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Abstract
In this paper, we consider the following nonparametric regression model:

Yni = f (xni ) + εni , i = 1, 2, . . . , n, n ≥ 1,

where xni are known fixed design points from A, where A ⊂ R
d is a given compact set

for some d ≥ 1, f (·) is an unknown regression function defined on A and εni are random
errors, which are assumed to widely orthant dependent (WOD, for short). Firstly, a general
result on complete convergence for partial sums of WOD random variables is obtained,
which has some interest itself. Based on some mild conditions and the complete convergence
result that we established, we further establish the complete consistency of the weighted
estimator in the nonparametric regression model, which improves the corresponding one of
Wang et al. (TEST 20:607–629, 2014). As an application, the complete consistency of the
nearest neighbor estimator is obtained. Finally we provide a numerical simulation to verify
the validity of our result.

Keywords Widely orthant dependent random variables · Weighted estimator ·
Nonparametric regression model · Complete consistency

Mathematics Subject Classification 62G05

1 Introduction

The random variables are usually assumed to be independent in many statistical applications.
However it is not a realistic assumption. Therefore, many statisticians extended this condition
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to various dependence structures and mixing structures. In this paper, we are interested in the
widely orthant dependent (WOD, for short) structure which includes independent random
variables, negatively associated (NA, for short) random variables, negatively superadditive
dependent (NSD, for short) random variables, negatively orthant dependent (NOD, for short)
random variables, and extended negatively dependent (END, for short) random variables as
special cases.

Firstly, let us recall the concepts of complete convergence and stochastic domination.
The concept of complete convergence was introduced by Hsu and Robbins [7] as follows: a
sequence {Xn, n ≥ 1} of random variables converges completely to a constant C if for all
ε > 0,

∞∑

n=1

P(|Xn − C | > ε) < ∞.

By the Borel-Cantelli lemma, complete convergence implies that Xn → C a.s. and so
complete convergence is stronger than a.s. convergence.

The concept of stochastic domination below will be used frequently throughout the paper.

Definition 2.1 A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a nonnegative random variable X if there exists a positive constantC such that

P(|Xn | > x) ≤ CP(X > x)

for all x ≥ 0 and n ≥ 1.

Now, let us recall the concept of WOD random variables, which was introduced by Wang
et al. [27] as follows.

Definition 1.1 A finite collection of random variables X1, X2, . . . , Xn is said to be widely
upper orthant dependent (WUOD, for short) if there exists a finite real number gU (n) such
that for all finite real numbers xi , 1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)

n∏

i=1

P(Xi > xi ). (1.1)

A finite collection of random variables X1, X2, . . . , Xn is said to be widely lower orthant
dependent (WLOD, for short) if there exists a finite real number gL(n) such that for all finite
real numbers xi , 1 ≤ i ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)

n∏

i=1

P(Xi ≤ xi ). (1.2)

If X1, X2, . . . , Xn are bothWUOD andWLOD, we then say that X1, X2, . . . , Xn are widely
orthant dependent (WOD, for short) random variables, and gU (n), gL (n) are called domi-
nating coefficients. A sequence {Xn, n ≥ 1} of random variables is said to be WOD if every
finite subcollection is WOD.

An array {Xni , 1 ≤ i ≤ kn, n ≥ 1} of random variables is said to be rowwise WOD if for
every n ≥ 1, {Xni , 1 ≤ i ≤ kn} are WOD random variables.

It follows from (1.1) and (1.2) that gU (n) ≥ 1 and gL(n) ≥ 1. If gU (n) = gL(n) = M
for all n ≥ 1, where M is a positive constant, then {Xn, n ≥ 1} is called END, which was
introduced by Liu [14]. If M = 1, then {Xn, n ≥ 1} is called NOD, which was introduced by
Lehmann [12] and carefully studied by Joag-Dev and Proschan [11]. Note that NA implies
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NOD.Furthermore,Hu [10] pointedout thatNSDrandomvariables areNOD.Hence, the class
of WOD random variables includes independent random variables, NA random variables,
NSD random variables, NOD random variables, and END random variables as special cases.
So, studying the limit behavior of WOD random variables and its applications are of great
interest.

