundary.
As de Rham and Threlfall-Seifert realized, the lens is a fundamental domain for the
action given in (1).

(3) As amanifold with a Heegaard decomposition of genus 1. This includes S3 and S1×S2.
From the action of a cyclic group as in (1) one gets a decomposition of the quotient in
two solid tori by observing that the action preserves the canonical decomposition of S3.

(4) As a finite covering of S3 ramified over the Hopf link.
(5) As a twofold covering of S3 ramified over a 2-bridge knot or link. This is due to Horst

Schubert, following a hint by Seifert. I shall not investigate this approach.

A generalization of lens spaces to odd dimensions exists, by copying the above definition
as the quotient of the sphere S2m+1 by a free action of a cyclic group. See, for instance,
several papers by de Rham, typically [14,52], who was very fond of this subject and also
Franz [12,17]. Milnor [34] presents an extremely detailed study of lens spaces in higher
dimensions in his paper on Whitehead’s Torsion §12.

2 A short history

2.1 Lens spaces as unions of two solid torii according to Poul Heegaard

Heegaard went to Göttingen and Paris between 1893 and 1898. He met Felix Klein and
attended lectures by Emile Picard and Camille Jordan, but not by Henri Poincaré. He found
himself the subject of his thesis and worked without thesis see ref [2] director. He gives the
impression to have been both a mathematically clever (even bold) young man and a kind
of ill-mannered person. But let us begin. We are at the end of the nineteenth century. The
theory of algebraic functions of one variable is now well established. But what about two
variables? A formidable obstacle is dressed on the road. The hypersurface in C3 defined by
the algebraic equation P(w, z) = 0 has singularities, where

P(w, z) = wd + a1(z)w
d−1 + · · · + ad−1(z)w + ad(z)

and

ai (z) = ai (z1, z2) ∈ C[z1, z2]
Singularities were already present in the one variable case, but for them the ramification
produced by the singularity is easily handled by Riemann cuts.

For algebraic functions of two variables, Heegaard has a fertile idea. To proceed, one
should first understand what the “shape” of a singularity is. But, what does shape mean?
Well, Heegaard means the topology. But topology does not exist yet, except for a paper [1]
by Henri Poincaré entitled “Analysis Situs”. Heegaard distinguishes between topology (he
means topology in the sense introduced by Johann Benedikt Listing, close to Carl Friedrich
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Gauss’ Geometria Situs) and Analysis Situs (in the sense of Riemann and Poincaré), and
adds stupidly that Poincaré does not understand topology. So, he undertakes to do it his
own way. First, let us observe that he has to understand a 4-dimensional object. This seems
impossible to do. Remember that we are in 1898 or so and that combinatorial surfaces have
only been classified some years ago. Heegaard says that (in the case of interest) a singularity
is locally homeomorphic (in modern words) to a cone over a 3-dimensional manifold. That
it is a cone is true, and was proved much later. But the basis of the cone is in general only a
pseudo-manifold and rarely a genuine manifold. However, this is true for the examples that
Heegaard investigates. He maybe imagines that this is always the case. He goes on and he
wishes to describe the topology of a 3-manifold. It is to achieve this goal that he invents
what is now called the Heegaard decomposition of a 3-manifold. He sketches the proof that
every (orientable) 3-manifold has a decomposition into two handlebodies with a common
boundary: the Heegaard surface. The genus of the decomposition is the genus of that surface.
Lens spaces appear as 3-manifolds with a decomposition of genus 1, so with a decomposition
into two solid torii.

As a basic example, he computes the Poincaré homology of the lens space we now denote
by L(2, 1) (which is nothing else but the 3-dimensional real projective space). He discovers
that H1 = Z/2 but that H2 = 0. This contradicts what Poincaré said in “Analysis Situs“
when he first stated his duality. Heegaard wrote to Poincaré who corrected his definition by
writing his first two Compléments. Poincaré said rightly that “his” duality must be expressed
differently for the torsion part of homology and he modified the definitions accordingly. As
we shall see, the duality for the torsion part played an important role in the history of lens
spaces.

An important point in Heegaard’s thesis is the observation that lens spaces (in his sense)
are coverings (called Riemann spaces) of S3 ramified over the Hopf link. He was motivated
by his desire to study the topology of the singularity (often called the ordinary double point,
later a key object in the Picard-Lefschetz transformation) in C3 given by the equation w2 −
(z21 + z22) = 0. He found out that the base of the local cone is precisely L(2, 1), since it is
the twofold covering of S3 ramified over the Hopf link. Since the homology of L(2, 1) is
not isomorphic to the homology of S3 he says that the ordinary double point is topologically
singular. So Heegaard was the first to introduce topology in the theory of singularities of
algebraic surfaces. He is the precursor of Friedrich Hirzebruch and David Mumford.

Caution.What I just wrote represents the “transcendent” approach to algebraic functions.
The “algebraic” approach (which goes back to Richard Dedekind and HeinrichWeber (1882)
in the case of curves) makes little use (if any) of topology. An important contribution to
algebraic functions of two variables in the algebraic spirit was given by Jung [3].

I said above that Heegaard was bold, but he was also shy. He apparently did not meet
Poincaré, who would have been happy to talk with him.

Poincaré was not affected by the naughty remarks about him contained in the thesis. On
the contrary he was pleased by the decomposition constructed by Heegaard for 3-manifolds.
He saw that the decomposition rests on what is today called Morse Theory and he devoted
the whole 5th Complément to an exploration of that theory. This is very well described in
Cameron Gordon’s beautiful paper [61] on 3-manifolds before 1960. Certainly Poincaré saw
in Morse Theory a way to construct new 3-manifolds, for instance from a presentation of the
fundamental group.

At the end of the 5th Complément Poincaré says that he had thought that a 3-dimensional
manifold with trivial homology is necessarily homeomorphic to the 3-sphere. He provides
a counterexample, the famous Poincaré sphere (the spherical dodecahedral space). Many
people believe that he constructed a quotient of S3 by an action of the binary icosahedral
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group, but this is not the case. He constructs explicitly a genus two Heegaard diagram,
which is the first such diagram ever drawn. From the presentation given by Poincaré for
the fundamental group it is clear that he knew the icosahedral group! At the very end he
asks the question: “There remains to see if a 3-manifold with trivial fundamental group is
homeomorphic to the 3-sphere” (translation with vocabulary adapted to modern times). The
last sentence is prophetic: “But this would lead us too far”. I have the feeling that maybe
he thought that with a lot of work he could get the answer. Probably by what John Stallings
called a way how NOT to prove the conjecture, i.e. by handling Morse functions.

It is striking to note that lens spaces and singularities were present together at the origin
of our story.

