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Abstract In this article, we consider the split common fixed point problem for two infinite
families of multivalued mappings in real Hilbert spaces. We introduce an algorithm based
on the viscosity method for solving the split common fixed point problem for two infinite
families of multivalued demicontractive mappings. We establish a strong convergence result
under some suitable conditions. As applications, we also apply our main result to the split
variational inequality problem and the split common null point problem. Finally, we give the
numerical example for supporting our main theorem.
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1 Introduction

Let H; and H» be real Hilbert spaces and let A : H; — H; be a bounded linear operator.
Given nonempty closed covex subsets C; € H; (i = 1,2,...,t) and Q; € Hp (j =
1,2,...,r)of Hi and H,, respectively. The multiple-set split feasibility problem (MSSFP)
which was introduced by Censor et al. [12] is formulated as finding a point

t r
£e()Ci suchthat A% € () Q. (1.1)
i=1 j=1
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In particular, if t = r = 1, then the MSSFP (1.1) is reduced to find a point
X € C suchthat Ax € Q, (1.2)

where C and Q are nonempty closed convex subsets of | and Hj, respectively. The problem
(1.2) is known as the split feasibility problem (SFP) which was first introduced by Censor and
Elfving [7] for modeling inverse problems in finite-dimensional Hilbert spaces. It is known
that X solves the SFP (1.2) if and only if x solves the fixed point equation:

Pc(I —yA*(I — Pg)A)x =X, (1.3)

where A* is the adjoint operator of A and y > 0. Byrne [2] proposed the so-called CQ
algorithm for solving the SFP and many authors studied the SFP and the MSSFP, see, for
instance [1,12,17,18,24,31,34-36].

The split common fixed point problem (SCFP) is a generalization of the MSSFP, and is
formulated as finding a point:

t r
% e () Fix(S) suchthat A% € (1) Fix(T)), (1.4)
i=1 j=1
where S; : Hy — H1 (i =1,2,...,t)and T : Hp — Hz (j = 1,2, ..., r) are nonlinear

mappings with nonempty fixed point sets Fix(S;) and Fix(T;), respectively. In the case
t =r =1, the SCFP (1.4) is reduced to find a point

X € Fix(S) suchthat Ax € Fix(T), (1.5)

where S : Hy — Hj and T : Hy — "H, are nonlinear mappings with nonempty fixed
point sets Fix(S) and Fix(T), respectively. The problem (1.5) is usually called the two-set
SCFP. Similarly, the SFP (1.2) becomes a special case of the two-set SCFP (1.5). The SCFP
was studied by many authors (see [6,10,13,20-22,26,28,29,32]) due to its applications are
desirable and can be used in real-world applications, for example, in signal processing, in
image processing, in image reconstruction, in modeling inverse problems, in computerized
tomography, in the intensity-modulated radiation therapy, see [3,7,11,12,23].

In 2009, Censor and Segal [10] invented an algorithm to solve the two-set SCFP (1.5) for
directed mappings in finite-dimensional Hilbert spaces as follows:

Xna1 = S, +YyA*(T — I)Axy), n e N. (1.6)

In 2011, by modification of Mann’s iteration, Moudafi [21] introduced an algorithm for
solving the two-set SCFP (1.5) in the infinite-dimensional real Hilbert spaces as follows:

{y" — i + YBANT — DAy,

(1.7)
Xn+1 = (1 - an)yn +anSynv neN,

where S and T are quasi-nonexpansive mappings such that / — S and / — T are demiclosed at
zero. He also proved a weak convergence result of this algorithm under some suitable control
conditions.

In [28,29,32], they developed algorithms for solving the two-set SCFP (1.5) to cyclic
algorithms and simultaneous algorithms for solving the SCFP (1.4).

Recently, the SCFP for multivalued mappings was considerd by Latif and Eslamian [16].
They proposed an algorithm based on the viscosity method to solve the SCFP for a finite family
of multivalued quasi-nonexpansive mappings and a finite family of multivalued mappings
such that the best approximation operators are quasi-nonexpansive, and also proved a strong
convergence result as shown below.
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Theorem 1.1 [16] Let H1 and H; be two real Hilbert spaces, A : H1 — Ha be a bounded
linear operator. Fori = 1,2,...,t,let S; : Hy — CB(Hy) and T; : Hy — CC(Hy) be
multivalued mappings such that S; and Pr, : Hy — Hy are quasi-nonexpansive. Suppose
that I — S; and I — Pr, are demiclosed at zero, and S; satisfies the endpoint condition.
Assume that 2 = {x € (\;_; Fix(8;) : Ax € (i, Fix(T))} # 0. Let f : H; — H, be a
contraction. Let {x,} C H1 be a sequence generated by xo € H and

Yn = Xn + Zf’:] %V,BA*(PT,- — D Ax,,
Up = Uy 0Yn + Zle Upiln,is (1.8)
Xn+1 = Lc’\nf(un) + (1 - 7-%l)”m n >0,

where z,; € Siyn, B € (0,1), y € (0, M), liminf, o, oop,; > 0, Zf‘:oan,i =1,

lim, o0 ¥, = 0, and Z?;O ¥, = oo. Then the sequence {x,} converges strongly to x € 2
which solves the variational inequality:

(f&)—%,x—R%) <0 forallx € £2.

