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Abstract In this article, we consider the split common fixed point problem for two infinite
families of multivalued mappings in real Hilbert spaces. We introduce an algorithm based
on the viscosity method for solving the split common fixed point problem for two infinite
families of multivalued demicontractive mappings. We establish a strong convergence result
under some suitable conditions. As applications, we also apply our main result to the split
variational inequality problem and the split common null point problem. Finally, we give the
numerical example for supporting our main theorem.
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1 Introduction

Let H1 and H2 be real Hilbert spaces and let A : H1 → H2 be a bounded linear operator.
Given nonempty closed covex subsets Ci ⊆ H1 (i = 1, 2, . . . , t) and Q j ⊆ H2 ( j =
1, 2, . . . , r) of H1 and H2, respectively. The multiple-set split feasibility problem (MSSFP)
which was introduced by Censor et al. [12] is formulated as finding a point

x̂ ∈
t⋂

i=1

Ci such that Ax̂ ∈
r⋂

j=1

Q j . (1.1)
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In particular, if t = r = 1, then the MSSFP (1.1) is reduced to find a point

x̂ ∈ C such that Ax̂ ∈ Q, (1.2)

whereC and Q are nonempty closed convex subsets ofH1 andH2, respectively. The problem
(1.2) is known as the split feasibility problem (SFP) which was first introduced by Censor and
Elfving [7] for modeling inverse problems in finite-dimensional Hilbert spaces. It is known
that x̂ solves the SFP (1.2) if and only if x̂ solves the fixed point equation:

PC (I − γ A∗(I − PQ)A)x̂ = x̂, (1.3)

where A∗ is the adjoint operator of A and γ > 0. Byrne [2] proposed the so-called CQ
algorithm for solving the SFP and many authors studied the SFP and the MSSFP, see, for
instance [1,12,17,18,24,31,34–36].

The split common fixed point problem (SCFP) is a generalization of the MSSFP, and is
formulated as finding a point:

x̂ ∈
t⋂

i=1

Fix(Si ) such that Ax̂ ∈
r⋂

j=1

Fix(Tj ), (1.4)

where Si : H1 → H1 (i = 1, 2, . . . , t) and Tj : H2 → H2 ( j = 1, 2, . . . , r) are nonlinear
mappings with nonempty fixed point sets Fix(Si ) and Fix(Ti ), respectively. In the case
t = r = 1, the SCFP (1.4) is reduced to find a point

x̂ ∈ Fix(S) such that Ax ∈ Fix(T ), (1.5)

where S : H1 → H1 and T : H2 → H2 are nonlinear mappings with nonempty fixed
point sets Fix(S) and Fix(T ), respectively. The problem (1.5) is usually called the two-set
SCFP. Similarly, the SFP (1.2) becomes a special case of the two-set SCFP (1.5). The SCFP
was studied by many authors (see [6,10,13,20–22,26,28,29,32]) due to its applications are
desirable and can be used in real-world applications, for example, in signal processing, in
image processing, in image reconstruction, in modeling inverse problems, in computerized
tomography, in the intensity-modulated radiation therapy, see [3,7,11,12,23].

In 2009, Censor and Segal [10] invented an algorithm to solve the two-set SCFP (1.5) for
directed mappings in finite-dimensional Hilbert spaces as follows:

xn+1 = S(xn + γ A∗(T − I )Axn), n ∈ N. (1.6)

In 2011, by modification of Mann’s iteration, Moudafi [21] introduced an algorithm for
solving the two-set SCFP (1.5) in the infinite-dimensional real Hilbert spaces as follows:

{
yn = xn + γβA∗(T − I )Axn,

xn+1 = (1 − αn)yn + αn Syn, n ∈ N,
(1.7)

where S and T are quasi-nonexpansive mappings such that I − S and I −T are demiclosed at
zero. He also proved a weak convergence result of this algorithm under some suitable control
conditions.

In [28,29,32], they developed algorithms for solving the two-set SCFP (1.5) to cyclic
algorithms and simultaneous algorithms for solving the SCFP (1.4).

Recently, the SCFP for multivalued mappings was considerd by Latif and Eslamian [16].
Theyproposed an algorithmbasedon theviscositymethod to solve theSCFP for afinite family
of multivalued quasi-nonexpansive mappings and a finite family of multivalued mappings
such that the best approximation operators are quasi-nonexpansive, and also proved a strong
convergence result as shown below.
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Theorem 1.1 [16] Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator. For i = 1, 2, . . . , t , let Si : H1 → CB(H1) and Ti : H2 → CC(H2) be
multivalued mappings such that Si and PTi : H2 → H2 are quasi-nonexpansive. Suppose
that I − Si and I − PTi are demiclosed at zero, and Si satisfies the endpoint condition.
Assume that Ω = {

x ∈ ⋂t
i=1 Fix(Si ) : Ax ∈ ⋂t

i=1 Fix(Ti )
} �= ∅. Let f : H1 → H1 be a

contraction. Let {xn} ⊂ H1 be a sequence generated by x0 ∈ H1 and
⎧
⎪⎨

⎪⎩

yn = xn + ∑t
i=1

1
t γβA∗(PTi − I )Axn,

un = αn,0yn + ∑t
i=1 αn,i zn,i ,

xn+1 = ϑn f (un) + (1 − ϑn)un, n ≥ 0,

(1.8)

where zn,i ∈ Si yn, β ∈ (0, 1), γ ∈
(
0, 1

β‖A‖2
)
, lim infn αn,0αn,i > 0,

∑t
i=0 αn,i = 1,

limn→∞ ϑn = 0, and
∑∞

n=0 ϑn = ∞. Then the sequence {xn} converges strongly to x̂ ∈ Ω

which solves the variational inequality:

〈 f (x̂) − x̂, x − x̂〉 ≤ 0 for all x ∈ Ω.

Recently, Eslamian [13] studied and proposed an algorithm for solving the SCFP for
two infinite families of single-valued demicontractive mappings and also proved a strong
convergence theorem.