2.2 Three definitions of lens spaces by Heinrich Tietze

It is now time to introduceWilhelmWirtinger. He was close to Felix Klein and already in the
1890’s he tried to overcome the difficulties caused by singularities in the study of algebraic
functions of two complex variables. See the well-documented paper by Epple [59]. The
paper by Epple is extremely useful, since Wirtinger, who had a broad range of mathematical
interests, published nothing about the subject we are talking about. But he influenced many
mathematicians! Wirtinger read Heegaard’s thesis and very likely he realized that a first step
to go on was to rewrite Poincaré’s papers on Analysis Situs, by putting Poincaré’s ideas on a
solid ground. He convinced Heinrich Tietze to do the job. This was done with great care by
Tietze in his Habilitationschrift [4]. At the end of the paper, Tietze presents “ein Beispiel”
(an example in §20, 21, 22). The example consists in lens spaces (of course Wirtinger had
told him to read Heegaard). He gives for them three definitions.

The first one is by a “lens” (a flattened 3-ball) with identifications on the boundary. The
construction is presented by words, with no picture (the first one was given by Seifert-
Threlfall). The name ”lens“ is not used. The second one is by a Heegaard decomposition of
genus 1. The third one is by cyclic coverings of S3 ramified over the Hopf link. Tietze proves
that his three definitions produce the same objects.

The §22 is very interesting. The title of the section is “Onmanifolds forwhich the invariants
defined so far coincide”. The invariants are homology and the fundamental group. The same
investigation is also presented by Poincaré in §14 of ”Analysis Situs“. Tietze adds that maybe
the lens spaces L(5, 1) and L(5, 2) are examples of 3-manifolds with the same fundamental
group which are not homeomorphic. This is true as Alexander proved in 1919. See below,
Sect. 2.3.

It is striking to note that a century later, after the efforts of many topologists, it is known
that two irreducible 3-manifolds with the same fundamental group are homeomorphic, the
only exception being given by lens spaces. See below, Sect. 3.4.

2.3 James Alexander and the linking form

Westand back and consider the following situation.M2q+1 is a closed, connected and oriented
manifold of dimension (2q + 1). We denote by Tq(M) or simply by Tq the torsion subgroup
of Hq(M2q+1;Z).

Proposition 1 There exists a form Lq : Tq ×Tq −→ Q/Z which is (−1)q+1-symmetric and
non-degenerate.

This form is often called the linking form on the q-th dimensional torsion. A systematic
presentation was given by Seifert-Threlfall in their book §77, under the name “Verschlin-



Lens spaces among 3-manifolds and quotient surface. . . 897

gungszahlen” (= linking numbers). Its existence is the expression of Poincaré duality for the
torsion in dimension q . Modern proofs use cohomology, the Universal Coefficient Theorem
and homologywith values inQ/Z. In terms only of homology and intersection it goes roughly
as follows.

Let x ∈ Tq and let d be its order. Let cq+1 be an integral chain such that ∂cq+1 = dx .
If one replaces the integral chain cq+1 by another such chain, then the image of the rational
number (cq+1 · y)/d inQ/Z does not change, where the dot denotes the intersection number
with value in Z. This is by definition the value of Lq on (x, y).

Certainly the linking form L1 is an appropriate object to consider for lens spaces. This
is what Alexander [5] did in the case of lens spaces L(n, q) with n = 5, but his approach
is valid for all lens spaces. The presentation of Alexander does not use formally the form
just defined, but all the necessary ingredients are there. See Cameron Gordon’s paper [61] p.
464–465. The formal definition was given by de Rham and Seifert-Threlfall in the beginning
of the thirties. Alexander’s result is the following.

Proposition 2 There is a generator g in H1(L(n, q);Z) such that L1(g, g) = q/n.

A geometric generator is the core of one of the solid torii which decompose the lens space.
If the other core is chosen q is replaced by q ′ where qq ′ ≡ 1 mod n. A wrong belief would
be that the linking form L1 determines q . This is not true, but another algebraic generator is
equal to kg with k prime to n mod n. Now L1(kg, kg) = k2q/n. Hence we get the corollary:

Corollary 1 Let f : L(n, q) −→ L(n, q∗) be a map which induces an isometry on the
linking forms. Then we have q∗ ≡ k2q mod n, for some integer k prime to n.

Let us remark that a homeomorphism, or a homotopy equivalence, preserving orientations
induces an isometry on linking forms.

With such a tool we can easily prove that L(5, 1) and L(5, 2) are not homeomorphic
(even if we accept to reverse orientations), as Alexander did. In fact the linking forms are not
isometric since 1 is a square while 2 is not a square mod 5. If we change the orientation of
L(5, 2) we get L(5, 3) and 3 also is not a square.

2.4 The homotopy type of lens spaces

Lemma 1 Let Mk and Nk be two closed, connected, oriented k-manifolds. Let f : Mk −→
Nk be a degree 1 map. Then f induces a surjective homomorphism on the fundamental
groups.

The proof is easy, by contradiction. If this were not the case, f would factorize through a
covering of Nk and hence it would not be of degree 1.

Proposition 3 A map f : L(n, q) −→ L(n, q∗) is a homotopy equivalence if and only if it
is of degree 1.

Proof A homotopy equivalence is certainly of degree 1. So let us prove the converse. Since
f is of degree 1, the lemma above implies that it induces an isomorphism between the
fundamental groups. The map ̂f : S3 −→ S3 between the universal coverings is also of
degree 1, as an obvious commutative diagram shows. Therefore, the pair of maps ( f, ̂f )
satisfies the conditions of Whitehead’s Theorem about homotopy equivalences. 
�

Since I try to follow the history, the proof of the proposition is somewhat anachronistic,
since Whitehead’s theorem was only available in 1948. See Thm 3 p. 1135 of Whitehead’s
paper [18].
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I make a little parenthesis to recall what is Whitehead’s theorem. I wish to call it the Full
Whitehead Theorem.

Theorem 1 (Full whitehead theorem) Let X and Y be two connected CW complexes. A map
ϕ : X −→ Y is a homotopy equivalence if and only if the following two conditions are
satisfied.

1. The map ϕ induces an isomorphism on fundamental groups.
2. The map between universal coverings ϕ̂ : ̂X −→ ̂Y which covers ϕ induces an isomor-

phism on the homology groups with integer coefficients.

The chronology looks a little strange. The homeomorphism problem for lens spaces was
solved (for PL homeomorphisms) in 1935 by Kurt Reidemeister, as we shall see in the next
subsection. The classification up to homotopy type was harder to solve. An important step
was taken by Rueff in his [15] paper. Here it is.

Theorem 2 Let L(n, q) and L(n, q∗) be two lens spaces. There exists a degree 1 map
L(n, q) −→ L(n, q∗) if and only if there exists an integer k prime to n such that k2q ≡
q∗ mod n. In this case there also exists a map L(n, q∗) −→ L(n, q) of degree 1.

We see that Rueff essentially proved the following theorem, except for the vocabulary (the
notion of homotopy type was missing at the time). Caution: Maybe I am going too fast, but
in any case Rueff was the precursor.

Theorem 3 Let L(n, q) and L(n, q∗) be two lens spaces. They have the same homotopy type
(given by a homotopy equivalence which preserves the orientations) if and only if there exists
an integer k such that k2q ≡ q∗ mod n. This is the case if and only if the two lens spaces
have isometric linking forms.

With these words, the theorem was stated and proved by Whitehead in [16] and by Franz
in [17].

2.5 The classification of lens spaces up to homeomorphism

The main result is due to Kurt Reidemeister. It reads as follows [13].

