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Abstract In this paper, we investigate the geometric property (k-β) for any fixed integer
k ≥ 1 of the space lΦ((En)) generated by aMusielak–Orlicz functionΦ and a sequence (En)

of finite dimensional spaces En , n ∈ N, equippedwith both the Luxemburg and the Amemiya
norms. As a consequence, we obtain the property (k-β) of Musielak–Orlicz–Cesàro spaces
cesΦ using the approach recently considered by Saejung. Some applications to the Cesàro
sequence spaces of order α and Cesàro difference sequence spaces of order m are also noted.
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Mathematics Subject Classification 46B20 · 46A45 · 46B45

1 Introduction

Geometric properties of Banach space such as the Kadec–Klee property [or (H)-property],
Opial property, rotundity, nearly uniformly convexity property (NUC), (β)-property and
their several generalizations play fundamental role for their various applications in the fixed
point theory, optimization theory, differential and integral equations etc.

In the sequel, we shall initiate with basic notions of geometric properties of Banach spaces
and Musielak–Orlicz spaces.

Let (X, ‖.‖) be a Banach space and l0 be the space of all real sequences x = (x(i))∞i=1.
Let S(X) and B(X) be denote the unit sphere and closed unit ball of X , respectively.
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Recall that a sequence (xl) ⊂ X , xl = (xl(i))∞i=1, l ∈ N, is said to be ε-separated sequence
if the separation of sequence (xl), sep(xl) = inf{‖xl − xm‖ : l �= m} > ε for some ε > 0.

Define for any x /∈ B(X), the drop D(x, B(X)) = conv({x}∪ B(X)), where conv denotes
the convex hull. Rolewicz [28] introduced the property (β) as follows:

For any subset C of X , the Kuratowski measure of noncompactness of C is defined as the
infimum α(C) of those ε > 0 for which there is a covering of C by a finite number of sets
of diameter less than ε. Then a Banach space X is said to have the property (β) if, for any
ε > 0, there exists δ > 0 such that ‖x‖ ∈ (1, 1 + δ) implies

α(D(x, B(X))\B(X)) < ε.

A very useful characterization of property (β) was given by Kutzarova [23] in the following
way:

Banach space X has the property (β) if and only if, for every ε > 0, there exists δ > 0
such that, for each element x ∈ B(X) and each sequence (xn) ⊂ B(X) with sep(xn) ≥ ε,
there is an index k such that

∥
∥
∥
∥

x + xk

2

∥
∥
∥
∥

≤ 1 − δ.

Rolewicz [28] proved that uniform convexity of X implies the property (β) and the property
(β) implies nearly uniformly convex (or nearly uniform convexity) (NUC). Therefore, we
have

Banach-Saks Property ⇐ Property (β) ⇒(NUC) ⇒ (D) ⇒ Reflexivity

⇓
(U K K ) ⇒ Property (H).

We refer to the reader [11] for definitions and above implications of the property (β). Let
k ≥ 1 be an integer. A Banach space is said to have the (k-β) property (see [22]) if for each
ε > 0 there exists a δ, 0 < δ < 1 such that for every element x ∈ B(X) and any sequence
(xl) ⊂ B(X) with sep(xl) > ε there are indices l1, l2, . . . , lk ∈ N for which

∥
∥
∥
∥

x + xl1 + xl2 + . . . + xlk

k + 1

∥
∥
∥
∥

≤ 1 − δ holds.

Note that (1-β) property coincides with (β) property. Let k ≥ 2 be an integer. A Banach
space is said to be the k-nearly uniformly convex property (k-NUC) (see [22]) if for any
ε > 0, there exists a δ > 0 such that for every sequence (xl) ⊂ B(X) with sep(xl) > ε there
are indices l1, l2, . . . , lk ∈ N for which

∥
∥
∥
∥

xl1 + xl2 + . . . + xlk

k

∥
∥
∥
∥

≤ 1 − δ holds.

Kutzarova [22] has shown that if a Banach space X is (k-NUC) for some integer k ≥ 2,
then X is (NUC). But the converse is not true in general, for example, the Baernstein space
B is (NUC) (see [2]) but it is not (k-NUC) for any integer k ≥ 2. Further, it is proved that
for any Banach space X , (k-β) ⇒ ((k + 1)-NUC) for every k ≥ 1 and (k-NUC) ⇒ (k-β)