Since Wang et al. [27] introduced the concept of WOD random variables, many authors
were devoted to studying the probability limit theory and statistical large sample theory.Wang
et al. [27] provided some examples which showed that the class of WOD random variables
contains some common negatively dependent random variables, some positively dependent
random variables and some others; in addition, they studied the uniform asymptotics for
the finite-time ruin probability of a new dependent risk model with a constant interest rate.
Wang and Cheng [31] presented some basic renewal theorems for a randomwalk with widely
dependent increments and gave some applications.Wang et al. [32] studied the asymptotics of
the finite-time ruin probability for a generalized renewal risk model with independent strong
subexponential claim sizes and widely lower orthant dependent inter-occurrence times. Chen
et al. [1] considered uniform asymptotics for the finite-time ruin probabilities of two kinds
of nonstandard bidimensional renewal risk models with constant interest forces and diffu-
sion generated by Brownian motions. Shen [19] established the Bernstein type inequality for
WOD random variables and gave some applications. Wang et al. [29] studied the complete
convergence for WOD random variables and gave its applications in nonparametric regres-
sion models. Yang et al. [34] established the Bahadur representation of sample quantiles
for WOD random variables under some mild conditions. Shen [21] obtained the asymptotic
approximation of inverse moments for a class of nonnegative random variables, including
WOD random variables as special cases. Qiu and Chen [16] studied the complete and com-
plete moment convergence for weighted sums of WOD random variables. Wang and Hu
[28] investigated the consistency of the nearest neighbor estimator of the density function
based onWOD samples. Chen et al. [2] established a more accurate inequality for identically
distributed WOD random variables, and gave its application to limit theorems, including the
strong law of large numbers, the complete convergence, the a.s. elementary renewal theorem
and the weighted elementary renewal theorem. Shen et al. [23] obtained some exponential
probability inequalities for WOD random variables and gave some applications, and so on.
In this work, we will further study the convergence properties for WOD random variables,
and then apply it to nonparametric regression model.

Consider the following nonparametric regression model:

Yni = f (xni ) + εni , i = 1, 2, . . . , n, n ≥ 1, (1.3)

where xni are known fixed design points from A, where A ⊂ R
d is a given compact set for

some d ≥ 1, f (·) is an unknown regression function defined on A and εni are random errors.
Assume that for each n, {εni , 1 ≤ i ≤ n} has the same distribution as that of {εi , 1 ≤ i ≤ n}.
As an estimator of f (·), the following weighted regression estimator will be considered:

fn(x) =
n∑

i=1

Wni (x)Yni , x ∈ A ⊂ R
d , (1.4)

where Wni (x) = Wni (x; xn1, xn2, . . . , xnn), i = 1, 2, . . . , n are the weight functions.
The above weighted estimator fn(x) was first proposed by Stone [25] and adapted by

Georgiev [4] to the fixed design case and then constantly studied by many authors. For
instance, Georgiev and Greblicki [6], Georgiev [5] and Müller[15] among others studied the
consistency and asymptotic normality for theweighted estimator fn(x)when εni are assumed
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to be independent. When εni are dependent errors, many authors have also obtained many
interesting results in recent years. Fan [3] extended the work of Georgiev [5] and Müller
[15] in the estimation of the regression model to the case where form an Lq -mixingale
sequence for some 1 ≤ q ≤ 2. Roussas [17] discussed strong consistency and quadratic
mean consistency for fn(x) under mixing conditions. Roussas et al. [18] established asymp-
totic normality of fn(x) assuming that the errors are from a strictly stationary stochastic
process and satisfying the strong mixing condition. Tran et al. [26] discussed again asymp-
totic normality of fn(x) assuming that the errors form a linear time series, more precisely,
a weakly stationary linear process based on a martingale difference sequence. Hu et al. [8]
studied the asymptotic normality for double array sum of linear time series. Hu et al. [9]
gave the mean consistency, complete consistency and asymptotic normality of regression
models with linear process errors. Liang and Jing [13] presented some asymptotic properties
for estimates of nonparametric regression models based on negatively associated sequences.
Shen [19] presentend the Bernstein-type inequality for widely dependent sequence and gave
its applications to nonparametric regression models. Wang et al. [29] studied the complete
convergence forWOD random variables and gave its application to nonparametric regression
models. Wang et al. [28] established some results on complete consistency for the weighted
estimator of nonparametric regression models based on END random errors. Shen et al. [24]
presented the Rosenthal-type inequality for NSD random variables and gave its application
to nonparametric regression models. Yang et al. [35] provided the convergence rate for the
complete consistency of the weighted estimator of nonparametric regression models based
on END random errors, and so on.