Recently, Eslamian [13] studied and proposed an algorithm for solving the SCFP for
two infinite families of single-valued demicontractive mappings and also proved a strong
convergence theorem.

In this article, inspired and motivated by these works, we are interested to study the
SCFP for two infinite families of multivalued mappings which is more general than the
problem in Theorem 1.1. We introduce an algorithm based on the viscosity method to solve
the SCFP for two infinite families of multivalued demicontractive mappings, and prove a
strong convergence theorem of the proposed algorithm under some suitable conditions such
that some assumptions in our main result is weaker than the common endpoint condition.
Furthermore, our main result generalizes and improves the results of Latif and Eslamian [16]
and Eslamian [13]. As applications, we also apply our main result to the split variational
inequality problem and the split common null point problem. In the last section, we give the
numerical example to demonstrate the convergence of our algorithm.

2 Preliminaries

Throughout this paper, let N be the set of positive integers and R the set of real numbers. We
shall assume that H is a real Hilbert space with the inner product (-, -) and the norm || - ||,
and let I be the identity operator on H. We denote the strong and weak convergence of a
sequence {x,} in H to an element x € H by x, — x and x,, — x, respectively. Let K be
a nonempty closed convex subset of H. Recall that the (metric) projection from H onto K,
denoted by Pk is defined for each x € H, Pk x is the unique element in K such that

lx — Pxx|| =d(x, K) :=inf{[lx — y| : y € K}.
It is known that Pxx € K is characterized by the following property:
(x — Pgx,y— Pgx) <0 forally e K.

Let C be a nonempty subset of H and k € [0, 1). A mapping f : H — H is called a
k-contraction with respect to C if || f(x) — f(2)|| < kllx — z|| forallx € H,z € C; f is
called a k-contraction if f is a k-contraction with respect to . It is easy to check that if
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f : H — M is a k-contraction with respect to C, where 0 < k < 1 and C is closed and
convex, then P¢ f is a k-contraction on C.
A subset D of H is said to be proximal if for each x € H, there exists y € D such that

lx — yll =d(x, D).

We denote by C B(H), CC(H),and P (H) the families of all nonempty closed bounded subsets
of H, nonempty closed convex subsets of H, and nonempty proximal bounded subsets of H,
respectively. The Pompeiu-Hausdorff metric on C B(H) is defined by

H(A, B) := max { supd(x, B), supd(y, A)}
XeA yeB
forall A, B € CB(H).Let T : H — 2" be a multivalued mapping. An element p € H is
called a fixed point of T if p € T'p. The set of all fixed points of 7 is denoted by Fix(T). We
say that T satisfies the endpoint condition if Tp = {p} for all p € Fix(T). For multivalued
mappings Tj : H — 2™ (i € N) with ﬂj’il Fix(T;) # ¥, we also say that {T;}7° satisfies
the common endpoint condition if 7; (p) = {p} foralli € N, forall p € ﬂ?il Fix(T;).
Now let us recall the definitions of multivalued mappings concerned in our study.

Definition 2.1 A multivalued mapping 7 : H — C B(H) is said to be

(i) nonexpansive if
H(Tx,Ty) <|x —y| forallx,yeH,

(i1) quasi-nonexpansive if Fix(T) # () and
H(Tx,Tp) < |x—p| forallx e H, p e Fix(T),
(iii) demicontractive [9,14] if Fix(T) # ¢ and there exists k € [0, 1) such that
H(Tx,Tp)* < ||x — plI> + kd(x, Tx)*> forallx € H, p e Fix(T).

Note that the class of demicontractive mappings includes several common types of classes
of mappings occurring in optimization problems, such as a class of nonexpansive mappings
with nonempty fixed point set and a class of quasi-nonexpansive mappings.

The following example inspired by [9, Example 11] and [14, Example 3.4] shows that the
class of quasi-nonexpansive mappings is properly contained in the calss of demicontractive
mappings.

Example 2.2 Let H =R. Foreachi € N, define 7; : R — ok by

[— G i+ l)x], if x <0,
Tix = ‘
[—(z’+1)x,—W], if x > 0.

Then Fix(T;) = {0}. Foreach 0 # x € R,
H(Tix, T;0)> = | — (G +Dx — 0> =G + D?x —0)* = |x — 01> + (> + 2i)|x|*.
Clearly, T; is not quasi-nonexpansive. We also have

@i+ 1)x>

2

> @i +3)x
B 2 4

2 ) .
4 12i +9
d(x, T,'x)zz‘x—( :(ﬂ> Ix]2.
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Therefore,
4i% 4 8i
2 _ 2 2
H(Tix, T;,0)° =[x — 0" + (m) d(x, Tix)“.
Hence 7; is demicontractive with a constant k; = % € (0,1).