for every k ≥ 2. Indeed, (k-β) ⇒ ((k + 1)-β) for k ≥ 1 and hence if X is (k-β) for k ≥ 1
then X is (k-NUC) for k ≥ 2. But (k-β) spaces and hence ((k + 1)-NUC) spaces for k ≥ 1
need not be (1-β) spaces (i.e., spaces with (β)-property). For example, Schachermayer’s
space is (8-NUC) that is (8-β) but not (1-β) (see [22] for details).
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A map ϕ : R → [0,∞] is said to be an Orlicz function (see [5]) if it is an even, convex,
continuous at 0, left continuous on R+, ϕ(0) = 0 and ϕ(u) → ∞ as u → ∞. A sequence
Φ = (ϕn)∞n=1 of Orlicz functions ϕn is called Musielak–Orlicz function. We say that a
Musielak–Orlicz function Φ satisfies condition (∞1) if

lim
u→+∞

ϕn(u)

u
= +∞ for each n ∈ N. (∞1)

For a Musielak–Orlicz function Φ, its complementary function Ψ = (ψn)∞n=1 of Φ in the
sense of Young is defined as below:

ψn(u) = sup
v≥0

{ |u|v − ϕn(v)} for all u ∈ R and n ∈ N.

Let (En, ‖ · ‖n) be finite dimensional real Banach spaces for each n ∈ N. For a given
sequence (En), we consider elements from the cartesian product

∏∞
n=1 En , namely sequences

x = (x(n))∞n=1 such that x(n) ∈ En for each n ∈ N. For a given Musielak–Orlicz function
Φ, on

∏∞
n=1 En a convex modular σΦ(x) is defined as follows:

σΦ(x) =
∞
∑

n=1

ϕn(‖x(n)‖n)

and the linear space

lΦ((En)) =
{

x ∈
∞
∏

n=1

En : σΦ(r x) < ∞ for some r > 0

}

is called Musielak–Orlicz sequence space generated by a Musielak–Orlicz function Φ and
a sequence (En) of finite dimensional spaces. Throughout this paper, ‖ · ‖n will be written
by ‖ · ‖ in order to avoid ambiguity. We consider lΦ((En)) induced by the Luxemburg norm
‖ · ‖L

Φ and the Amemiya norm ‖ · ‖A
Φ are defined below:

‖x‖L
Φ = inf

{

r > 0 : σΦ

(
x

r

)

≤ 1

}

and ‖x‖A
Φ = inf

k>0

{
1

k
(1 + σΦ(kx))

}

.

Indeed, these two norms are equivalent as evident from the inequality ‖x‖L
Φ ≤ ‖x‖A

Φ ≤
2‖x‖L

Φ (see [5]). The Musielak–Orlicz sequence space lΦ((En)) equipped with the norms
‖·‖L

Φ as well as ‖·‖A
Φ forms a Banach space denoted by l L

Φ((En)) and l A
Φ((En)), respectively.

It is to be pointed out here that for any x ∈ l A
Φ((En)) there exists a k > 0 such that

‖x‖A
Φ = 1

k (1 + σΦ(kx)) whenever for each n ∈ N, ϕn(u)
u → ∞ as u → ∞. If ϕ(t) = |t |p

for 1 ≤ p < ∞ and ϕn(t) = |t |pn for 1 ≤ p̂ < ∞, p̂ = (pn), n ∈ N, then lΦ((En)) reduces
to l p((En)) and l p̂((En)), respectively. Basic properties of Orlicz function and deep results
on the geometry of Orlicz spaces have been found in the dissertation of Chen (see [5]).

A Musielak–Orlicz function Φ = (ϕn)∞n=1 satisfies the δ02-condition, denoted by Φ ∈ δ02 ,
if there are positive constants a, K , a natural number m and a sequence (cn)∞n=1 of positive
numbers such that (cn)∞n=m ∈ l1 and the inequality

ϕn(2u) ≤ Kϕn(u) + cn (1)

holds for every n ∈ N and u ∈ R whenever ϕn(u) ≤ a. If a Musielak–Orlicz function Φ

satisfies the δ02-condition with m = 1, then Φ is said to be satisfying the δ2-condition (see
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[17]). A Musielak–Orlicz function Φ = (ϕn)∞n=1 satisfies the condition (∗) (see [18]) if for
any ε ∈ (0, 1) there is a δ > 0 such that

ϕn(u) < 1 − ε implies ϕn((1 + δ)u) ≤ 1, for all n ∈ N and u ≥ 0. (2)

A Musielak–Orlicz function Φ is to said to be vanishing only at zero, which is denoted by
Φ > 0, if ϕn(u) > 0 for any n ∈ N and u > 0.
The Musielak–Orlicz–Cesàro space cesΦ was introduced by Wangkeeree in [31] and it was
defined by

cesΦ =
{

x ∈ l0 : ςΦ(r x) =
∞
∑

n=1

ϕn

(

r

n

n
∑

k=1

|x(k)|
)

< ∞ for some r > 0

}

.