Unless otherwise specified, we assume throughout the paper that fn(x) is defined by (1.4).
For any function f (x), we use c( f ) to denote all continuity points of the function f on A.
The norm ‖x‖ is the Eucledean norm. For any fixed design point x ∈ A, the following
assumptions on weight function Wni (x) will be used:

(H1)
∑n

i=1 Wni (x) → 1 as n → ∞;
(H2)

∑n
i=1 |Wni (x)| ≤ C < ∞ for all n;

(H3)
∑n

i=1 |Wni (x)| · | f (xni ) − f (x)| I (‖xni − x‖ > a) → 0 as n → ∞ for all a > 0.

Recently, Wang et al. [29] established the following result on complete consistency for
the weighted estimator fn(x) based on the assumptions above.

Theorem A Let {εn, n ≥ 1} be a sequence of WOD random variables with mean zero, which
is stochastically dominated by a random variable X. Suppose that the conditions (H1)–(H3)
hold true, and

max
1≤i≤n

|Wni (x)| = O
(
n−1/p) (1.5)

holds for some p ≥ 1. Assume further that there exists some 0 ≤ λ < 1 such that g(n) =
O(nλ/p). If E |X |2p+λ < ∞, then for any x ∈ c( f ),

fn(x) → f (x) completely, as n → ∞. (1.6)

In Theorem A, the moment condition E |X |2p+λ < ∞ depends not only on p but also
on λ, which seems strange. We wonder whether E |X |2p+λ < ∞ could be improved to
E |X |2p < ∞. In addition, whether g(n) = O(nλ/p) for some 0 ≤ λ < 1 and p ≥ 1 could
be replaced by a more general condition g(n) = O(nλ) for some λ ≥ 0. The answers are
positive. Our main result is as follows.
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Theorem 1.1 Let {εn, n ≥ 1} be a sequence ofWOD random variables with mean zero, which
is stochastically dominated by a random variable X. Suppose that the conditions (H1)–(H3)
hold true, and (1.5) holds for some p ≥ 1. Assume further that there exists some λ ≥ 0 such
that g(n) = O(nλ). If E |X |2p < ∞, then (1.6) holds for any x ∈ c( f ).

Remark 1.1 Comparing Theorem 1.1 with TheoremA, we can see that the moment condition
E |X |2p < ∞ in Theorem 1.1 is weaker than E |X |2p+λ < ∞ in Theorem A. In addition,
the condition on dominating coefficients g(n) = O(nλ) in Theorem 1.1 is also weaker than
g(n) = O(nλ/p) in Theorem A. Hence, the result of Theorem 1.1 generalizes and improves
the corresponding one of Theorem A.

Remark 1.2 If g(n) = O(1), then sequence of WOD random variables reduces to the
sequence of END random variables. Hence, Theorem 1.1 holds for END random variables. In
addition, the result of Theorem 1.1 generalizes the corresponding one of Shen [22, Corollary
3.1] for END random variables to the case of WOD random variables.