For amultivalued mapping T : H — P (), the best approximation operator Pr is defined
by
Pr(x) :={yeTx:|x—yll=d, Tx))}.
We can easily prove that Fix(T) = Fix(Pr) and Pr satisfies the endpoint condition. Song

and Cho [25] gave an example for the best approximation operator Pr which is nonexpansive,
but 7 is not necessary to be nonexpansive.

Definition 2.3 Let 7 : H — C B(H) be a multivalued mapping. The multivalued mapping
I —T is said to be demiclosed at zero if for any sequence {x, } in H which converges weakly to
x and the sequence {||x, — y, ||} converges strongly to 0, where y, € Tx,, thenx € Fix(T).

Next, we give some significant tools for proving our main results.
Lemma 2.4 [27] For a real Hilbert space H, the following inequality holds:
e+ Y12 < xl? +2(y.x +y) forallx,y €H.

The following lemma shows the properties of demicontractive mappings which are inspired
by [28, Lemma 1].

Lemma 2.5 Let T : H — CB(H) be a multivalued k-demicontractive mapping. If p €
Fix(T) such that T p = {p}, then the following two inequalities hold: forallx € H, y € Tx

(i) (x—y,p—y) < 1+’<||x yiI%
(i) (x —y,x — p) = SE|x — y|%

Proof Since T is k-demicontractive, we have

(x=y.p=y)=3 (||x —yIP+1lp = yI* = lIlx — pII?)
= % (Ix = yI> +d(y, Tp)* — Ilx — pII*)
< % (Ix = yI* + H(Tx. Tp)* — |lx — p|?)
< 5 (e = yIP e = pI> 4 kd(x, Tx)? — Ix = pIP)
<5 (e = yIP 4+ klie = yP) = - ;knx N
Similarly, we can prove the other inequality: (x — y, x — p) < %Hx - y||2. m]

Lemma 2.6 (8] Let H be a real Hilbert space, x; € H, (1 <i < m) and {o;}7; C (0, 1)
with Y 7" a; = 1. Then the following identity holds:

m
E o Xj
i=1

m

2 m
2 2
=Y il = > el —xj)%
i=1

L j=1i#]
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Lemma 2.7 [33] Suppose that {a,} is a sequence of nonnegative real numbers such that
any1 < (1 = Ap)ap + Aoy + B, n €N,

where {A,}, {0,,} and {B,} satisfy the following conditions:

(i) {An} C 10,11, Y02 Ap = 00;

(ii) limsup, 0, < 0o0r Y o2 |Ayon| < 00;
(iii) B > Oforalln € N, Y 02| B, < 0.
Then lim,_,  a, = 0.

Lemma 2.8 [19] Let {t,,} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} which satisfies t,; < t,,41 for alli € N. Also consider the sequence of positive
integers {p(n)} defined by

p(n) :=max{k <n:ty <trt1}

for all n > nq (for some ng large enough). Then {p(n)} is a nondecreasing sequence such
that lim,—. » p(n) = oo and it holds that

o) = tom)+1> In = Tom)+1-

3 Main results

In this section, we present an algorithm for solving SCFP for two infinite families of multi-
valued demicontractive mappings and prove a strong convergence theorem.

Throughout this paper, let I" be the solution set of the SCFP for two infinite families of
mappings {S;}7°, and {T;}{2,, that is,

= i=1’
o0 oo
.= {x € mFix(Si) tAx € mFix(Ti)
i=1 i=l1
In [30], it was shown that the fixed point set Fix(S) of a multivalued demicontractive

mapping S, where S satisfies the endpoint condition is closed and convex. Hence we can
prove the following lemma in the same way as [30, Lemma 3.2].

Lemma 3.1 Let H and H» be two real Hilbert spaces, A : H1 — Hj be a bounded linear
operator. For eachi € N, let S; : H1 — CB(Hy) and T; : Hy — CB(H3) be multivalued
demicontractive mappings with constants k; and k_, respectively. Suppose that I" # (. Then
(i) T is closed;
(ii) If foreach p € T, S;(p) = {p} and T;(Ap) = {Ap} foralli € N, then T is convex.

‘We now prove our main theorem.
Theorem 3.2 Let H| and Hy be two real Hilbert spaces, A : Hi — H> be a bounded
linear operator. For each i € N, let S; : H1 — CB(Hy) and T; : Ho — CB(H3) be
multivalued demicontractive mappings with constants k; and k., respectively, such that I — S;
and I — T; are demiclosed at zero. Suppose that T' # () and for each p € T, S;(p) = {p}
and T;(Ap) = {Ap} foralli € N. Let f : H1 — Hi be a t-contraction with respect to T,
where 0 < t < 1. Let {x,} C H1 be a sequence generated by x| € H1 and

Yn =Xp + Z?:] ,Bn,iyA*(wn,i - Axn)»
Up = 0y 0Yn + Zz"lzl Qn.iln,is 3.1
Xp1 = Enf () + (1 = &Du,, n eN,
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where z,; € Siyn, Wn,i € T;(Axy), the parameter y, and the sequences {ay ;},2 | for all

i >0, {Bni},2, foralli € N and {§,}3° | satisfy the following conditions:

(Cl) y e (0, ﬁ) where k' = sup{k! : i € N};

(C2) oy €10, 1) such that oy o € (k, 1) where k = supfk; :i € N}, o, ; # Oforalli <n,
lim inf,, (0ty,0 — k)ety,; > O foralli €N, and Y ;_goan; = 1;

(C3) Bn,i € [0, 1] such that B,; # 0O for all i < n, liminf, B,; > 0 foralli € N, and
Z:’l:l Pni =1,

(C4) &, € (0, 1) such that lim;,_, o, &, = 0 and Zf,ozl &, = oo.