In this article, inspired and motivated by these works, we are interested to study the
SCFP for two infinite families of multivalued mappings which is more general than the
problem in Theorem 1.1. We introduce an algorithm based on the viscosity method to solve
the SCFP for two infinite families of multivalued demicontractive mappings, and prove a
strong convergence theorem of the proposed algorithm under some suitable conditions such
that some assumptions in our main result is weaker than the common endpoint condition.
Furthermore, our main result generalizes and improves the results of Latif and Eslamian [16]
and Eslamian [13]. As applications, we also apply our main result to the split variational
inequality problem and the split common null point problem. In the last section, we give the
numerical example to demonstrate the convergence of our algorithm.

2 Preliminaries

Throughout this paper, let N be the set of positive integers and R the set of real numbers. We
shall assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖,
and let I be the identity operator on H. We denote the strong and weak convergence of a
sequence {xn} in H to an element x ∈ H by xn → x and xn ⇀ x , respectively. Let K be
a nonempty closed convex subset of H. Recall that the (metric) projection from H onto K ,
denoted by PK is defined for each x ∈ H, PK x is the unique element in K such that

‖x − PK x‖ = d(x, K ) := inf{‖x − y‖ : y ∈ K }.
It is known that PK x ∈ K is characterized by the following property:

〈x − PK x, y − PK x〉 ≤ 0 for all y ∈ K .

Let C be a nonempty subset of H and k ∈ [0, 1). A mapping f : H → H is called a
k-contraction with respect to C if ‖ f (x) − f (z)‖ ≤ k‖x − z‖ for all x ∈ H, z ∈ C ; f is
called a k-contraction if f is a k-contraction with respect to H. It is easy to check that if
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f : H → H is a k-contraction with respect to C , where 0 ≤ k < 1 and C is closed and
convex, then PC f is a k-contraction on C .

A subset D of H is said to be proximal if for each x ∈ H, there exists y ∈ D such that

‖x − y‖ = d(x, D).

Wedenote byCB(H),CC(H), and P(H) the families of all nonempty closedbounded subsets
ofH, nonempty closed convex subsets ofH, and nonempty proximal bounded subsets ofH,
respectively. The Pompeiu-Hausdorff metric on CB(H) is defined by

H(A, B) := max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}

for all A, B ∈ CB(H). Let T : H → 2H be a multivalued mapping. An element p ∈ H is
called a fixed point of T if p ∈ T p. The set of all fixed points of T is denoted by Fix(T ). We
say that T satisfies the endpoint condition if T p = {p} for all p ∈ Fix(T ). For multivalued
mappings Ti : H → 2H (i ∈ N) with

⋂∞
i=1 Fix(Ti ) �= ∅, we also say that {Ti }∞i=1 satisfies

the common endpoint condition if Ti (p) = {p} for all i ∈ N, for all p ∈ ⋂∞
i=1 Fix(Ti ).

Now let us recall the definitions of multivalued mappings concerned in our study.

Definition 2.1 A multivalued mapping T : H → CB(H) is said to be

(i) nonexpansive if
H(T x, T y) ≤ ‖x − y‖ for all x, y ∈ H,

(ii) quasi-nonexpansive if Fix(T ) �= ∅ and

H(T x, T p) ≤ ‖x − p‖ for all x ∈ H, p ∈ Fix(T ),

(iii) demicontractive [9,14] if Fix(T ) �= ∅ and there exists k ∈ [0, 1) such that

H(T x, T p)2 ≤ ‖x − p‖2 + kd(x, T x)2 for all x ∈ H, p ∈ Fix(T ).

Note that the class of demicontractive mappings includes several common types of classes
of mappings occurring in optimization problems, such as a class of nonexpansive mappings
with nonempty fixed point set and a class of quasi-nonexpansive mappings.

The following example inspired by [9, Example 11] and [14, Example 3.4] shows that the
class of quasi-nonexpansive mappings is properly contained in the calss of demicontractive
mappings.

Example 2.2 Let H = R. For each i ∈ N, define Ti : R → 2R by

Ti x =

⎧
⎪⎪⎨

⎪⎪⎩

[
− (2i+1)x

2 ,−(i + 1)x

]
, if x ≤ 0,

[
− (i + 1)x,− (2i+1)x

2

]
, if x > 0.

Then Fix(Ti ) = {0}. For each 0 �= x ∈ R,

H(Ti x, Ti0)
2 = | − (i + 1)x − 0|2 = (i + 1)2|x − 0|2 = |x − 0|2 + (i2 + 2i)|x |2.

Clearly, Ti is not quasi-nonexpansive. We also have

d(x, Ti x)
2 =

∣∣∣∣x −
(

− (2i + 1)x

2

)∣∣∣∣
2

=
∣∣∣∣
(2i + 3)x

2

∣∣∣∣
2

=
(
4i2 + 12i + 9

4

)
|x |2.
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Therefore,

H(Ti x, Ti0)
2 = |x − 0|2 +

(
4i2 + 8i

4i2 + 12i + 9

)
d(x, Ti x)

2.

Hence Ti is demicontractive with a constant ki = 4i2+8i
4i2+12i+9

∈ (0, 1).

For amultivaluedmapping T : H → P(H), the best approximation operator PT is defined
by

PT (x) := {y ∈ T x : ‖x − y‖ = d(x, T x)}.
We can easily prove that Fix(T ) = Fix(PT ) and PT satisfies the endpoint condition. Song
andCho [25] gave an example for the best approximation operator PT which is nonexpansive,
but T is not necessary to be nonexpansive.

Definition 2.3 Let T : H → CB(H) be a multivalued mapping. The multivalued mapping
I−T is said to be demiclosed at zero if for any sequence {xn} inHwhich converges weakly to
x and the sequence {‖xn − yn‖} converges strongly to 0, where yn ∈ T xn , then x ∈ Fix(T ).

Next, we give some significant tools for proving our main results.

Lemma 2.4 [27] For a real Hilbert space H, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H.

The following lemma shows the properties of demicontractive mappings which are inspired
by [28, Lemma 1].