Theorem 4 The lens spaces L(n, q) and L(n, q ′) are homeomorphic by a piecewise linear
(in short PL) homeomorphism, preserving the orientations if and only if q = q ′ or qq ′ ≡
1 mod n.

On the proof. It was known very early that the condition qq ′ ≡ 1 mod n implies home-
omorphism, by considering the linear map C2 −→ C2 which exchanges the factors. The
obvious question was: is this condition necessary? The answer yes came from Kurt Reide-
meister in 1935. But there was something a little bit unpleasant in the proof. Reidemeister’s
result states that the condition is necessary to have a PL homeomorphism. So a new ques-
tion arose: Can we get rid of PL? Without entering into details, let us say that Reidemeister
handles chain complexes which are modules over the group ring CCn (where Cn denotes
a cyclic group of order n). He needs to have bases for the chain modules in order to take
determinants. The bases are provided by the simplices of a triangulation. This leads to the
Reidemeister Torsion for the lens space L(n, q). It is an invariant �(T (n, q)) ∈ CCn which
determines the lens space up to PL homeomorphism. For more details see Milnor’s paper
[34] on Whitehead Torsion §12.
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The arguments to eliminate the PL condition came from different horizons. Historically
Edwin Moise [19] came first in 1952. He proved that for 3-manifolds, the PL and TOP
categories are equivalent. Roughly, topological 3-manifolds can be triangulated and if there
is a homeomorphism between two PL 3-manifolds there is also a PL one. In 1959 R.H. Bing
simplified Moise’s proof.

In 1969, another proof was provided by Kirby and Siebenmann [42] (see p. 744), who
proved thatReidemeisterTorsion is a topological invariant. The idea of their proof is explained
by Burlet and Milnor [43].

Still another proof can be obtained by the theory of Hilbert cube manifolds of James West
and Thomas Chapman around 1972. See also Siebenmann’s Bourbaki Seminar [47].

Another approach without any torsion nor simple homotopy type was provided by Bona-
hon in [55]. From a geometrical point of view, I think that it concludes beautifully the
discussion.

Theorem 5 (Francis Bonahon) A Heegaard torus in a lens space L(n, q) is unique up to an
orientation preserving homeomorphism.

By definition, a Heegaard torus is an embedded torus which bounds a solid torus on
each side. From the theorem it is easy to get the classification result for lens spaces up to
homeomorphism. See p. 336 in Bonahon [55].

Implicitly, in the approach “à la Bonahon” it is good to know that the there categories
TOP, PL, DIFF are equivalent as far as 3-manifolds are involved. For the equivalence PL
←→ DIFF the arguments rest on Whitehead [32] who proved that differential manifolds can
be triangulated and on [29] who proved that PL n-manifolds in dimension n ≤ 3 can be
smoothed (in fact up to dimension 7 for existence and 6 for uniqueness).

On the other hand, the equivalence TOP ←→ PL in dimension three is originally due to
Moise as we have seen.

2.6 Orientation reversal

Proposition 4 Let L(n, q) be a lens space oriented (as said before) by the canonical ori-
entation. There is an orientation-preserving homeomorphism from L(n, q) to L(n, n − q)

with L(n, n − q) equipped with the orientation opposite to the canonical one. [In short:
L(n, n − q) = −L(n, q)]

Proof Let C2
1 and C2

2 be two copies of C2. Let φ be the orientation reversing R-linear map
C2
1 −→ C2

2 given by φ(z1, z2) = (z1, z̄2). Let Cn,q act on C2
1 and Cn,n−q act on C2

2. The
map φ is equivariant with respect to these actions since ζ̄ q = ζ n−q . Therefore, φ induces an
orientation-reversing homeomorphism from L(n, q) to L(n, n − q). 
�
Definition 3 Let us define a lens space L(n, q) to be achiral if there exists an orientation-
reversing homeomorphism L(n, q) −→ L(n, q). Otherwise a lens space is said to be chiral.

The fact is that most lens spaces are chiral. Historically it seems that it was a novelty
to meet chiral manifolds, maybe because surfaces are all achiral. But some lens spaces are
achiral.

Proposition 5 The lens space L(n, q) is achiral if and only if q2 ≡ −1 mod n.

Proof From Reidemeister’s theorem and the proposition above we deduce that L(n, q) is
achiral if and only if −q ≡ q−1 mod n, i.e. if and only if q2 ≡ −1 mod n.
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So, let us ask for which n there exists a q such that q2 ≡ −1 mod n. If this is the case,
one says that −1 is a quadratic residue mod n. This is a well-known subject in elementary
number theory and the result is the following. See for instance Jean-Pierre Serre’s “Cours
d’Arithmétique”. 
�
Proposition 6 The integer −1 is a quadratic residue mod n if and only if:

(1) either n = ps11 ps22 · · · psrr with each pi an odd prime congruent to 1 mod 4;
(2) or n is twice such an integer.

It is hence easy to find the achiral lens spaces. For small values of n they are:
L(2, 1), L(5, 2), L(10, 3), L(13, 5), L(17, 4), · · ·

3 Lens spaces among 3-manifolds

We shall see in this section that lens spaces are exceptional among 3-manifolds in many
ways.

3.1 A reminder on 3-manifolds

The reader will find in Hempel’s book [48] a basic handbook on 3-manifolds. Hatcher’s notes
[63] adopt a different point of view, full of new ideas. In this reminder a 3-manifold M3 is
compact, connected and without boundary. Embeddings are always supposed to be PL or
DIFF, to avoid wildness.

We first say a few words about irreducibility.

Definition 4 A 3-manifold M3 is irreducible if every 2-sphere embedded in M3 bounds a
3-ball in M3.

A classical result is that an irreducible 3-manifold is “prime”, i.e. admits only trivial
decompositions as a connected sum (we should say indecomposable) or is homeomorphic to
S1 × S2 or to the non-orientable 2-sphere bundle over S1.

If we consider non-orientable 3-manifolds another notion of irreducibility is necessary,
as was shown by Epstein [30].

Definition 5 A non orientable 3-manifold M3 is P2-irreducible if it is irreducible and does
not contain a projective plane P2 with trivial normal bundle (one often says “does not contain
a 2-sided projective plane”).

The sphere + projective plane Theorem says the following.

Theorem 6 (Papakyriakopoulos [26] + Epstein [30]) Suppose that M3 is irreducible and
orientable or P2-irreducible and non-orientable. Then the second homotopy group π2(M3)

vanishes.

We now proceed towards sufficiently large 3-manifolds.

Definition 6 Let F2 ⊂ M3 be an embedded surface. A compression disc for F in M is an
embedded 2-disc � ⊂ M such that:

(i) � ∩ F = ∂�
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(ii) ∂� is essential in F , i.e. it does not bound a 2-disc in F .

Definition 7 A surface F2 ⊂ M3 is incompressible if there exists no compression disc for
F in M .

Definition 8 A 3-manifold M3 is sufficiently large if it contains an incompressible surface,
distinct from a 2-sphere.