Then the sequence {x,} defined by (3.1) converges strongly to x € T which solves the
variational inequality:

(fX)—%x,x—Xx) <0 forallx eT. (3.2)

Proof By Lemma 3.1, we have T is closed and convex. It is easy to see that Pr f is a 7-
contraction on I". Then by Banach fixed point theorem, Pr f has unique fixed point x € T,
i.e., X = Prf(x). Hence X solves the variational inequality (3.2). We first show that {x,,}
is bounded. Since x € I', we obtain that S;(x) = {x} and T; (Ax) = {Ax)} foralli € N.
Applying Lemma 2.6, we have

n 2

Xn+ Y BuiV A*(wni — Axy) — &

i=1

a2
lyn — X117 =

2

n
D Builin — £ 4y A¥(wai — Axy)
i=1

n
<D Buillxe — % +y A*(wy; — Axa)|
i=1

n
=Y Bui(lxn = 1% + V2 A* (wai — Axp) |
i=1
+ 2y (xy — X, A" (wn,i — Axn)))
n
<Y Bui(llew = 217 + Y21 AI wn,i — Axal)?

i=1
+ 2y (xy — X, A*(wn,i — Axp))). (3.3)
Now we set
Uy =2y {xy — X, A¥(wn,; — Axp)).
Since T; is k;-demicontractive, then, by Lemma 2.5, we have
Upn =2y (A(xy — X), wn,i — Axp)
=2y(A(xn — %) + (Wn,i — Axp) — (Wp,i — AXp), Wn,i — Axp)
=2y ((wni — AR, wai — Axy) = wni — Axa])?)

1+ k!
52)/( 5 llwn — Axp||* = llwn,; —Axn||2>

=—(1 = k)yllwn,; — Axy|?
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< —(1 = K)yllw,,; — Axy|*. (3.4)

By (3.3) and (3.4), we obtain

n
Iy = 217 < len = £17 = D Buiv A = K = v | AP [wai — Axa|I*.

i=1
Since §; is k;-demicontractive and by using Lemma 2.6, we have

2

n

An2 o

lin — 217 = [lemoyn + D n jznj — %
j=1

n n

a2 a2 2

< anollyn — 2P+ anjllzn — 212 =Y ot jllyn — 2
j=1 j=1

n n

A2 a2 2

= ollyn = £17 + D on jd(@njo S = Y o0t jllyn = 2 j
j=1 j=1

n n

02 ~A\2 2

< anollyn = £I7+ Y o jH(Syn. SiH* =Y otn00njllyn — 2 j
j=1 Jj=1

n
< anollyn — 217+ anj(lye — 217 + kjd(n. Sjyn)*)
j=1

n
2
- Z(xn,o(xn,j ||yn — Zn,i ”
j=1

n n

a2 an2 2

< anollyn — 21+ anjllyn = 217+ D o jkllyn — za
j=1 j=1

n
2
=Y 0 jllyn = 2
Jj=1

n

A2 2

= lyn — 211> = Y _(@n.0 — K)atn,jllyn — zn.jll
Jj=1

A2 2
< llyn —xII” — (an,O - k)an,i”)’n - Zn,i”

n
< lbtw = RIP =) Bujy (1=K =y AP llwy j — Ax,])?
Jj=1

— (0.0 — )i llyn — znill? 3.5

forall 1 <i < n. It follows that ||u, — X|| < ||x, — X||. Thus, we have

long1 = Xl = 152 (f Cen) = X) 4 (1 = &) (un — Dl
< &nllf Gen) = X+ (1= &) llun — Xl
= &S ) = fFEOI+ I E) = XD + (1 = &) llxn — Xl
<& (Tl — XN+ ILFE) = XD + (4 = &) llxn — Xl
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. If &) =X
==& =)lxy — X[+ & (1 — f)?
< max {nxn gy, 0= } .
-1
By continuous taking this process, we obtain that
. o 1) =X
llxn — x| < max illm — L S

for all n € N. Therefore, {x,} is bounded. This implies that { f(x,)} is also bounded. It
follows from (3.5) that

g1 — 212 = 162 (f () — 2) + (1 = £y — D)
< E N fn) — 217 + (1= &) luy — 2|
< Eallf (xn) = X124 Nl — 2112

n
=Y By (=K =y AP wy j — Ax,])?
j=1

— (@0 = Dan,illyn = 20l (3.6)
forall 1 <i <n.By (3.6), we get the following two inequalities

n
> Buiv( =k =y AP lwni — Axu > < llxn = £ = llxars — £

i=1

+ &l f (o) — X112, (3.7)
and
(0,0 = Kt i e — 201> < 1w — ZI* = X1 — R + &l ) — £I7 (3.8)

forall 1 <i < n. Now we divide the rest of the proof into two cases.