Lemma 2.5 Let T : H → CB(H) be a multivalued k-demicontractive mapping. If p ∈
Fix(T ) such that T p = {p}, then the following two inequalities hold: for all x ∈ H, y ∈ T x

(i) 〈x − y, p − y〉 ≤ 1+k
2 ‖x − y‖2;

(ii) 〈x − y, x − p〉 ≥ 1−k
2 ‖x − y‖2.

Proof Since T is k-demicontractive, we have

〈x − y, p − y〉 = 1

2

(‖x − y‖2 + ‖p − y‖2 − ‖x − p‖2)

= 1

2

(‖x − y‖2 + d(y, T p)2 − ‖x − p‖2)

≤ 1

2

(‖x − y‖2 + H(T x, T p)2 − ‖x − p‖2)

≤ 1

2

(‖x − y‖2 + ‖x − p‖2 + kd(x, T x)2 − ‖x − p‖2) .

≤ 1

2

(‖x − y‖2 + k‖x − y|2) = 1 + k

2
‖x − y‖2.

Similarly, we can prove the other inequality: 〈x − y, x − p〉 ≤ 1−k
2 ‖x − y‖2. ��

Lemma 2.6 [8] Let H be a real Hilbert space, xi ∈ H, (1 ≤ i ≤ m) and {αi }mi=1 ⊂ (0, 1)
with

∑m
i=1 αi = 1. Then the following identity holds:

∥∥∥∥∥

m∑

i=1

αi xi

∥∥∥∥∥

2

=
m∑

i=1

αi‖xi‖2 −
m∑

i, j=1,i �= j

αiα j‖xi − x j‖2.
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Lemma 2.7 [33] Suppose that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − λn)an + λnσn + βn, n ∈ N,

where {λn}, {σn} and {βn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1], ∑∞
n=1 λn = ∞;

(ii) lim supn σn ≤ 0 or
∑∞

n=1 |λnσn | < ∞;
(iii) βn ≥ 0 for all n ∈ N,

∑∞
n=1 βn < ∞.

Then limn→∞ an = 0.

Lemma 2.8 [19] Let {tn} be a sequence of real numbers such that there exists a subsequence
{ni } of {n} which satisfies tni < tni+1 for all i ∈ N. Also consider the sequence of positive
integers {ρ(n)} defined by

ρ(n) := max{k ≤ n : tk < tk+1}
for all n ≥ n0 (for some n0 large enough). Then {ρ(n)} is a nondecreasing sequence such
that limn→∞ ρ(n) = ∞ and it holds that

tρ(n) ≤ tρ(n)+1, tn ≤ tρ(n)+1.

3 Main results

In this section, we present an algorithm for solving SCFP for two infinite families of multi-
valued demicontractive mappings and prove a strong convergence theorem.

Throughout this paper, let � be the solution set of the SCFP for two infinite families of
mappings {Si }∞i=1 and {Ti }∞i=1, that is,

� :=
{
x ∈

∞⋂

i=1

Fix(Si ) : Ax ∈
∞⋂

i=1

Fix(Ti )

}
.

In [30], it was shown that the fixed point set Fix(S) of a multivalued demicontractive
mapping S, where S satisfies the endpoint condition is closed and convex. Hence we can
prove the following lemma in the same way as [30, Lemma 3.2].

Lemma 3.1 LetH1 andH2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. For each i ∈ N, let Si : H1 → CB(H1) and Ti : H2 → CB(H2) be multivalued
demicontractive mappings with constants ki and k′

i , respectively. Suppose that � �= ∅. Then
(i) � is closed;
(ii) If for each p ∈ �, Si (p) = {p} and Ti (Ap) = {Ap} for all i ∈ N, then � is convex.

We now prove our main theorem.

Theorem 3.2 Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator. For each i ∈ N, let Si : H1 → CB(H1) and Ti : H2 → CB(H2) be
multivalued demicontractive mappings with constants ki and k′

i , respectively, such that I −Si
and I − Ti are demiclosed at zero. Suppose that � �= ∅ and for each p ∈ �, Si (p) = {p}
and Ti (Ap) = {Ap} for all i ∈ N. Let f : H1 → H1 be a τ -contraction with respect to �,
where 0 ≤ τ < 1. Let {xn} ⊂ H1 be a sequence generated by x1 ∈ H1 and

⎧
⎪⎨

⎪⎩

yn = xn + ∑n
i=1 βn,iγ A∗(wn,i − Axn),

un = αn,0yn + ∑n
i=1 αn,i zn,i ,

xn+1 = ξn f (xn) + (1 − ξn)un, n ∈ N,

(3.1)
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where zn,i ∈ Si yn, wn,i ∈ Ti (Axn), the parameter γ , and the sequences {αn,i }∞n=1 for all
i ≥ 0, {βn,i }∞n=1 for all i ∈ N and {ξn}∞n=1 satisfy the following conditions:

(C1) γ ∈
(
0, 1−k′

‖A‖2
)
, where k′ = sup{k′

i : i ∈ N};
(C2) αn,i ∈ [0, 1) such that αn,0 ∈ (k, 1) where k = sup{ki : i ∈ N}, αn,i �= 0 for all i ≤ n,

lim infn(αn,0 − k)αn,i > 0 for all i ∈ N, and
∑n

i=0 αn,i = 1;
(C3) βn,i ∈ [0, 1] such that βn,i �= 0 for all i ≤ n, lim infn βn,i > 0 for all i ∈ N, and∑n

i=1 βn,i = 1;
(C4) ξn ∈ (0, 1) such that limn→∞ ξn = 0 and

∑∞
n=1 ξn = ∞.