Irreducible and sufficiently large orientable 3-manifolds have nice properties as shown by
Waldhausen [40]. For instance a homeomorphism M3 −→ M3 homotopic to the identity is
in fact isotopic to the identity.

3.2 Seifert foliated 3-manifolds

Definition 9 A compact, connected and oriented 3-manifold M3 is a Seifert manifold if it
has a foliation in circles with coherently orientable leaves.

The foliation is called a Seifert foliation. The leaves are coherently orientable, but an
orientation is not specified. If this is the case, the leaves are the orbits of an effective, fixed-
point free action of SO(2) and the leaves are oriented by the orientation of SO(2). An orbit
is generic if its isotropy subgroup is trivial. If it is not trivial, it is a finite, cyclic subgroup
of SO(2) of order α ≥ 2. The corresponding orbit is called exceptional. There are a finite
number of them.

There aremoregeneral kinds ofSeifert foliations, but in this paper I only consider foliations
which satisfy the orientability condition stated above. Moreover, I assume that the boundary
∂M is empty.

We denote by B the space of leaves of the Seifert foliation. It is a compact, connected,
differentiable surface with empty boundary. It is orientable, since the foliation is orientable.
SinceM is oriented, an orientation of B determines an orientation of the leaves and conversely.

Fact. Among closed Seifert foliated manifolds, lens spaces together with S3 and S1 × S2

are the only ones to have more than one (in fact infinitely many) Seifert foliations. They are
the 3-manifolds which admit a Heegaard splitting of genus 1. All the other orientable Seifert
foliated manifolds have a unique Seifert foliation with orientable base space. For an idea
of the proof see Jaco’s book [51] p. 96–97 and observe that besides his case (a) the other
cases can be discarded either since a second Seifert foliation is non-orientable or since the
manifold has a boundary.

It would take too much space to define the Seifert invariants: the obstruction e and the β’s.
Here I use the normalized Seifert invariants, introduced originally by Seifert. See his 1932
paper [10].

3.3 Seifert manifolds with finite fundamental group

This is an extremely interesting subject. So I spend some time on it.
Let us begin with Clifford-Klein space forms, space forms for short. The early days of

the subject are presented in detail by Epple [64].
Epple’s paper ends with Heinz Hopf’s 1925 paper. In this paper, Hopf makes clear that a

space form is a n-dimensional Riemannian complete manifold of constant curvature K , with
K = +1, 0,−1. Then Hopf says that for every dimension n and curvature K there exists a
model space Mn

K which is simply connected and unique up to isometry. Then every (Rieman-
nian and complete) n-manifold of constant curvature is isometric to a quotient Mn

K /
 where

 is a group of isometries of the model space, acting freely and properly discontinuously.
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For the necessary prerequisite in differential geometry see Postnikov’s book [60].
In the paper quoted above, Hopf undertakes the determination of the finite subgroups of

SO(4) which act freely on the 3-sphere S3.
The exhaustive list of such groups was obtained by Threlfall–Seifert in [8,9]. In their

work, they represented a fundamental domain of the action of the cyclic groups by a flattened
3-ball and they called this ball a “lens”. The first published picture of such a flattened ball
with identifications on the boundary made explicit is in their book [11]. In this book, lens
spaces appear several times to provide examples.

The title of the papers makes clear that the goal of the authors is to describe the topology
of the quotient, i.e. the topology of spherical space forms in dimension 3.

The determination of the subgroups follows the path of Hopf (although the authors do not
quote Hopf, except in the very last pages of the second paper). It is presented beautifully by
Scott in his [57] paper. The determination of the quotient (this is the so-called ”Discontinu-
itätsbereich“) caused some difficulties. In fact the authors say that it is precisely in order to
obtain a complete description of the quotient that they discovered and studied Seifert man-
ifolds. The second part of the paper is devoted to the description of the quotient via Seifert
foliations. The main result of Part II is the following theorem. See p. 568.

Theorem 7 Spherical space forms in dimension 3 coincide with Seifert 3-manifolds with
finite fundamental group (of course up to isomorphism in the adequate category).

Let us first recall that a 3-dimensional manifold with finite fundamental group is nec-
essarily orientable. This observation was made by Hopf in his 1925 paper. We argue by
contradiction and suppose that the manifold is non-orientable. The universal cover is a homo-
topy 3-sphere (there is no need to use Perelman here). The fundamental group acts freely by
Galois transformations on the homotopy 3-sphere. But the action cannot be free, since an
orientation-reversing homeomorphism of a 3-dimensional homotopy sphere has fixed points,
by the Hopf-Lefschetz Fixed Point Formula.

The admissible Seifert invariants are as follows. See Threlfall–Seifert [9] Part II Section
8. See also Seifert’s paper on “his” manifolds [10] Section 10.

(1) Base space (space of leaves) S2 and no more than 2 exceptional points. These are the
lens spaces including S3 = L(1.0).

(2) Base space S2 and 3 exceptional points with (α1, α2, α3) equal to (2, 2, c) and c ≥ 2.
These are the prism manifolds. They are known (should we say notorious?) for having
another Seifert foliation with a non-orientable base.

(3) Base space S2 and 3 exceptional points with (α1, α2, α3) equal to (2, 3, 3).
(4) Base space S2 and 3 exceptional points with (α1, α2, α3) equal to (2, 3, 4).
(5) Base space S2 and 3 exceptional points with (α1, α2, α3) equal to (2, 3, 5).

These triples of integers (α1, α2, α3) with αi ≥ 2 are the only triples to satisfy �i1/αi > 1.
Finiteness of the fundamental group depends only on the value of the αi ’s.

Seifert manifolds which correspond to the cases (2)–(5) have a unique Seifert foliation
with orientable base. Now we have to be careful about orientations. The unit sphere S3 inR4

has no canonical orientation. Hence the quotient does not have a canonical orientation. But
the Seifert invariants βi and the Euler number, say e = −b where b is Seifert’s obstruction
do require an orientation of the 3-manifold. Therefore we have two possible sets of Seifert’s
invariants for each finite (non-cyclic) group. A change of orientation changes the sign of e and
of the βi . At this point it is good to introduce the rational Euler number e0 = e − �βi/αi .
We see that a change of orientation modifies e0 to −e0.
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Another consequence of Threlfall–Seifert’s work is the following rigidity result. See Part
II bottom p. 565. This rigidity theorem also follows from the arguments given by Scott [57].

Theorem 8 Let G = SO(4) and F be the family of finite groups in SO(4) acting freely on
S3, excluding cyclic groups. Then the family F is rigid.

Since rigidity will appear again later, I recall what it means, with a definition of my own.

Definition 10 Let G be a “large” group (in the two cases we shall meet, G is a Lie group).
LetF be a family of subgroups of G. We say that F is rigid if any time two elements G1 and
G2 inF are abstractly isomorphic (i.e. isomorphic as abstract groups) then they are conjugate
in G.

Comment. The cyclic subgroups cannot constitute a rigid family. The fundamental group
Cn,q of L(n, q) is determined abstractly by n, but two lens spaces L(n, q) and L(n′, q ′) are
isometric if and only if n = n′ and q = q ′ or q−1 = q ′.