2 An application to nearest neighbor estimation and numerical
simulation

In this section, we will give an application of the main result to nearest neighbor estimation
and carry out a numerical simulation to verify the result that we obtained. Wang et al. [29]
have shown that conditions (H1)–(H3) are satisfied for the nearest neighbor estimator by
choosing kn = 	n1/p
 for some p > 1, where here and below 	x
 denotes the integer part
of x . We immediately obtain the following result by Theorem 1.1. The details are omitted.

Theorem 2.1 Let {εn, n ≥ 1} be a sequence of WOD random variables with mean zero,
which is stochastically dominated by a random variable X. Suppose that fn(x) is the nearest
neighbor estimator of f (x) and kn = 	n1/p
 for some p > 1. Assume further that there exists
some λ ≥ 0 such that g(n) = O(nλ). If E |X |2p < ∞, then (1.6) holds for any x ∈ c( f ).

Now, we give the simulation study. The data are generated frommodel (1.3). For any fixed
n ≥ 3, let (ε1, ε2, . . . , εn) ∼ Nn(0,�), where 0 represents zero vector and

� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.25 −0.5 0 · · · 0 0 0
−0.5 1.25 −0.5 · · · 0 0 0
0 −0.5 1.25 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 1.25 −0.5 0
0 0 0 · · · −0.5 1.25 −0.5
0 0 0 · · · 0 −0.5 1.25

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

By Joag-Dev and Proschan [11], it can be seen that (ε1, ε2, . . . , εn) is a NA vector for each
n ≥ 3, and thus is a WOD vector. Choosing kn = 	n0.5
 and taking the points x = i/n for
i = 1, 2, . . . , n and the sample sizes n as n = 50, 100, 200 respectively, we use R software
to compute the estimator fn(x) of f (x)with f (x) = sin(2πx) and f (x) = x2 for 500 times.
We obtain the comparison of fn(x) and f (x) in Figs. 1, 2, 3, 4, 5 and 6 as follows.

Figures 1, 2 and 3 are the comparison of fn(x) and f (x) with f (x) = sin(2πx) and
Figs. 4, 5 and 6 are the comparison of fn(x) and f (x) with f (x) = x2, respectively, where
the solid lines are the true functions and the dashed lines are the estimators. From Figs. 1, 2

123



2324 R. Zhang et al.

0.0 0.2 0.4 0.6 0.8 1.0

Experiments times 500

si
n(

2π
x)

−1
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 1 Comparison of fn(x) and f(x) = sin(2πx) with n = 50
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Fig. 2 Comparison of fn(x) and f(x) = sin(2πx) with n = 100
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Fig. 3 Comparison of fn(x) and f(x) = sin(2πx) with n = 200

and 3 we can see a good fit of the true function. There are some fluctuations in Figs. 2 and
3, that is because the value of x are divided into more fragments as n increases. Especially,
when x closes to 0 or 1, the estimator converges to the true value as n increases. Figures 4, 5
and 6 also reflect the same result, that is, the estimator converges to the true function as the
sample sizes n increases. These basically agree with the results we obtained in the paper.

3 Some lemmas

In this section, we will show some crucial lemmas which will be used to prove the main
results. The first one is a basic property for WOD random variables, which can be found in
Wang et al. [29].

Lemma 3.1 Let {Xn, n ≥ 1} be a sequence of WOD random variables.

(i) If { fn(·), n ≥ 1} are all nondecreasing (or all nonincreasing), then { fn(Xn), n ≥ 1} are
still WOD.

(ii) For each n ≥ 1 and any s ∈ R,

E exp

{
s

n∑

i=1

Xi

}
≤ g(n)

n∏

i=1

E exp{sXi }.

The next one is a complete convergence result for arrays of rowwiseWOD random variables,
which has some interest itself and plays a key role to prove the main result of the paper.
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Fig. 4 Comparison of fn(x) and f(x) = x2 with n = 50
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Fig. 5 Comparison of fn(x) and f(x) = x2 with n = 100
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Fig. 6 Comparison of fn(x) and f(x) = x2 with n = 200

Lemma 3.2 Let {Xni , 1 ≤ i ≤ n, n ≥ 1} be an array of rowwiseWOD random variables with
mean zero and {an, n ≥ 1} be a sequence of positive constants. Suppose that the following
conditions hold:

(i) max1≤i≤n |Xni | ≤ Can a.s.;
(ii)

∑n
i=1 EX2

ni = o(an);
(iii) there exists some β > 0 such that

∞∑

n=1

g(n)e− β
an < ∞.