Then the sequence {xn} defined by (3.1) converges strongly to x̂ ∈ � which solves the
variational inequality:

〈 f (x̂) − x̂, x − x̂〉 ≤ 0 for all x ∈ �. (3.2)

Proof By Lemma 3.1, we have � is closed and convex. It is easy to see that P� f is a τ -
contraction on �. Then by Banach fixed point theorem, P� f has unique fixed point x̂ ∈ �,
i.e., x̂ = P� f (x̂). Hence x̂ solves the variational inequality (3.2). We first show that {xn}
is bounded. Since x̂ ∈ �, we obtain that Si (x̂) = {x̂} and Ti (Ax̂) = {Ax̂} for all i ∈ N.
Applying Lemma 2.6, we have

‖yn − x̂‖2 =
∥∥∥∥∥xn +

n∑

i=1

βn,iγ A∗(wn,i − Axn) − x̂

∥∥∥∥∥

2

=
∥∥∥∥∥

n∑

i=1

βn,i (xn − x̂ + γ A∗(wn,i − Axn))

∥∥∥∥∥

2

≤
n∑

i=1

βn,i‖xn − x̂ + γ A∗(wn,i − Axn)‖2

=
n∑

i=1

βn,i
(‖xn − x̂‖2 + γ 2‖A∗(wn,i − Axn)‖2

+ 2γ 〈xn − x̂, A∗(wn,i − Axn)〉
)

≤
n∑

i=1

βn,i
(‖xn − x̂‖2 + γ 2‖A‖2‖wn,i − Axn‖2

+ 2γ 〈xn − x̂, A∗(wn,i − Axn)〉
)
. (3.3)

Now we set

Un := 2γ 〈xn − x̂, A∗(wn,i − Axn)〉.
Since Ti is k′

i -demicontractive, then, by Lemma 2.5, we have

Un = 2γ 〈A(xn − x̂), wn,i − Axn〉
= 2γ 〈A(xn − x̂) + (wn,i − Axn) − (wn,i − Axn), wn,i − Axn〉
= 2γ

(〈wn,i − Ax̂, wn,i − Axn〉 − ‖wn,i − Axn‖2
)

≤ 2γ

(
1 + k′

i

2
‖wn,i − Axn‖2 − ‖wn,i − Axn‖2

)

= −(1 − k′
i )γ ‖wn,i − Axn‖2
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≤ −(1 − k′)γ ‖wn,i − Axn‖2. (3.4)

By (3.3) and (3.4), we obtain

‖yn − x̂‖2 ≤ ‖xn − x̂‖2 −
n∑

i=1

βn,iγ (1 − k′ − γ ‖A‖2)‖wn,i − Axn‖2.

Since Si is ki -demicontractive and by using Lemma 2.6, we have

‖un − x̂‖2 =
∥∥∥∥∥∥
αn,0yn +

n∑

j=1

αn, j zn, j − x̂

∥∥∥∥∥∥

2

≤ αn,0‖yn − x̂‖2 +
n∑

j=1

αn, j‖zn, j − x̂‖2 −
n∑

j=1

αn,0αn, j‖yn − zn, j‖2

= αn,0‖yn − x̂‖2 +
n∑

j=1

αn, j d(zn, j , S j x̂)
2 −

n∑

j=1

αn,0αn, j‖yn − zn, j‖2

≤ αn,0‖yn − x̂‖2 +
n∑

j=1

αn, j H(S j yn, S j x̂)
2 −

n∑

j=1

αn,0αn, j‖yn − zn, j‖2

≤ αn,0‖yn − x̂‖2 +
n∑

j=1

αn, j (‖yn − x̂‖2 + k j d(yn, S j yn)
2)

−
n∑

j=1

αn,0αn, j‖yn − zn,i‖2

≤ αn,0‖yn − x̂‖2 +
n∑

j=1

αn, j‖yn − x̂‖2 +
n∑

j=1

αn, j k‖yn − zn, j‖2

−
n∑

j=1

αn,0αn, j‖yn − zn, j‖2

= ‖yn − x̂‖2 −
n∑

j=1

(αn,0 − k)αn, j‖yn − zn, j‖2

≤ ‖yn − x̂‖2 − (αn,0 − k)αn,i‖yn − zn,i‖2

≤ ‖xn − x̂‖2 −
n∑

j=1

βn, jγ (1 − k′ − γ ‖A‖2)‖wn, j − Axn‖2

− (αn,0 − k)αn,i‖yn − zn,i‖2 (3.5)

for all 1 ≤ i ≤ n. It follows that ‖un − x̂‖ ≤ ‖xn − x̂‖. Thus, we have
‖xn+1 − x̂‖ = ‖ξn( f (xn) − x̂) + (1 − ξn)(un − x̂)‖

≤ ξn‖ f (xn) − x̂‖ + (1 − ξn)‖un − x̂‖
≤ ξn(‖ f (xn) − f (x̂)‖ + ‖ f (x̂) − x̂‖) + (1 − ξn)‖xn − x̂‖
≤ ξn(τ‖xn − x̂‖ + ‖ f (x̂) − x̂‖) + (1 − ξn)‖xn − x̂‖
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= (1 − ξn(1 − τ))‖xn − x̂‖ + ξn(1 − τ)
‖ f (x̂) − x̂‖

1 − τ

≤ max

{
‖xn − x̂‖, ‖ f (x̂) − x̂‖

1 − τ

}
.

By continuous taking this process, we obtain that

‖xn − x̂‖ ≤ max

{
‖x1 − x̂‖, ‖ f (x̂) − x̂‖

1 − τ

}

for all n ∈ N. Therefore, {xn} is bounded. This implies that { f (xn)} is also bounded. It
follows from (3.5) that

‖xn+1 − x̂‖2 = ‖ξn( f (xn) − x̂) + (1 − ξn)(un − x̂)‖2
≤ ξn‖ f (xn) − x̂‖2 + (1 − ξn)‖un − x̂‖2
≤ ξn‖ f (xn) − x̂‖2 + ‖xn − x̂‖2