Besides Scott’s paper [57], another recommended reading is Orlik’s book [46] on Seifert
manifolds Chap.6 §1 and §2. Orlik determines completely the subgroups of SO(4)which act
freely on S3 and recovers the presentation of these groups given by Milnor in his paper [25]
on groups which act freely on spheres. Orlik proves also that the quotients are Seifert fibered.
Then he can make the correlation between on the one hand the group (via its presentation)
and the Seifert invariants on the other hand.

The fantastic news brought by Gregory Perelman is that there is no other 3-manifold
with finite fundamental group.

For instance a 3-manifold with finite cyclic group is a lens space. This is valid in particular
for the trivial group. Therefore, by Perelman, a homotopy sphere is a lens space. The classifi-
cation of lens spaces shows that a lens space with trivial fundamental group is homeomorphic
to the standard sphere. So Perelman obtains a proof of the Poincaré Conjecture as a special
case !!!!!

3.4 The fundamental group determines 3-manifolds, except for lens spaces

The story begins with Poincaré himself in his series of papers “Analysis Situs” [1] and the
five “Compléments” (the last one [1]). The story ends after more than a century with the
three papers by Perelman [65] and full proofs provided a bit later by several authors. See for
instance Morgan [67].

Let us begin with Poincaré. In “Analysis Situs” §14 he investigates whether the invariants
he has just introduced (the fundamental group and homology) classify manifolds. Note that
Poincaré is only interested by manifolds, which are for him both triangulated and differen-
tiable. He shows that homology classifies surfaces. Then he studies 3-dimensional manifolds.
He provides several examples for them. For a lucid and modern presentation see Cameron
Gordon’s paper [61]. He shows that there are 3-dimensional manifolds with the same homol-
ogy but with different fundamental group. And then, at the end of §14, he explicitly asks the
following question, which we quote in French: “Deux variétés d’un même nombre de dimen-
sion qui ont même groupe G sont-elles toujours homéomorphes ?”. Of course we should
specify “dimension 3” in the beginning of the question, and that G is the fundamental group.
The question is tackled again in the famous Fifth Complement. There he says that he had
thought that a 3-dimensional manifold with trivial homology is necessarily homeomorphic
to the 3-sphere. He provides a counterexample, the famous Poincaré sphere (i.e. the spherical
dodecahedral space). See also the web-site http://analysis-situs.math.cnrs.fr

http://analysis-situs.math.cnrs.fr
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We have seen that the lens spaces L(5, 1) and L(5, 2) are historically the first example
of a pair of 3-manifolds with the same fundamental group and which are not homeomorphic
(without taking orientations into account). It is easy to find many such pairs among lens
spaces. But the efforts to construct examples not involving lens spaces were fruitless. Hence
the following conjecture appeared:

Fundamental Group Conjecture: Two irreducible 3-manifolds with isomorphic funda-
mental group are homeomorphic except if they are lens spaces.

Since the work of Perelman, it is known that the Fundamental Group Conjecture is true.
It is the successful conclusion of the work of many topologists. Here is a precise statement.

Theorem 9 Let M3 and N 3 be two closed, connected 3-manifolds. If they are orientable
assume that they are irreducible and not lens spaces. If they are non orientable assume that
they are P2-irreducible.

Let ϕ : π1M −→ π1N be an isomorphism. Then there exists a homeomorphism f :
M −→ N which induces the isomorphism ϕ.

Here is a sketch of the proof.
We consider first the orientable case. The first important step towards a proof was provided

by Waldhausen [40] in his paper on sufficiently large 3-manifolds. The Corollary 6.5 says
the following.

Theorem 10 Let M and N be two orientable and irreducible 3-manifolds. Suppose that M
is sufficiently large.

Let ϕ : π1M −→ π1N be an isomorphism. Then there exists a homeomorphism f :
M −→ N which induces the isomorphism ϕ.

For the proof of the Fundamental Group Conjecture, we are left nowwith two 3-manifolds
none of them sufficiently large. For a long time (about 35 years!) the possibility existed for
the existence of some unknown continent (similar to the long sought Austral Continent in the
eighteenth century) inhabited by strange non sufficiently large 3-manifolds. Clearly William
Thurston’s Geometrization Conjecture implies that such a continent does not exist [54]. This
is what Gregory Perelman’s results are about. One rough way to state some consequences of
his work which concern us here is the following.

Theorem 11 A non sufficiently large 3-manifold, irreducible and orientable, is either Seifert
or hyperbolic.

The “or” is exclusive since the center of the fundamental group of a Seifert manifold is
non-trivial while it is trivial for a hyperbolic manifold.

The end of the proof of the Fundamental Group Conjecture splits then in two parts for
orientable 3-manifolds. Fromnowon, it does notmatter in the argumentswhether 3-manifolds
are sufficiently large or not.

(1) Suppose that both3-manifolds are hyperbolic. Thenwearefinished thanks to theMostow
Rigidity Theorem, which says:

Theorem 12 Let G be the Lie group of isometries of a hyperbolic 3-space. Let F be the
family of subgroups of G which are isomorphic to the fundamental group of a hyperbolic
closed 3-manifold. Then F is rigid.

As a consequence hyperbolic 3-manifolds with isomorphic fundamental group are not
only homeomorphic, they are isometric.
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(2) Suppose that both 3-manifolds are Seifert. Then the proof is completed by the following
theorem, which puts an end to years of efforts towards uniqueness results for Seifert
manifolds. See the notes by Jankins andNeumann [56]. Thewhole last chapter is devoted
to the proof of the following theorem. See also Orlik’s book [46] p. 90.

Theorem 13 Let M and N be two closed oriented Seifert manifolds. Exclude lens spaces.
Suppose that their fundamental groups are isomorphic. Then M and N are homeomorphic.

There remains to consider the case of non-orientable 3-manifolds. Remarkably, this case
was entirely solved by Heil in [41]. Here is the path followed by Heil.

Proposition 7 Let M be a closed, connected, non-orientable 3-manifold. Then M is suffi-
ciently large.

There are two steps in the proof.
1st step. H1(M;Z) is infinite. It is equivalent to say that the first Betti number β1 is

positive. Let us prove this assertion.
Poincaré dualitywithZ/2 coefficients implies that the Euler characteristicχ(M) vanishes,

since Poincaré duality is not affected by non-orientability if Z/2 coefficients are used. If we
consider Betti numbers over Z we have 0 = χ(M) = β0 − β1 + β2 − β3. But β3 = 0 since
M is non-orientable. Hence β1 > 0.

2nd step. Let g ∈ H1(M;Z) be an element of infinite order and indivisible. Since the
circle S1 is a Kπ1 for the groupZ, the element g can be represented by a map f : M −→ S1.
An argument which goes back to John Stallings (in his paper (1961) about 3-manifolds which
fiber over the circle) shows that f can be made transversal to the point 1 ∈ S1 in such a way
that the surface f −1(1) ⊂ M is incompressible (after adequate surgeries). The important
point here is that the surface obtained by transversality is 2-sided.

This being obtained, Heil shows how to adapt Waldhausen’s proof of his Corollary 6.5
(i.e. Theorem 10 above) when M is non-orientable. The condition of P2-irreducibility is
used here, as irreducibility was used by Waldhausen in the orientable case.