Case 1. Assume that there exists ng € Nsuch that {||x, —X||},>n, is either nonincreasing or
nondecreasing. Since {||x, —% ||} is bounded, then it converges and ||x, — % ||% — || xu4.1 —X||*> —
0 asn — oo. Since &, — 0 as n — oo, then by (3.7) we deduce that

n
. X L 2 _
nli{go Zl ,Bn,l ”wn,l Axp|” = 0. (39)

Since liminf, B,; > O for all i € N, then by (3.9) we have

lim Jwp; — Ax,] =0 (3.10)
— 0

n

foralli € N. Similarly, in view of (3.8), since lim inf, (&, 0 — k)o,,; > O fori € N, we have

lim [ly, — znill =0 (3.11)
n—00
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for all i € N. From (3.9) and by using Lemma 2.6, we get
2
yn = xall> = v

n
> BuiA*(wyi — Axy)
i=1

n
< ¥ Buil A*(wni — Axy)|)?

i=1
n
2 2 2
<V2IAIP Y Buillwni — Axal* — 0
i=1
as n — oo, which implies that ||y, — x, || — 0 as n — oo. Next, we show that

limsup(f (%) — £, x, — £) < 0.
n—0o0

To show this, let {x,,j.} be a subsequence of {x,} such that
lim (f (%) — x, Xn; — X) = limsup(f(X) — X, x, — X).
J—>00 n— 00
Since {xnj} is bounded, there exists a subsequence {x,,jk} of {x,,j} and x € H; such that

Xpj — X. Without loss of generality, we can assume that x, ;= X Since ||y, — x|l — 0

as n — 00, we have Yn; — x. From (3.11) and by the demiclosedness of I — S; at zero
for all i € N, we obtain that x € ﬂf’il Fix(S;). Since A is a bounded linear operator, we
have (y, Axnj — Ax) = (A*y,xnj —x) = 0as j — oo, for all y € Hp, this implies that
Axn; — Ax. From (3.10) and by the demiclosedness of I — T; at zero for all i € N, we get
Ax € ﬂ;’i | Fix(T;). Therefore, x € I'. Since & satisfies the inequality (3.2), we have

limsup(f(X) — %, x, — %) = lim (f(£) = %, x,; —X) = (f(X) =%, x — %) <0.
n—00 j—00

By using Lemma 2.4, we have

Ixng1 — 212 = 11— &) (un — %) + & (f () — D)1

< (1= &) llun — £ + 28, (f () — £, X011 — £)

= (1= &) llun — £17 + 28, (f (xn) — f &), Xng1 — &)
+ 26, (f(§) — £, xpg1 — £)

< (1= &)2llxn — 17 + 2,7 llx0 — X041 — ]|
+ 26, (f(R) — £, xng1 — £)

< (1= &) — 1% + &t (e — 217 + X1 — £17)
+ 26, (f(R) — £, xug1 — ).

Thus,
1 ~— Sn 2 n ~ 2 n A A A
ngt — £[1% < (f)—+“||xn SR () = st — B)
_snf I_Enf
o U=DEN o G,
—(1 el )uxn e LR
2%,

+ (f(R) =%, xpq1 — £)

1—&,t
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< (1 - @) lx, — %1%
1-§&,7

(1 —-1)§ & 2 R R A
* l_gnf {(1 — 7T _1>M+ﬁ<f(x)—x,xn+l —x)}

= (1 = Ap)llxn — &1 + Anow, (3.12)

where M = sup{||x, —%||>:n e N}, A, = (}:T)E” and o, = ( Sn_ 1) M+ %(f()?) —

E,T 0 1-7
X, Xp41 — x). Clearly, {%,} C [0, 1], Z;’;l Ap = oo and lim sup,, 0, < 0. From (3.12) and
by applying Lemma 2.7, we can conclude that x,, — X as n — o0.
Case 2. Suppose that {||x, — x|/} is not a monotone sequence. Then there exists a subse-
quence {n;} of {n} such that || x,,, — %|| < [|x,+1 — X || foralll € N. Now we define a positive
interger sequence {p(n)} by

p(n) :=max{k <n:|xp — %[ < [xe+1 — X1}

forall n > ng (for some ng large enough). By Lemma 2.8, we have {p(n)} is a nondecreasing
sequence such that p(n) — oo as n — oo and

a2 a2
IxXpm) — X117 — lIXp)+1 — X[ <0

for all n > ng. From (3.7), we obtain that

p(n)
- 2
Jim > Bow.ilwpmy.i — Axpa | =0 (3.13)
i=1
and
Jim flwpa),i = Axpen | =0 (3.14)

for alli € N. From (3.8), we have
Tim15p0) = 2ol =0 (3.15)
for all i € N. By using (3.13)—(3.15) and by the same proof as in case 1, we obtain that

lim sup(f(X) — X, xpm) — £) < 0.
n—oo

By the same computation as in case 1, we deduce that
An2 a2
||xp(n)+1 —x[F =<~ )\p(n))”xp(n) —x[”+ )\p(n)o'p(n)v