−
n∑

j=1

βn, jγ (1 − k′ − γ ‖A‖2)‖wn, j − Axn‖2

− (αn,0 − k)αn,i‖yn − zn,i‖2 (3.6)

for all 1 ≤ i ≤ n. By (3.6), we get the following two inequalities

n∑

i=1

βn,iγ (1 − k′ − γ ‖A‖2)‖wn,i − Axn‖2 ≤ ‖xn − x̂‖2 − ‖xn+1 − x̂‖2

+ ξn‖ f (xn) − x̂‖2, (3.7)

and

(αn,0 − k)αn,i‖yn − zn,i‖2 ≤ ‖xn − x̂‖2 − ‖xn+1 − x̂‖2 + ξn‖ f (xn) − x̂‖2 (3.8)

for all 1 ≤ i ≤ n. Now we divide the rest of the proof into two cases.
Case 1.Assume that there existsn0 ∈ N such that {‖xn−x̂‖}n≥n0 is either nonincreasing or

nondecreasing. Since {‖xn−x̂‖} is bounded, then it converges and ‖xn−x̂‖2−‖xn+1−x̂‖2 →
0 as n → ∞. Since ξn → 0 as n → ∞, then by (3.7) we deduce that

lim
n→∞

n∑

i=1

βn,i‖wn,i − Axn‖2 = 0. (3.9)

Since lim infn βn,i > 0 for all i ∈ N, then by (3.9) we have

lim
n→∞ ‖wn,i − Axn‖ = 0 (3.10)

for all i ∈ N. Similarly, in view of (3.8), since lim infn(αn,0 − k)αn,i > 0 for i ∈ N, we have

lim
n→∞ ‖yn − zn,i‖ = 0 (3.11)
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for all i ∈ N. From (3.9) and by using Lemma 2.6, we get

‖yn − xn‖2 = γ 2

∥∥∥∥∥

n∑

i=1

βn,i A
∗(wn,i − Axn)

∥∥∥∥∥

2

≤ γ 2
n∑

i=1

βn,i‖A∗(wn,i − Axn)‖2

≤ γ 2‖A‖2
n∑

i=1

βn,i‖wn,i − Axn‖2 → 0

as n → ∞, which implies that ‖yn − xn‖ → 0 as n → ∞. Next, we show that

lim sup
n→∞

〈 f (x̂) − x̂, xn − x̂〉 ≤ 0.

To show this, let {xn j } be a subsequence of {xn} such that

lim
j→∞〈 f (x̂) − x̂, xn j − x̂〉 = lim sup

n→∞
〈 f (x̂) − x̂, xn − x̂〉.

Since {xn j } is bounded, there exists a subsequence {xn jk
} of {xn j } and x ∈ H1 such that

xn jk
⇀ x . Without loss of generality, we can assume that xn j ⇀ x . Since ‖yn − xn‖ → 0

as n → ∞, we have yn j ⇀ x . From (3.11) and by the demiclosedness of I − Si at zero
for all i ∈ N, we obtain that x ∈ ⋂∞

i=1 Fix(Si ). Since A is a bounded linear operator, we
have 〈y, Axn j − Ax〉 = 〈A∗y, xn j − x〉 → 0 as j → ∞, for all y ∈ H2, this implies that
Axn j ⇀ Ax . From (3.10) and by the demiclosedness of I − Ti at zero for all i ∈ N, we get
Ax ∈ ⋂∞

i=1 Fix(Ti ). Therefore, x ∈ �. Since x̂ satisfies the inequality (3.2), we have

lim sup
n→∞

〈 f (x̂) − x̂, xn − x̂〉 = lim
j→∞〈 f (x̂) − x̂, xn j − x̂〉 = 〈 f (x̂) − x̂, x − x̂〉 ≤ 0.

By using Lemma 2.4, we have

‖xn+1 − x̂‖2 = ‖(1 − ξn)(un − x̂) + ξn( f (xn) − x̂)‖2
≤ (1 − ξn)

2‖un − x̂‖2 + 2ξn〈 f (xn) − x̂, xn+1 − x̂〉
= (1 − ξn)

2‖un − x̂‖2 + 2ξn〈 f (xn) − f (x̂), xn+1 − x̂〉
+ 2ξn〈 f (x̂) − x̂, xn+1 − x̂〉

≤ (1 − ξn)
2‖xn − x̂‖2 + 2ξnτ‖xn − x̂‖‖xn+1 − x̂‖

+ 2ξn〈 f (x̂) − x̂, xn+1 − x̂〉
≤ (1 − ξn)

2‖xn − x̂‖2 + ξnτ(‖xn − x̂‖2 + ‖xn+1 − x̂‖2)
+ 2ξn〈 f (x̂) − x̂, xn+1 − x̂〉.

Thus,

‖xn+1 − x̂‖2 ≤ (1 − ξn)
2 + ξnτ

1 − ξnτ
‖xn − x̂‖2 + 2ξn

1 − ξnτ
〈 f (x̂) − x̂, xn+1 − x̂〉

=
(
1 − (1 − τ)ξn

1 − ξnτ

)
‖xn − x̂‖2 + (ξn − (1 − τ))ξn

1 − ξnτ
‖xn − x̂‖2

+ 2ξn
1 − ξnτ

〈 f (x̂) − x̂, xn+1 − x̂〉
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≤
(
1 − (1 − τ)ξn

1 − ξnτ

)
‖xn − x̂‖2

+ (1 − τ)ξn

1 − ξnτ

{(
ξn

1 − τ
− 1

)
M + 2

1 − τ
〈 f (x̂) − x̂, xn+1 − x̂〉

}

= (1 − λn)‖xn − x̂‖2 + λnσn, (3.12)

where M = sup{‖xn − x̂‖2 : n ∈ N}, λn = (1−τ)ξn
1−ξnτ

, and σn =
(

ξn
1−τ

− 1
)
M + 2

1−τ
〈 f (x̂) −

x̂, xn+1 − x̂〉. Clearly, {λn} ⊂ [0, 1], ∑∞
n=1 λn = ∞ and lim supn σn ≤ 0. From (3.12) and

by applying Lemma 2.7, we can conclude that xn → x̂ as n → ∞.
Case 2. Suppose that {‖xn − x̂‖} is not a monotone sequence. Then there exists a subse-

quence {nl} of {n} such that ‖xnl − x̂‖ < ‖xnl+1 − x̂‖ for all l ∈ N. Now we define a positive
interger sequence {ρ(n)} by