3.5 Several ways to classify 3-manifolds

In this subsection 3-manifolds are assumed to be irreducible if orientable and P2-irreducible
if non-orientable.

Let M and N be two 3-manifolds. Consider the following assertions.

(1) M and N have isomorphic fundamental groups.
(2) M and N have the same homotopy type.
(3) M and N are homeomorphic.

From what we said just above, the three assertions are equivalent for 3-manifolds except for
lens spaces. Lens spaces are exceptional since 1o does not imply 2o, the spaces L(5, 1) and
L(5, 2) being the easiest counter-examples. 2o does not imply 3o, the spaces L(7, 1) and
L(7, 2) being the easiest counter-examples.

However there is the remarkable result.

Theorem 14 h-cobordant 3-manifolds are always homeomorphic.

This statement is also true for lens spaces. The proof in this case is due to Atiyah and
Bott [38]. See p. 479. In all other cases the theorem results from what we just said, since
h-cobordant manifolds have the same homotopy type. Maybe it is good to recall that TOP =
PL = DIFF for 3-manifolds.
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4 Lens spaces as the boundary of cyclic quotient singularities

The novice reader will find in Henri Cartan’s talk at the [27] IMU Congress a wonderful
presentation of analytic spaces [21].

4.1 Normal complex surface singularities

In this section we consider (always complex) surface singularities, i.e. germs (�, P) of
complex 2-dimensional analytic spaces � at a point P ∈ �. We assume the germs to be
normal. A basic reference for surface singularities is Michael Artin’s paper ref [35].

Here is a short summary about normal analytic surfaces.
� can be smooth (also called regular) at P or singular. The normality condition implies

that P is an irreducible isolated singularity.More precisely, there exists an open neighborhood
U of P such that U\P is connected and consists of smooth points.

Conversely, if P is an isolated singularity, � is not necessarily normal, even if � is
irreducible. Here, irreducible in the sense used in analytic geometry, is equivalent to the fact
thatU\P is connected. In the case that the surface singularity is isolated and irreducible, the
normalisation is a homeomorphism. In other words the topology is adequate, but the local
algebra is not. The normalisation adds new functions to the original ones.

The main property one uses (often implicitely) of the normality condition is the following.
Extension property: Suppose that we have a continuous function f : � −→ C such that

the restriction to the smooth part is analytic. Then f is also analytic at P .
From a topological point of view, � is locally a cone at P . More precisely there is a

neighborhood of P which is homeomorphic to a cone of vertex P , with basis a closed,
connected and oriented 3-manifold M . Moreover, the oriented homeomorphism type of M
is well defined. I call M the boundary of the singulartity. There are several ways to obtain
this result. One is to adapt Alan Durfee’s results (1983) about algebraic neighborhoods
to the analytic category. Another is to use the existence of analytic triangulations and the
Hauptvermutung of these triangulations (the reader is allowed to protest here against my
disgraceful behaviour). It is pertinent to note that Heegaard was the first to introduce the
boundary of a singularity. In more recent times, Mumford’s theorem [31] was the starting
point of the long story of the interplay between the topology and the analytic structure of
singularities. Here it is.

Theorem 15 Let (�, P) be a normal surface singularity. Suppose that its boundary is simply
connected. Then P is a smooth point. [In other words: smoothness (which is an analytic
property) can be detected topologically].

4.2 Quotient singularities

An excellent reference for this section is Brieskorn’s [39]. I follow Brieskorn’s paper, hoping
not to betray him.

4.2.1 General facts about quotient singularities

The starting point is provided by Cartan [23]. Let Xn be an analytic n-dimensional manifold
(hence Xn is smooth by definition). Let G be a group of analytic automorphisms of Xn ,
acting properly discontinuously. Cartan considers the quotient Xn/G and provides it with a
structure of analytic space. One of Cartan’s results is the following.
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Theorem 16 The space Xn/G is a normal analytic space of dimension n. The projection
Xn −→ Xn/G is analytic, onto andwith discrete fibers.Moreover, if G is finite the projection
Xn −→ Xn/G is a finite analytic morphism. [In particular it is a ramified covering in the
analytic sense, and hence also in the topological sense say of Stein [22], Fox [24],Montesinos
[68]].

Following Brieskorn and Cartan we have the following definition.

Definition 11 A quotient singularity is a singularity of a quotient space Xn/G.

Theorem 17 (Cartan linearization theorem) A quotient singularity is isomorphic to a quo-
tient Cn/
 where 
 is a finite subgroup of GLn(C).

Remark Afinite subgroup ofGLn(C) is not necessarily contained in the unitary groupU (n),
but it is conjugate to a subgroup of U (n). Hence in the literature we find the two points of
view: subgroup of GLn(C) or subgroup of U (n).

4.2.2 General facts about quotient surface singularities

Up to now, we had no restriction on the dimension n. From now on, we consider the case
n = 2, and we study quotient surface singularities.

We skip over David Prill’s definition of a small subgroup of GLn(C). For n = 2 this
means that no non-trivial element of the subgroup has the eigenvalue 1. This is equivalent
to the fact that the subgroup acts freely outside the origin. From now on, we assume that the
subgroups of GL2(C) by which we take quotients are small. The following theorem implies
that it is enough to consider only small subgroups. It is also valid with no restriction on the
dimension.

Theorem 18 (Prill [37], also Gottschling [36]) Every quotient surface singularity is isomor-
phic to a quotient C2/G with G small.

The Theorem 2.8 of Brieskorn’s paper relates beautifully quotient surface singularities to
their boundary:

Theorem 19 Let (�, P) be a normal surface singularity. Then the two following assertions
are equivalent:

(i) The singularity is isomorphic to a quotient surface singularity;
(ii) The boundary M of the singularity has a finite fundamental group.

Remark The resolution of singularities in the case of surfaces implies that, if the fundamental
group of the boundary is finite, the boundary is a Seifert manifold. This is a consequence
of the fact that, from the resolution, we know that the boundary is a manifold obtained by
“plumbing” in the sense introduced by Mumford. These manifolds are thoroughly studied
by Neumann [53].

Therefore, by Theorem 7, M is a spherical space form. So we have two Lie groups in
competition: SO(4) andU (2). But the opposition is only apparent. After an obvious change
of coordinates, we have U (2) ⊂ SO(4) ⊂ GL4(R). The following lemma seems to be well
known. See du Val’s book (1964) §41 see ref [33]. This follows also from Scott’s analysis
[57]. See Theorem 4.10 p. 455.
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Lemma 2 Every finite subgroup of SO(4) acting freely on S3 is conjugate to a subgroup in
U (2).

Noworientations come again into play. If we see a finite group inU (2) instead of in SO(4)
the quotient receives an orientation from the complex structure. So this change of viewpoint
chooses one of the two possible Seifert invariants for the quotient. It is the one with the Euler
rational number e0 < 0 in order that the intersection form on the plumbing graph be negative
definite. See Neumann and Raymond’s paper [49].

We present now Brieskorn’s proof of Theorem 19 That (i) implies (ii) is obvious. So let us
prove that (ii) implies (i).