Then for any ε > 0,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ ≥ ε

)
< ∞, (3.1)

i.e.
n∑

i=1
Xni → 0 completely as n → ∞.

Proof Noting that EXni = 0, we have by the elementary inequality ex ≤ 1 + x + 1
2 x

2e|x |
for x ∈ R and condition (i) that
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E exp(t Xni ) ≤ E

{
1 + t Xni + 1

2
t2X2

ni exp(|t Xni |)
}

= 1 + 1

2
t2EX2

ni exp(|t Xni |)

≤ exp

{
1

2
t2EX2

ni exp(|t Xni |)
}

≤ exp

{
1

2
t2eCtan E X2

ni

}
. (3.2)

By Markov’s inequality and Lemma 3.1 (ii), we can get that

P

(
n∑

i=1

Xni ≥ ε

)
≤ e−tεE exp

{
t

n∑

i=1

Xni

}

≤ g(n)e−tε
n∏

i=1

E exp(t Xni ),

which together with (3.2) and condition (ii) yields that

P

(
n∑

i=1

Xni ≥ ε

)
≤ g(n)e−tε exp

{
1

2
t2eCtan

n∑

i=1

EX2
ni

}

≤ g(n)e−tε exp

{
1

2
t2eCtan o(an)

}
. (3.3)

Setting t = β+1
εan

in (3.3), we can see that

P

(
n∑

i=1

Xni ≥ ε

)
≤ g(n)e− β+1

an exp

{
1

2

(
β + 1

ε

)2

o

(
1

an

)
e
C(β+1)

ε

}

≤ g(n)e− β
an (3.4)

holds for all n sufficiently enough. Hence, we have by (3.4) and condition (iii) that

∞∑

n=1

P

(
n∑

i=1

Xni ≥ ε

)
≤

∞∑

n=1

g(n)e− β
an < ∞. (3.5)

It follows by Lemma 3.1 (i) that {−Xni , 1 ≤ i ≤ n, n ≥ 1} is still an array of rowwise WOD
random variables with mean zero. Hence, we have by (3.5) that

∞∑

n=1

P

(
n∑

i=1

Xni ≤ −ε

)
< ∞. (3.6)

Note for any ε > 0,

P

(∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ ≥ ε

)
= P

(
n∑

i=1

Xni ≥ ε

)
+ P

(
n∑

i=1

Xni ≤ −ε

)
. (3.7)

Therefore, the desired result (3.1) follows from (3.5)–(3.7) immediately. The proof is com-
pleted. �


123



On complete consistency... 2329

The last one is a basic property for stochastic domination, which can be found inWu [33],
Shen [20] among others.

Lemma 3.3 Let {Xni , 1 ≤ i ≤ n, n ≥ 1} be an array of random variables which is stochas-
tically dominated by a random variable X. For any α > 0 and b > 0, it follows that

E |Xni |α I (|Xni | ≤ b) ≤ C1[E |X |α I (|X | ≤ b) + bαP(|X | > b)],
E |Xni |α I (|Xni | > b) ≤ C2E |X |α I (|X | > b),

where C1 and C2 are positive constants.