ρ(n) := max{k ≤ n : ‖xk − x̂‖ < ‖xk+1 − x̂‖}
for all n ≥ n0 (for some n0 large enough). By Lemma 2.8, we have {ρ(n)} is a nondecreasing
sequence such that ρ(n) → ∞ as n → ∞ and

‖xρ(n) − x̂‖2 − ‖xρ(n)+1 − x̂‖2 ≤ 0

for all n ≥ n0. From (3.7), we obtain that

lim
n→∞

ρ(n)∑

i=1

βρ(n),i‖wρ(n),i − Axρ(n)‖2 = 0 (3.13)

and
lim
n→∞ ‖wρ(n),i − Axρ(n)‖ = 0 (3.14)

for all i ∈ N. From (3.8), we have

lim
n→∞ ‖yρ(n) − zρ(n),i‖ = 0 (3.15)

for all i ∈ N. By using (3.13)–(3.15) and by the same proof as in case 1, we obtain that

lim sup
n→∞

〈 f (x̂) − x̂, xρ(n) − x̂〉 ≤ 0.

By the same computation as in case 1, we deduce that

‖xρ(n)+1 − x̂‖2 ≤ (1 − λρ(n))‖xρ(n) − x̂‖2 + λρ(n)σρ(n),

where λρ(n) = (1−τ)ξρ(n)

1−ξρ(n)τ
, σρ(n) =

(
ξρ(n)

1−τ
− 1

)
M + 2

1−τ
〈 f (x̂) − x̂, xρ(n)+1 − x̂〉 and M =

sup{‖xρ(n) − x̂‖2 : n ∈ N}. By utilizing Lemma 2.7, we obtain that ‖xρ(n) − x̂‖ → 0 as
n → ∞. It follows from Lemma 2.8 that

0 ≤ ‖xn − x̂‖ ≤ ‖xρ(n)+1 − x̂‖ → 0

as n → ∞. Hence {xn} converges strongly to x̂ . This completes the proof. ��
Remark 3.3 We have the following notices of Theorem 3.2.

(i) By taking f ≡ u for some u ∈ H1, then the algorithm (3.1) becomes the Halpern-
type algorithm. In particular, if u = 0, then {xn} converges strongly to x̂ ∈ �, where
‖x̂‖ = min{‖x‖ : x ∈ �}.
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(ii) The assumption “for each p ∈ �, Si (p) = {p} and Ti (Ap) = {Ap} for all i ∈
N” is weaker than the statement “{Si }∞i=1 and {Ti }∞i=1 satisfies the common endpoint
condition”.

By properties of the best approximation operator, we obtain the following result.

Corollary 3.4 LetH1 andH2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. For each i ∈ N, let Si : H1 → P(H1) and Ti : H2 → P(H2) be multivalued
mappings such that PSi and PTi are multivalued demicontractive mappings with constants
ki and k′

i , respectively. Suppose that I − PSi and I − PTi are demiclosed at zero for all
i ∈ N. Assume that � �= ∅. Let f : H1 → H1 be a τ -contraction with respect to �, where
0 ≤ τ < 1. Let {xn} ⊂ H1 be a sequence generated by x1 ∈ H1 and

⎧
⎪⎨

⎪⎩

yn = xn + ∑n
i=1 βn,iγ A∗(wn,i − Axn),

un = αn,0yn + ∑n
i=1 αn,i zn,i ,

xn+1 = ξn f (xn) + (1 − ξn)un, n ∈ N,

(3.16)

where zn,i ∈ PSi (yn),wn,i ∈ PTi (Axn), the parameter γ , and the sequences {αn,i }, {βn,i } and
{ξn} satisfy (C1)–(C4) in Theorem 3.2. Then the sequence {xn} defined by (3.16) converges
strongly to x̂ ∈ � which solves the variational inequality (3.2).

Proof Since PSi and PTi satisfy the end point condition, and Fix(Si ) = Fix(PSi ) and
Fix(Ti ) = Fix(PTi ) for all i ∈ N, so the result is obtained directly by Theorem 3.2. ��

The following result for solving the SCFP for multivalued quasi-nonexpansive mappings
is a consequence of Theorem 3.2.

Corollary 3.5 LetH1 andH2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. For each i ∈ N, let Si : H1 → CB(H1) and Ti : H2 → CB(H2) be multivalued
quasi-nonexpansive mappings such that I − Si and I − Ti are demiclosed at zero. Suppose
that � �= ∅ and for each p ∈ �, Si (p) = {p} and Ti (Ap) = {Ap} for all i ∈ N. Let
f : H1 → H1 be a τ -contraction with respect to �, where 0 ≤ τ < 1. Let {xn} ⊂ H1 be a
sequence generated by x1 ∈ H1 and

⎧
⎪⎨

⎪⎩

yn = xn + ∑n
i=1 βn,iγ A∗(wn,i − Axn),

un = αn,0yn + ∑n
i=1 αn,i zn,i ,

xn+1 = ξn f (xn) + (1 − ξn)un, n ∈ N,

(3.17)

where zn,i ∈ Si yn, wn,i ∈ Ti (Axn), the parameter γ , and the sequences {αn,i }∞n=1 for all
i ≥ 0, {βn,i }∞n=1 for all i ∈ N and {ξn}∞n=1 satisfy the following conditions:

(C1) γ ∈
(
0, 1

‖A‖2
)
;

(C2) αn,i ∈ [0, 1) such that αn,i �= 0 for all i ≤ n, lim infn αn,0αn,i > 0 for all i ∈ N, and∑n
i=0 αn,i = 1;

(C3) βn,i ∈ [0, 1] such that βn,i �= 0 for all i ≤ n, lim infn βn,i > 0 for all i ∈ N, and∑n
i=1 βn,i = 1;

(C4) ξn ∈ (0, 1) such that limn→∞ ξn = 0 and
∑∞

n=1 ξn = ∞.