=10 n A A A
where A, = %, Opn) = (m - 1) M + &(f(x) — X, Xpm)+1 — X) and M =

1-7
sup{llxpm) — 2% :n e N} By utilizing Lemma 2.7, we obtain that |[x,,) — X[ — 0 as
n — o0. It follows from Lemma 2.8 that

0 < llxy — Il < lxpey+1 — Xl > 0
as n — o0o. Hence {x,} converges strongly to x. This completes the proof. O
Remark 3.3 We have the following notices of Theorem 3.2.

(i) By taking f = u for some u € Hj, then the algorithm (3.1) becomes the Halpern-
type algorithm. In particular, if ¥ = 0, then {x,} converges strongly to x € I", where
IX]| = min{||x]| : x € T'}.
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(i) The assumption “for each p € T, S;(p) = {p} and T;(Ap) = {Ap} for alli €
N is weaker than the statement “{S;}7°, and {T;}{2, satisfies the common endpoint
condition”.

By properties of the best approximation operator, we obtain the following result.

Corollary 3.4 Let H1 and H; be two real Hilbert spaces, A : H1 — Ha be a bounded linear
operator. For eachi € N, let S; : H1 — P(Hy) and T; : Ho — P(H3) be multivalued
mappings such that Ps, and Pr, are multivalued demicontractive mappings with constants
ki and k, respectively. Suppose that I — Ps, and I — Pr, are demiclosed at zero for all
i € N. Assume that T" # (. Let f : Hi — Hi be a t-contraction with respect to T', where
0 <7t <1 Let {x,} C Hp be asequence generated by x| € H1 and

Yo = Xn + Dy BuiV AN (Wni — Axp),
Up = 0p,0Yn + Z:‘lzl On,iZn,is (3.16)
Xn+1 = En f () + (1 = &un, n €N,

where z, ; € Ps,(yn), Wn,i € Pr,(Axy), the parameter y, and the sequences {ay, i}, {Bn,i} and

{&,} satisfy (C1)—(C4) in Theorem 3.2. Then the sequence {x,} defined by (3.16) converges
strongly to x € T which solves the variational inequality (3.2).

Proof Since Ps, and Py, satisfy the end point condition, and Fix(S;) = Fix(Ps,) and
Fix(T;) = Fix(Pr;) for all i € N, so the result is obtained directly by Theorem 3.2. ]

The following result for solving the SCFP for multivalued quasi-nonexpansive mappings
is a consequence of Theorem 3.2.

Corollary 3.5 Let H1 and Hj be two real Hilbert spaces, A : H1 — Ha be a bounded linear
operator. For eachi € N, let S; : H1 — CB(Hy) and T; : Hy — CB(H3) be multivalued
quasi-nonexpansive mappings such that I — S; and I — T; are demiclosed at zero. Suppose
that T' # O and for each p € T, S;(p) = {p} and T;(Ap) = {Ap} for alli € N. Let
f 1 H1 — Hi be a t-contraction with respect to T, where 0 < t < 1. Let {x,} C H be a
sequence generated by x1 € H1 and

Yn =Xn + Z?:] ,Bn,iyA*(wn,i - Axn)»
Uy = 0p0Yn + Zz"lzl Un,iln,is (3.17)
Xpl = Enf () + (1 = &Du,, n eN,

where z,; € Siyn, wn,i € Ti(Axy), the parameter y, and the sequences {o‘en,,-}floz1 for all
i >0, {Bui},2, foralli € N and {£,};2 | satisfy the following conditions:

n) ye (0. )

(C2) ap,; €10, 1) such that oy ; # 0 for alli < n, liminf, o, ooy, > 0 foralli € N, and
Z;’Lo Op,i = 1;

(C3) Bn,i € 10, 1] such that B,; # 0 forall i < n, liminf, B,; > 0 foralli € N, and
Z:'l:l ﬂn,i =1;

(C4) & € (0, 1) such that lim,_, oo &, = 0 and Y 2 | &, = c0.

Then the sequence {x,} defined by (3.17) converges strongly to x € T which solves the

variational inequality (3.2).