Let N be a “good” neighborhood of P with boundary the manifold M . Let G be the
fundamental group of M . Let V −→ N\P be the universal covering. By a theorem of
Grauert and Remmert [28] this unramified covering can be completed to a ramified covering
˜f : (˜V , Q) −→ (N , P) with ˜V normal. Since the fundamental group of V is trivial, by
Mumford’s theorem Q is in fact a smooth point in ˜V and hence ˜V is smooth.

Now, by construction, ˜f identifies the quotient of ˜V by the action of G, with (N , P). By
the linearization theorem of Cartan, the action of G on ˜V is equivalent to a linear one. 
�

4.2.3 Quotient surface singularities are taut

Brieskorn also proves that quotient surface singulariries are taut (inGerman “starr”). I slightly
modify Brieskorn’s definition of taut, by taking orientations into account.

Definition 12 A normal surface singularity is taut if its analytic type is determined by the
oriented topology of its boundary.

Theorem 20 Let �1 = C2/G1 and �2 = C2/G2 be two quotient surface singularities.
Then the following three assertions are equivalent.

(1) G1 and G2 are conjugate in GL2(C).
(2) �1 and �2 are analytically equivalent.
(3) �1 and �2 are topologically equivalent, by an orientation preserving homeomorphism.

Proof (1) obviously implies (2). (2) implies (3) by the analytic invariance of the boundary.
Let us prove that (3) implies (1). If the groups Gi are not cyclic, this follows from the
rigidity theorem of Threlfall-Seifert. If these groups are cyclic, this comes from the proof
of Reidemeister’s theorem, since the equality of the Reidemeister torsions implies that the
eigenvalues coincide. 
�

4.2.4 The resolution graph of quotient surface singularities

Let me first introduce the following notation. Fix two integers 1 ≤ u < v. We consider the
continued fraction expansion:

v

u
= b1 − 1

b2 − . . .

with 2 ≤ bi for all i between 1 and say r . We write v
u = Contfrac(b1, b2, . . . , br ).

Note that v
u′ = Contfrac(br , . . . , b1) with uu′ ≡ 1 mod v.

From the continued fraction expansion we construct a bamboo shaped plumbing graph
(called straight line graph by Neumann [53], p. 317) weighted by (e1, . . . , er )with ei = −bi .
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The standard plumbing graph for the lens space L(n, q) is the bamboo associated to
the continued fraction expansion given above of n

q . Hirzebruch [20] proved that this is the

graph of the minimal resolution of the cyclic quotient singularity C2/Cn,q .
Caution. There are many Seifert foliations on a lens space. In fact there is an infinity of

isotopy classes of Seifert foliations on a lens space. Hence an infinity of plumbing graphs,
hence an infinity of weighted bamboos. The different bamboos correspond to different con-
tinued fraction expansions of the rational number n

q . The operations needed to move from
one to another are described by Neumann [53].

For the quotient surface singularity which corresponds to the platonic triple (α1, α2, α3)

and some (e;β1, β2, β3)we choose the orientation of the Seifert manifold which has e0 < 0.
Then we construct a star shaped plumbing graph as follows. The center of the star has genus
zero and Euler’s weight e − 3. There are three branches attached to the center. The one
which corresponds to (α1, β1;α2, β2;α3, β3) is obtained as follows. We expand αi

αi−βi
in

a continued fraction as above. We construct the corresponding bamboo. We attach the first
vertex of this bamboo (the one with weight e1) to the center with an edge. See Neumann’s
[53] Corollary 5.7, p. 327. Brieskorn proved that this graph is the resolution graph of the
singularity.

4.2.5 Klein singularities

These singularities have two names: Klein or Kleinian singularities. See the Encyclopedia of
Mathematics (Section Rational Singularities) or Wikipedia for the terminology. Moreover,
they are also called “rational double points” (Durfee [50]) and also du Val singularities.

They are studied for instance in Durfee’s paper [50] and the Springer Lecture Notes No.
777.

Definition 13 A quotient surface singularity � = C2/G is a Klein singularity if G is
conjugate to a subgroup of SU (2).

The condition amounts to restrict our attention from U (2) to SU (2). It turns out that this
is a very strong restriction. In fact few quotient surface singularities are Klein.

For lens spaces, among the L(n, q), only L(n, n − 1) is Klein.
For the platonic triples, the Seifert manifolds with finite fundamental group which are

Klein are those with the βi = 1 and the Euler number (say β) also equal to 1.
As a result Klein singularities have a plumbing graph (i.e. a resolution graph) with all

weights equal to −2. In terms of Lie algebras one gets:

• the graph An−1 for L(n, n − 1) with n ≥ 2
• the graph Dn+2 for the triple (2, 2, n) with n ≥ 2
• the graph E6 for the triple (2, 3, 3)
• the graph E7 for the triple (2, 3, 4)
• the graph E8 for the triple (2, 3, 5)

4.3 Cyclic quotient singularities

4.3.1 Cyclic quotients and quasi-ordinary surface singularities

Definition 14 A normal surface singularity � is called cyclic quotient if it is isomorphic to
a singularity C2/Cn,q for some cyclic group Cn,q ⊂ U (2).
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Beware. Do not forget “quotient” in the name. Cyclic singularities exist. They were
defined and studied by Hirzebruch. See his Bourbaki Seminar (1970/71) [44]. The Section 4
is devoted to cyclic singularities and the resolution graph presented by Hirzebruch consists
in a beautiful cycle. See also his paper published in 1973 p. 214 for the use of “cyclic” see
ref [45]. These singulaties are also called cusp singularities.

The next proposition results immediately from what we said about quotient surface sin-
gularities.

Proposition 8 A normal surface singularity is a cyclic quotient if and only if one of the
following equivalent conditions holds:

(1) its boundary is a lens space
(2) the fundamental group of its boundary is cyclic.

I now say a word about quasi-ordinary singularities. But there is a catch here. I recall
the standard definition.

Definition 15 A hypersurface singularity � ⊂ C3 is called quasi-ordinary if there is a finite
projection onto C2 such that the discriminant is contained in the two coordinate axes.

The catch is that the definition concerns hypersurfaces, in other words embedded, not
abstract, singularities. These are rarely normal, contrary to the singularities we talk about in
this paper. Therefore, their boundary is generally a pseudo-manifold. Its structure is described
by Costa [58].

An important point in the study of these hypersurfaces is their parametrization (JosephLip-
man,YihNanGau). It is nearly obvious that the normalization of an irreducible quasi-ordinary
singularity is a cyclic quotient singularity. More precisely one has the next proposition.

Proposition 9 Letπ : (�, P) −→ (C2, 0) be a finite holomorphicmapping from the normal
surface singularity (�, P) ramified over the two coordinate axes. Then (�, P) is a cyclic
quotient surface singularity.

Proof The boundary of the singularity is a ramified covering of the sphere S3 ramified over
the Hopf link. Hence it is a lens space. 
�

One can do somewhat better.