Then the sequence {xn} defined by (3.17) converges strongly to x̂ ∈ � which solves the
variational inequality (3.2).

If Si and Ti in Theorem 3.2 are single-valued mappings, we obtain the following result to
solve the SCFP for two infinite families of single-valued demicontractive mappings.
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Corollary 3.6 Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator. For each i ∈ N, let Si : H1 → H1 and Ti : H2 → H2 be demicontractive
mappings with constants ki and k′

i , respectively, such that I − Si and I − Ti are demiclosed
at zero. Suppose that � �= ∅. Let f : H1 → H1 be a τ -contraction with respect to �, where
0 ≤ τ < 1. Let {xn} ⊂ H1 be a sequence generated by x1 ∈ H1 and

⎧
⎪⎨

⎪⎩

yn = xn + ∑n
i=1 βn,iγ A∗(Ti − I )Axn,

un = αn,0yn + ∑n
i=1 αn,i Si yn,

xn+1 = ξn f (xn) + (1 − ξn)un, n ∈ N,

(3.18)

where the parameter γ , and the sequences {αn,i }, {βn,i } and {ξn} satisfy (C1)–(C4) in
Theorem 3.2. Then the sequence {xn} defined by (3.18) converges strongly to x̂ ∈ � which
solves the variational inequality (3.2).

4 Applications

4.1 The split variational inequality problem

Let K be a nonempty closed convex subset of H, and let F : H → H be a mapping. Recall
that the variational inequality problem is to find a point x∗ ∈ K such that

〈Fx∗, y − x∗〉 ≥ 0 for all y ∈ K . (4.1)

The solution set of the problem (4.1) is denoted by V I P(K , F). It is not difficult to show
that Fix(PK (I −λF)) = V I P(K , F), where λ > 0. It was shown [15] that if F is δ-inverse
strongly monotone, where δ > 0, i.e.,

〈x − y, Fx − Fy〉 ≥ δ‖Fx − Fy‖2 for all x, y ∈ H,

and λ ∈ (0, 2δ), then PK (I − λF) is a nonexpansive mapping and I − PK (I − λF) is
demiclosed at zero.

Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear operator.
Given nonempty closed convex subsets C ⊆ H1 and Q ⊆ H2, and mappings g : H1 → H1

and h : H2 → H2. The split variational inequality problem (SVIP) is to find a point x∗ ∈ C
such that

x∗ ∈ V I P(C, g) and Ax∗ ∈ V I P(Q, h). (4.2)

We obtain the following result which extends [16, Theorem 5.1].

Theorem 4.1 Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator. For each i ∈ N, let Ci and Qi be nonempty closed convex subsets of
H1 and H2, respectively, and let gi : H1 → H1 and hi : H2 → H2 be inverse
strongly monotone operators with constants δi and δ′

i , respectively. Assume that � :={
x ∈ ⋂∞

i=1 V I P(Ci , gi ) : Ax ∈ ⋂∞
i=1 V I P(Qi , hi )

} �= ∅. Let f : H1 → H1 be a con-
traction with respect to �. Let {xn} ⊂ H1 be a sequence generated by x1 ∈ H1 and

⎧
⎪⎨

⎪⎩

yn = xn + ∑n
i=1 βn,iγ A∗(PQi (I − λhi ) − I )Axn,

un = αn,0yn + ∑n
i=1 αn,i PCi (I − λgi )yn,

xn+1 = ξn f (xn) + (1 − ξn)un, n ∈ N,

(4.3)
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where λ ∈ (0, 2δ) with δ := inf{δi , δ′
i : i ∈ N}, the parameter γ , and the sequences {αn,i },

{βn,i } and {ξn} satisfy (C1)–(C4) in Corollary 3.5. Then the sequence {xn} defined by (4.3)
converges strongly to x∗ ∈ �, where x∗ is the unique fixed point of a contraction P� f .

4.2 The split common null point problem

Byrne et al. [5] introduced and studied the split common null point problem (SCNP) as
follows: Given two multivalued mappings B1 : H1 → 2H1 and B2 : H2 → 2H2 , a bounded
linear operator A : H1 → H2, the SCNP for two multivalued mappings is to find a point
x∗ ∈ H1 such that

x∗ ∈ B−1
1 0 and Ax∗ ∈ B−1

2 0, (4.4)

where B−1
1 0 := {x ∈ H1 : 0 ∈ B1x} and B−1

2 0 are null point sets of B1 and B2, respectively.
Byrne et al. [5] proposed algorithms and proved convergence theorems for finding such a
solution of the SCNP (4.4) when B1 and B2 are maximal monotone operators.

Let us recall the maximal monotone operator: Let B be a multivalued mapping ofH into
2H, then B is called a maximal monotone operator if B is monotone, i.e.,

〈x − y, u − v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx, v ∈ By,

where D(B) := {x ∈ H : Bx �= ∅}, and the graph G(B) of B,

G(B) := {(x, u) ∈ H × H : u ∈ Bx},
is not properly contained in the graph of any other monotone operator. For a maximal mono-
tone operator B : H → 2H and λ > 0, the resolvent of B with parameter λ is denoted and
defined by

J B
λ := (I + λB)−1 : H → D(B).

It is known [4] that if B : H → 2H is a maximal monotone operator and λ > 0, then J B
λ is

single-valued, firmly nonexpansive, that is,

‖J B
λ x − J B

λ y‖2 ≤ ‖x − y‖2 − ‖x − J B
λ x‖2 for all x, y ∈ H,

and Fix(J B
λ ) = B−10. Moreover, I − J B

λ is demiclosed at zero.
By applying Theorem 3.2 and properties of the resolvent of maximal monotone operators,

we obtain the following theorem.