4 Proof of Theorem 1.1

For any x ∈ c( f ) and a > 0, it follows by (1.3) and (1.4) that

|E fn(x) − f (x)| ≤
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)|I (‖xni − x‖ ≤ a)

+
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)|I (‖xni − x‖ > a)

+| f (x)| ·
∣∣∣∣∣

n∑

i=1

Wni (x) − 1

∣∣∣∣∣ . (4.1)

Because x ∈ c( f ), it follows that for any ε > 0, there exists a δ > 0 such that | f (x∗) −
f (x)| < ε when ‖x∗ − x‖ < δ. Letting a ∈ (0, δ) in (4.1), we have

|E fn(x) − f (x)| ≤ ε

n∑

i=1

|Wni (x)| + | f (x)| ·
∣∣∣∣∣

n∑

i=1

Wni (x) − 1

∣∣∣∣∣

+
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)|I (‖xni − x‖ > a). (4.2)

By (4.1) and (H1)–(H3), we can get that for any x ∈ c( f ),

lim
n→∞ E fn(x) = f (x). (4.3)

Noting that Wni (x) = Wni (x)+ − Wni (x)−, so without loss of generality, we assume that
Wni (x) > 0 and max1≤i≤n Wni (x) ≤ n−1/p for any x ∈ c( f ). In view of (4.3), to prove
(1.6), we only need to show

fn(x) − E fn(x) =
n∑

i=1

Wni (x)εni
.=

n∑

i=1

Tni → 0 completely, as n → ∞,

i.e.

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Tni

∣∣∣∣∣ > ε

)
< ∞ for any ε > 0, (4.4)

where Tni = Wni (x) · εni .
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For any ε > 0, take q such that p < q < 2p and denote for i = 1, 2, . . . , n and n ≥ 1
that

Xni (1) = −n
1
q I (εni < −n

1
q ) + εni I (|εni | ≤ n

1
q ) + n

1
q I (εni > n

1
q ),

Xni (2) = (εni − n
1
q )I (n

1
q < εni ≤ εn1/p/N ),

Xni (3) = (εni + n
1
q )I (−n

1
q > εni ≥ −εn1/p/N ),

Xni (4) = (εni − n
1
q )I (εni > εn1/p/N ) + (εni + n1/p)I (εni < −εn1/p/N ),

where N is a positive integer, whose value will be specified later. Noting that Xni (1) +
Xni (2) + Xni (3) + Xni (4) = εni , we know that

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Tni

∣∣∣∣∣ > ε

)
≤

4∑

j=1

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)Xni ( j)

∣∣∣∣∣ >
ε

4

)

.= I1 + I2 + I3 + I4. (4.5)

Thus, in order to prove (4.4), we only need to prove I j < ∞ for j = 1, 2, 3, 4.
First, we will prove I1 < ∞. Noting that Eεi = 0, we have by Markov’s inequality,

condition (H2) and Lemma 3.3 that
∣∣∣∣∣

n∑

i=1

Wni (x)EXni (1)

∣∣∣∣∣ ≤ n1/q
n∑

i=1

Wni (x)P
(|εni | > n1/q

) +
∣∣∣∣∣

n∑

i=1

Wni (x)Eεni I (|εni | ≤ n1/q)

∣∣∣∣∣

= n1/q
n∑

i=1

Wni (x)P
(|εi | > n1/q

) +
∣∣∣∣∣

n∑

i=1

Wni (x)Eεi I (|εi | > n1/q )

∣∣∣∣∣

≤ 2
n∑

i=1

Wni (x)E |X |I (|X | > n1/q)

≤ 2n−(2p−1)/q
n∑

i=1

Wni (x)E |X |2p I (|X | > n1/q)

≤ CE |X |2pn−(2p−1)/q → 0, as n → ∞,

which implies that for all n large enough,
∣∣∣∣∣

n∑

i=1

Wni (x)EXni (1)

∣∣∣∣∣ <
ε

8
.

Thus, to prove I1 < ∞, we only need to show

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)(Xni (1) − EXni (1))

∣∣∣∣∣ >
ε

8

)
< ∞. (4.6)

For fixed n ≥ 1 and x ∈ c( f ), we can see that {Wni (x)(Xni (1) − EXni (1)), 1 ≤ i ≤ n} are
still mean zero WOD random variables by Lemma 3.1. To prove (4.6), we will make the use
of Lemma 3.2, where Xni = Wni (x)(Xni (1) − EXni (1)) and an = (log n)−1. Now, we will
check that all conditions of Lemma 3.2 hold true.