Theorem 21 Let B̊4 be the unit open ball inC2 and let B̆4 be B̊4 minus the two axes. Suppose
that we have a finite unramifed covering π̆ : Y̆ −→ B̆4. Then this covering can be completed
to a finite holomorphic mapping π : Y −→ B̊4 ramified over the coordinate axes with Y
normal. This extension is essentially unique.

Here is a short sketch of the (classical) proof. Each step is non trivial.
First step. The unramifed covering can be completed to a ramified covering in the topo-

logical sense. In this context this was done by Stein [22]. In the topological context this was
done by Fox [24] and Montesinos [68].

Second step. The topological completion can be equipped with the structure of a normal
analytic space. This is due to Grauert and Remmert [28].

Third step. Uniqueness is provided by the normality condition.
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4.3.2 From the topology to the singularity

I come back to the last theorem. It is interesting to describe how the topology of the unramified
covering determines the ramified covering. This amounts to describing coverings of the sphere
S3 ramified over the Hopf link. Now the complement of the Hopf link in S3 deformation
retracts onto S1 × S1. We denote by G1 × G2 the fundamental group of the torus, each Gi

denoting a copy of the integers Z.
The unramified covering is determined by a subgroup K ⊂ G1 ×G2 of finite index. After

ramification one obtains the lens space L(n, q) and our aim is to determine the integers n
and q .

Notations.Wedenote by ei the canonical generator ofGi .Wedenote by Ki the intersection
Ki = K ∩ Zei . We denote by pi : Gi × G2 −→ Gi the canonical projection on a factor.
The image pi (K ) is denoted by Hi . The canonical generator of Ki is ki ei with ki > 0 and
the canonical generator of Hi is hi ei with hi > 0.

Lemma 3 We have canonical isomorphisms H1/K1
p1←− K/(K1 × K2)

p2−→ H2/K2.

Proof of the lemma. The onto projection p1 : K −→ H1 has kernel K2. Hence we have an

isomorphism K/K2
≈−→ H1.We then take the quotient of this isomorphism with K1.

As a consequence the quotient K/(K1 × K2) is cyclic of order k1k2/k. Therefore the lens
space L(n, q) has n = k1k2/k. We also have the equalities n = k1/h1 = k2/h2. There
remains to determine q . For this we propose a parenthesis.

Parenthesis: How to determine the integers n and q from a genus one Heegaard
decomposition.

In the homology groups H1(∂Vi ), integer coefficients Z are understood. We consider a
decomposition of a lens space say L in two solid torii V1 and V2 with V1∩V2 = ∂V1 = ∂V2 =
T . Each H1(∂Vi ) contains a meridian element mi , which is canonical once orientations and
signs are fixed. We assume that this is the case. The meridian is the first element of a basis
of H1(∂Vi ). In order to obtain a basis for H1(∂Vi ) we have to choose adequately a second
element li . For geographical reasons we call it a parallel (not a longitude!). The parallel is
not canonical. We have the following equality

m1 = nl2 − qm2

The minus sign is crucial. Since the parallel l2 is not canonical, q is only determined mod
n. But this is exactly what we have from the beginning.

We also have the equalitym2 = nl1 −q ′m1 with qq ′ ≡ 1 mod n. For details see Jankins–
Neumann p. 30. End of the parenthesis.

We resume the determination of the integer q . We have in G1 × G2:

m2 = 0e1 + k2e2 l2 = xe1 + ye2

We proceed to the computation of the integers x and y. Since the index of K in G1 × G2 is
equal to k up to sign, the determinant of the coefficients must be equal to k. Hence xk2 = k
and so x = k/k2. Now n = (k1k2/k). Hence k/k2 = k1/n = h1. Hence x = h1. Therefore
l2 = h1e1 + ye2.
There remains to compute y. All integers y such that h1e1 + ye2 ∈ K produce an element

in K which is a second element for a basis of K . Let us assume that we have two of them:

l2 = h1e1 + ye2 and l ′2 = h1e1 + y′e2. (1)
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Hence l2 − l ′2 = (y − y′)e2 ∈ K and hence ∈ K2. Therefore (y − y′) is divisible by k2.
Hence y is well defined mod k2.

On the other hand the projection of l2 in G2 is equal to ye2. Hence y is divisible by h2.
We write y = uh2.

We claim that u is equal to the q which determines the lens space L(n, q).
To beginwith, y iswell defined mod k2 and hence u iswell defined mod k2/h2 = n. This

is exactly the indetermination ofq .We started from l2 = xe1+ye2.After some computations
we have now l2 = h1e1 + uh2e2. Let us multiply this equality by n = k1/h1 = k2/h2. We
get nl2 = nh1e1 + nuh2e2 = k1e1 + uk2e2 = m1 + um2. Therefore

m1 = nl2 − um2

Conclusion. To obtain the residue q mod n, we look for elements in K of the form
h1e1 + uh2e2. Any integer u such that this linear combination is in K is a representative of
the residue mod n we are looking for.

Comment. The integers h1 and h2 can take any positive value. Hence there are infinitely
many coverings which produce the “same” L(n, q) and hence isomorphic cyclic quotient
singularities. The simplest case is certainly h1 = 1 = h2. If this happens, the degree k of the
covering is equal to n.

4.3.3 The singularities zm = xa yb

These quasi-ordinary singularities were already present in Jung [3] and Hirzebruch [20]. This
is a particular case of the situationwe have studied above. But nowwe have at our disposal the
homomorphism ϕ : G1 ×G2 −→ Z/m which determines the unramified covering. We have
ϕ(e1) = a and ϕ(e2) = b. The homomorphism ϕ is onto if and only if the gcd of (m, a, b) is
equal to 1. This is equivalent to require that the singularity is irreducible (here “irreducible”
is used for its meaning in the theory of analytic spaces). We assume that this condition is
satisfied. The method presented above applied to this situation produces the following result.

Theorem 22 We consider the quasi-ordinary singularity zm = xa yb, satisfying the irre-
ducibility condition gcd (m, a, b) = 1. The normalisation of this singularity has the lens
space L(n, q) for boundary (this is equivalent to say that the normalisation is isomorphic to
the cyclic quotient singularity C2/Cn,q ) where the integers n and q are obtained as follows.
Let da = gcd (m , a) and db = gcd (m , b). Also let ma = m/da and mb = m/db. Then:

(1) the integer n is equal to (mamb)/m = m/(dadb);
(2) the invariant q is equal mod n to the solutions of the unknown u in the equation ubda ≡

−adb mod m.

This theorem is generalized by Popescu-Pampu [66] to arbitrary quasi-ordinary singular-
ities.

We conclude with a few examples. The normalisation of the quasi-ordinary singularity
with equation zn = xyn−q is C2/Cn,q with boundary L(n, q). It is good to see that this
computation agreeswithHirzebruch andBrieskorn [62], p. 25, obtainedby adifferentmethod.
For instance, forq = n−1 the quasi-ordinary singularity is already normal inC3. Its boundary
is the lens space L(n, n − 1) we already met in the subsection about Klein singularities.

Lens spaces are the only boundaries of quotient singularities which are also such a bound-
ary if one reverses the orientation. This reversal on L(n, n − 1) produces L(n, 1) which is
not Klein. See Neumann [53].
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