Theorem 4.2 LetH1 andH2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone operators, and
let J B1

λ1
and J B2

λ2
be resolvents of B1 and B2, respectively for λ1, λ2 > 0. For each i ∈ N,

let Si : H1 → CB(H1) and Ti : H2 → CB(H2) be multivalued demicontractive mappings
with constants ki and k′

i , respectively, such that I − Si and I − Ti are demiclosed at zero.
Assume that � := � ∩ � �= ∅, where � = {

x ∈ ⋂∞
i=1 Fix(Si ) : Ax ∈ ⋂∞

i=1 Fix(Ti )
}
and

� =
{
x ∈ B−1

1 0 : Ax ∈ B−1
2 0

}
, and for each p ∈ �, Si (p) = {p} and Ti (Ap) = {Ap}

for all i ∈ N. Let f : H1 → H1 be a contraction with respect to �. Let {xn} ⊂ H1 be a
sequence generated by x1 ∈ H1 and

⎧
⎪⎨

⎪⎩

yn = xn + γ
(
βn−1,0A∗(J B1

λ1
− I )Axn + ∑n−1

i=1 βn−1,i A∗(wn,i − Axn)
)
,

un = αn−1yn + αn−1,0 J
B2
λ2

yn + ∑n−1
i=1 αn−1,i zn,i ,

xn+1 = ξn f (xn) + (1 − ξn)un, n ∈ N,

(4.5)
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where zn,i ∈ Si yn, wn,i ∈ Ti (Axn), the parameter γ , and the sequences {αn}∞n=0, {αn,i }∞n=0,{βn,i }∞n=0 for all i ≥ 0, and {ξn}∞n=1 satisfy the following conditions:

(C1) γ ∈
(
0, 1−k′

‖A‖2
)
, where k′ = sup{k′

i : i ∈ N};
(C2) αn ∈ (k, 1) where k = sup{ki : i ∈ N} and αn,i ∈ [0, 1) such that αn,i �= 0 for all

i ≤ n, lim infn(αn − k)αn,i > 0 for all i ∈ N, and αn + ∑n
i=0 αn,i = 1;

(C3) βn,i ∈ [0, 1] such that βn,i �= 0 for all i ≤ n, lim infn βn,i > 0 for all i ≥ 0, and∑n
i=0 βn,i = 1;

(C4) ξn ∈ (0, 1) such that limn→∞ ξn = 0 and
∑∞

n=1 ξn = ∞.

Then the sequence {xn} defined by (4.5) converges strongly to x∗ ∈ �, where x∗ is the unique
fixed point of a contraction P� f .

Proof We set S0 := J B1
λ1

and T0 := J B2
λ2

. Then S0 and T0 are single-valued mappings.
By properties of the resolvent of maximal monotone operators, we have S0 and T0 are 0-
demicontractive, I − S0 and I −T0 are demiclosed at zero, Fix(S0) = B−1

1 0 and Fix(T0) =
B−1
2 0. Thus,

� =
{
x ∈

∞⋂

i=0

Fix(Si ) : Ax ∈
∞⋂

i=0

Fix(Ti )

}
.

Therefore, we can conclude from Theorem 3.2 that {xn} defined by (4.5) converges strongly
to x∗ ∈ �, where x∗ is the unique fixed point of a contraction P� f . ��

5 A numerical example

In this section, we give a numerical result to demonstrate the convergence of our algorithm
in Theorem 3.2.

Example 5.1 Let H1 = R = H2. For each i ∈ N, we define multivalued mappings Si and
Ti as follows:

Si x =
{

{0}, if x < 0,[ x
i+1 , x

]
, if x ≥ 0,

and

Ti x =
{[

0, |x |
i+2

]
, if x < i + 2,

[1, i + 1], if x ≥ i + 2.

It is not difficult to show that Si and Ti are 0-demicontractive, and I − Si and I − Ti are
demiclosed at zero for all i ∈ N. We also define a bouned linear operator A : R → R

by Ax = 3x . Thus, A∗x = 3x and ‖A‖ = 3. It is clear that 0 ∈ �, where � = {
x ∈⋂∞

i=1 Fix(Si ) : Ax ∈ ⋂∞
i=1 Fix(Ti )

}
. For each n ∈ N, i ≥ 0, let

αn,i =

⎧
⎪⎪⎨

⎪⎪⎩

1
2i+1

( n
n+1

)
, if n > i,

1 − n
n+1

(∑n
k=1

1
2k

)
, if n = i,

0, otherwise.

For each n, i ∈ N, we let βn,i = αn−1,i−1. It is easy to see that limn→∞ αn,i = 1
2i+1 ,

limn→∞ βn,i = 1
2i

and
∑n

i=0 αn,i = 1 = ∑n
i=1 βn,i . Put γ = 1

18 , ξn = 1
4500n and let a
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Table 1 Numerical experiment
of the algorithm (5.1)

n yn xn+1 |xn+1 − xn |
1 1.16667 1.66519 0.334814

3 0.35195 0.28048 0.344445

5 0.07012 0.05578 0.069030

7 0.01413 0.01142 0.013708

9 0.00295 0.00242 0.002812

.

.
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.
.
.

.
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.
.
.
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19 0.000008 0.000013 0.000002

21 0.000006 0.000011 0.0000009
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Fig. 1 A gragh of error of the algorithm (5.1)

contraction f : R → R be such that f (x) = 1
2 , then all conditions of Theorem 3.2 hold.

Taking

zn,i =
{
0, if yn < 0,
2yn
i+1 , if yn ≥ 0,

wn,i =
{ |3xn |

2i+4 , if 3xn < i + 2,

1, if 3xn ≥ i + 2,

then an algorithm (3.1) becomes

xn+1 = 1

9000n
+

(
1 − 1

4500n

) {
n

2n + 2

(
yn − zn,n +

n−1∑

i=1

1

2i
(zn,i − zn,n)

)
+ zn,n

}
,

(5.1)

where yn = 1
6

(
3xn + wn,n + ( n−1

n

) ∑n−1
i=1

1
2i

(wn,i − wn,n)
)
, n ∈ N. We first start with the

initial point x1 = 2. The stopping criterion for our testing method is taken as: |xn+1 − xn | <

10−6. Now, a convergence of the algorithm (5.1) is shown by Table 1 and Fig. 1. It is observed
that xn → 0 ∈ �.
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