Since p < q , we can get that

max
1≤i≤n

|Wni (x)(Xni (1) − EXni (1))| ≤ 2n1/q

n1/p
= O((log n)−1)

.= O(an), (4.7)
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which implies that condition (i) of Lemma 3.2 satisfies.
Noting that E |X |2p < ∞ implies EX2 < ∞, since p ≥ 1, we have by Lemma 3.3,

condition (H2) and (1.5) that

n∑

i=1

E |Wni (x)(Xni (1) − EXni (1))|2 ≤
n∑

i=1

W 2
ni (x)EX2

ni (1)

≤ max
1≤i≤n

Wni (x)
∑n

i=1
Wni (x)Eε2i

≤ Cn−1/p = o((log n)−1), (4.8)

which implies that condition (ii) of Lemma 3.2 satisfies.
For condition (iii) of Lemma 3.2, noting that g(n) = O(nδ) for some δ ≥ 0, so we only

need to choose β > 1. In this case, condition (iii) of Lemma 3.2 satisfies. Therefore, (4.6)
follows from Lemma 3.2 immediately, and thus, I1 < ∞ holds.

Next, wewill show that I2 < ∞. By the definition of Xni (2), we can see that 0 ≤ Xni (2) <

εn1/p/N . On the other hand, we have 0 < Wni (x) ≤ 1/n1/p . Hence, for any ε > 0,∣∣∑n
i=1 Wni (x)Xni (2)

∣∣ = ∑n
i=1 Wni (x)Xni (2) > ε/4 yields that there exist at least N ′s

nonzero Xni (2). Thus, we have by the definition ofWOD random variables and E |X |2p < ∞
that

P

(∣∣∣∣∣

n∑

i=1

Wni (x)Xni (2)

∣∣∣∣∣ >
ε

4

)

≤ P
(
there exist at least N ′s nonzero Xni (2)

)

≤
∑

1≤i1<i2<···<iN≤n

P(Xni1(2) �= 0, Xni2(2) �= 0, . . . , XniN (2) �= 0)

≤
∑

1≤i1<i2<···<iN≤n

P(εni1 > n1/q , εni2 > n1/q , . . . , εniN > n1/q)

≤ g(n)
∑

1≤i1<i2<···<iN≤n

P(εni1 > n1/q)P(εni2 > n1/q) · · · P(εniN > n1/q)

≤ g(n)

[
n∑

i=1

P(εi > n1/q)

]N

≤ g(n)
[
nP(|X | > n1/q)

]N

≤ g(n)n−(2p/q−1)N . (4.9)

Noting that g(n) = O(nδ) for some δ ≥ 0, we have by (4.9) that

I2 =
∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)Xni (2)

∣∣∣∣∣ >
ε

4

)
≤ C

∞∑

n=1

nδ−(2p/q−1)N < ∞, (4.10)

provided that N >
q(δ+1)
2p−q .

For I3, due to−εn1/p/N < Xni (3) ≤ 0 and0 < Wni (x) ≤ 1/n1/p ,
∣∣∑n

i=1 Wni (x)(Xni (3)
∣∣

= −∑n
i=1 Wni (x)Xni (3) > ε implies that there exist at lease N ′s nonzero Xni (3). Analo-

gous to the proof of I2 < ∞, we have I3 < ∞.
At last, we will show that I4 < ∞. Noting that E |X |2p < ∞, we have
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I4
.=

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)Xni (4)

∣∣∣∣∣ >
ε

4

)

≤
∞∑

n=1

n∑

i=1

P(|εi | > εn1/p/N )

≤ C
∞∑

n=1

nP(|X | > εn1/p/N )

≤ CE |X |2p < ∞, (4.11)

which implies that I4 < ∞. Thus, (4.4) follows from (4.5) and I1 < ∞, I2 < ∞, I3 <

∞, I4 < ∞ immediately. This completes the proof of the theorem. �
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