If S; and 7; in Theorem 3.2 are single-valued mappings, we obtain the following result to
solve the SCFP for two infinite families of single-valued demicontractive mappings.
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Corollary 3.6 Let H; and Hy be two real Hilbert spaces, A : Hi — Ha be a bounded
linear operator. For eachi € N, let S; : Hi — Hi and T; : Hy — Ha be demicontractive
mappings with constants k; and k[, respectively, such that I — S; and I — T; are demiclosed
at zero. Suppose that I # (. Let f : H1 — H be a t-contraction with respect to I, where
0 <7 < 1. Let {x,} C Hj be a sequence generated by x| € H and

Yn = Xp + Z;‘l:] IBn,iyA*(Ti - I)Axm
Up = Qp,0Yn + Z:‘l:l i SiVn, (3.18)
Xn+1 = En f () + (1 = &Dup, n €N,

where the parameter y, and the sequences {ay,;}, {Bn.i} and {§,} satisfy (C1)—(C4) in
Theorem 3.2. Then the sequence {x,} defined by (3.18) converges strongly to X € T which
solves the variational inequality (3.2).

4 Applications
4.1 The split variational inequality problem

Let K be a nonempty closed convex subset of H, and let F' : H — H be a mapping. Recall
that the variational inequality problem is to find a point x* € K such that

(Fx* y —x*) >0 forally € K. (4.1)

The solution set of the problem (4.1) is denoted by VI P (K, F). It is not difficult to show
that Fix(Px (I —AF)) = VIP(K, F),where A > 0. It was shown [15] that if F is -inverse
strongly monotone, where § > 0, i.e.,

(x —y, Fx — Fy) = §||Fx — Fy||* forallx,y € H,

and A € (0, 29), then Px(I — AF) is a nonexpansive mapping and I — Pg (I — ALF) is
demiclosed at zero.

Let H; and H> be two real Hilbert spaces, A : H; — H» be a bounded linear operator.
Given nonempty closed convex subsets C € H; and Q C H», and mappings g : H1 — Hi
and h : Hy — H;. The split variational inequality problem (SVIP) is to find a point x* € C
such that

x*eVIP(C,g) and Ax* € VIP(Q,h). 4.2)

We obtain the following result which extends [16, Theorem 5.1].

Theorem 4.1 Let Hy and Hy be two real Hilbert spaces, A : H1 — Hj be a bounded
linear operator. For each i € N, let C; and Q; be nonempty closed convex subsets of
‘H1 and Hy, respectively, and let gi : Hi — Hi and h; : Hy — H> be inverse
strongly monotone operators with constants §; and 5;, respectively. Assume that © :=
[x e M2, VIP(Ci,gi) : Ax € (72, VIP(Qi hi)} # V. Let f : Hi — M, be a con-
traction with respect to ©. Let {x,} C H| be a sequence generated by x| € H| and

Yn = Xp + Z?:] lsn,iVA*(PQ,' (I - )"hl) - I)Axna
Un = 0n,0Yn + iy @i Pe; (I = Agi)yn, (4.3)
Xp1 = En f(xn) + (1 = &Du,, neN,



702 P. Jailoka, S. Suantai

where A € (0, 28) with § := inf{§;, 8; i € N}, the parameter y, and the sequences {cy i},
{Bn.i} and {&,} satisfy (C1)—(C4) in Corollary 3.5. Then the sequence {x,} defined by (4.3)
converges strongly to x* € ©, where x* is the unique fixed point of a contraction Pg f.

4.2 The split common null point problem

Byrne et al. [5] introduced and studied the split common null point problem (SCNP) as
follows: Given two multivalued mappings By : H; — 2" and B, : H» — 272, a bounded
linear operator A : H; — Hp, the SCNP for two multivalued mappings is to find a point
x* € H; such that

x* e By'0 and Ax* e B;'0, (4.4)

where BI_IO :={x € H; : 0 € Byx}and Bz_]Oare null point sets of By and B;, respectively.
Byrne et al. [5] proposed algorithms and proved convergence theorems for finding such a
solution of the SCNP (4.4) when B and B are maximal monotone operators.

Let us recall the maximal monotone operator: Let B be a multivalued mapping of H into
2H then B is called a maximal monotone operator if B is monotone, i.e.,

(x —y,u—v)>0 forall x,y e D(B),u € Bx,v € By,
where D(B) := {x € H : Bx # ¥}, and the graph G(B) of B,
G(B) :={(x,u) e H x H:u € Bx},

is not properly contained in the graph of any other monotone operator. For a maximal mono-
tone operator B : H — 2 and A > 0, the resolvent of B with parameter % is denoted and
defined by

JEB .= +1B)"":H - D(B).

It is known [4] that if B : H — 2™ is a maximal monotone operator and A > 0, then Jf is
single-valued, firmly nonexpansive, that is,

1JEx — JBy1> < |lx — yI> = lx — JBx|?> forall x,yeH,

and Fix(Jf) = B~10. Moreover, I — Jf is demiclosed at zero.
By applying Theorem 3.2 and properties of the resolvent of maximal monotone operators,
we obtain the following theorem.

Theorem 4.2 Let H and H; be two real Hilbert spaces, A : Hi — Hp be a bounded linear
operator. Let By : H] — 2M0 and By - Hy — 2M2 be maximal monotone operators, and
let Jfl' and Jﬁz be resolvents of By and Ba, respectively for A1, Ay > 0. For each i € N,
let S;i : H1 — CB(H1) and T; : Ho — CB(H2) be multivalued demicontractive mappings
with constants k; and klf, respectively, such that I — S; and I — T; are demiclosed at zero.
Assume that ® := T N Q # 0, where I = {x €N, Fix(8;) : Ax € 72, Fix(T,-)} and
Q= {x € Bl_10 tAx € Bz_lo}, and for each p € ©, S;(p) = {p} and T;(Ap) = {Ap}
foralli € N. Let f : H1 — Hj be a contraction with respect to ®. Let {x,} C H; be a
sequence generated by x1 € H1 and

= %0+ ¥ (Ba1.0A* (I = DAxy + 307! Buo1iA* (i — Axy)),

Up = Op—1yn + anfl,OJ)izyn + Zln;ll Op—1,iln,is 4.5)
Xp1 = En f () + (1 = &Du,, neN,
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where 2, ; € Siyn, Wn,i € T;(Axy), the parameter y, and the sequences {c, )72, {Qn,i}y o
{Bn,itoy foralli > 0, and {€,},2 | satisfy the following conditions:

(Cl) y e (0, ﬁ) where k' = sup{k : i € N};

(C2) o € (k, 1) where k = sup{k; : i € N} and «,,; € [0, 1) such that o, ; # 0O for all
i <n, liminf, (e, — k)oy; > Oforalli €N, and oy, + Y 1_gon; =1;

(C3) Bn,i € 10, 1] such that B,; # O for all i < n, liminf, B,; > 0 foralli > 0, and
YicoBui=1;

(C4) &, € (0, 1) such that lim,_, o0 &, = 0 and Y e | &, = o0.

Then the sequence {x,} defined by (4.5) converges strongly to x* € ©, where x* is the unique
fixed point of a contraction Pg f.

Proof We set Sy := Jf; "and Ty := J}i . Then Sy and Ty are single-valued mappings.
By properties of the resolvent of maximal monotone operators, we have So and Ty are O-
demicontractive,  — Sp and / — Tp are demiclosed at zero, Fix(Sp) = B 10 and Fi x(Ty) =
By 1o. Thus,

@] oo
© = {x e[ )Fix(S): Ax e [ | Fix(T))
i=0 i=0
Therefore, we can conclude from Theorem 3.2 that {x, } defined by (4.5) converges strongly
to x* € ©, where x* is the unique fixed point of a contraction Pg f. O

S A numerical example

In this section, we give a numerical result to demonstrate the convergence of our algorithm
in Theorem 3.2.

Example 5.1 Let H; = R = H;. For each i € N, we define multivalued mappings S; and
T; as follows:

{0}, if x <O,
Six = X 3
[m, x], if x >0,

and X
X . .
Ty — [O, m], if x <l+2,
ix =
[1,i+1], ifx >i42.

It is not difficult to show that S; and 7; are O-demicontractive, and I — S; and I — T; are
demiclosed at zero for all i € N. We also define a bouned linear operator A : R — R
by Ax = 3x. Thus, A*x = 3x and ||A| = 3. Itis clear that 0 € T', where I' = {x 1S
M52, Fix(S;) : Ax € (2, Fix(T;)}. Foreachn € N, i > 0, let

1 n . .
ST (7n+1)’ ifn > i,
1 . .
ani =41 — (22:1 27) , ifn =1,
0, otherwise.
For each n,i € N, we let B,; = a,—1,i—1. [t is easy to see that lim,— o @y,; = 2,-—1“,

. 1 1 1
lim,— 00 Bni = 5 and Yo =1 =27 Bui-Puty = [5.& = 55, and let a
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Table 1 Numerical experiment

of the algorithm (5.1) " In Tntl i1 —
1 1.16667 1.66519 0.334814
3 0.35195 0.28048 0.344445
5 0.07012 0.05578 0.069030
7 0.01413 0.01142 0.013708
9 0.00295 0.00242 0.002812
19 0.000008 0.000013 0.000002
21 0.000006 0.000011 0.0000009
0.07
0.06
0.05}%
- \
L o004t
[ang '
& o003}
0.02 N
0.01
0.00 BREEEEr
5 7 9 1 13 15 17 19 21 23 25

Fig. 1 A gragh of error of the algorithm (5.1)

contraction f : R — R be such that f(x) = %, then all conditions of Theorem 3.2 hold.
Taking

0, if y, <0, 5:2‘1, if 3x, <i +2,
Zni = 2y, £y >0 Wy,i = ]
) Iy, =2V, 5

if 3x, >i 42,

then an algorithm (3.1) becomes

i=1

S S . +n§1( = 2ua) |+
= 5000n 4500n ) 2n+2 \7" T g i T Gnan) | s

5.1)
where y, = % <3xn + wpn + (”;1) Z:-l:_ll %(wn,i — w,,,,l)>, n € N. We first start with the
initial point x| = 2. The stopping criterion for our testing method is taken as: |x,+1 — x,| <

10~°. Now, a convergence of the algorithm (5.1) is shown by Table 1 and Fig. 1. Itis observed
thatx, — 0 e€T.
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