The sequence space cesΦ is a normed linear space equipped with both the Luxemburg norm
‖ · ‖L

Φ and the Amemiya norm ‖ · ‖A
Φ defined similarly for the convex modular ςΦ(x). When

a Musielak–Orlicz function Φ is replaced by an Orlicz function ϕ only, then cesΦ reduces
to the Orlicz–Cesàro space cesϕ studied by Cui et al. [10]. Several geometric properties for
the spaces cesϕ , Cesàro function spaces and cesΦ are considered in [10,16,19,21] and [31],
respectively.

In recent years, a quite attention is given to the study of certain geometric properties such as
the Kadec–Klee property (H)-property, uniform Kadec–Klee property, uniform Opial prop-
erty, (β)-property, rotundity, locally uniform rotundity, nearly uniform convexity (NUC),
k-nearly uniform convexity (k-NUC), k ≥ 2 etc. for Cesàro spaces, Cesàro–Orlicz sequence
spaces, Musielak–Orlicz sequence spaces and others. For instance, from a geometric point
of view, the property (β) is extensively studied in many research articles, for example in [6],
and [7]. The property (β) is one of the most significant geometric properties of Banach space
because if a Banach space X has the (β)-property then it implies that X is reflexive, both X
and its dual X∗ have the fixed point property, X is (NUC), has the (H) property and drop
property. On the other hand, property (k-NUC), k ≥ 2 is studied for Cesàro spaces in [8], for
Orlicz spaces in [9], for generalized Cesàro spaces in [30] and for Cesàro–Musielak–Orlicz
sequence spaces in [31].

Saejung [29] studied the geometry of Cesàro sequence spaces cesp for 1 < p < ∞
using an alternative approach. Indeed, he proved that cesp for 1 < p < ∞ are isometrically
embedded in the infinite l p-sum l p((R

n)) of finite dimensional spaces Rn and studied the
property (β) and the uniform Opial property of l p((R

n)). As these properties are inherited
by isometric subspaces so cesp possess these properties too. In the direction of Saejung
[29], we shall first establish that cesΦ is linearly isometric with a closed subspace of the
space lΦ((En)) generated by an Musielak–Orlicz function Φ and a sequence (En) of finite
dimensional spaces En , n ∈ N. Similarly, we then show that the space lΦ((En)) has the
property (k-β) for fixed integer k ≥ 1 induced by both the Luxemburg and the Amemiya
norms. Since the property (k-β) is inherited by subspaces, consequently cesΦ will have the
same property. As a consequence, we obtain parallel results related to the property (β), (k-
NUC) property for fixed integer k ≥ 2 of the spaces such as Cesàro in [8], Orlicz in [9],
generalized Cesàro in [30], Cesàro–Musielak–Orlicz in [31], Cesàro–Orlicz in [10]. Further,
in the last section of this paper we shall give some applications to ces(α, p), the Cesàro
spaces of order α and O(m)

p̂ , the Cesàro difference spaces of order m.
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2 Main results

First, we present the following lemma.

Lemma 1 The Musielak–Orlicz–Cesàro space cesΦ is linearly isometric with a closed sub-
space of lΦ((Rn)), where R

n is the Euclidean space endowed with the following norm:
‖(α1, . . . , αn)‖ =∑n

i=1 |αi | for (α1, . . . , αn) ∈ R
n.

Proof For all x = (x(i)) ∈ cesΦ , the following linear isometric map T : cesΦ → lΦ((Rn))

is defined:

T (x(i)) =
(

x(1),

(
x(1)

2
,

x(2)

2

)

, . . . ,

(
x(1)

n
,

x(2)

n
, . . . ,

x(n)

n

)

, . . .

)

.

Then

‖T ((x(i)))‖lΦ((Rn))

= ‖T (x(1), x(2), . . . , x(i), . . .)‖lΦ((Rn))

=
∥
∥
∥

(

x(1),
( x(1)

2
,

x(2)

2

)

, . . . ,
( x(1)

n
,

x(2)

n
, . . . ,

x(n)

n

)

, . . .
)∥
∥
∥

lΦ((Rn))

= inf

{

r > 0 :
∞
∑

n=1

ϕn

( 1

rn

n
∑

k=1

|x(k)|
)

≤ 1

}

= inf
{

r > 0 : ςΦ

( x

r

)

≤ 1
}

= ‖(x(i))‖cesΦ .

Hence the lemma is proved. ��
Note Instead of studying geometric properties of cesΦ it is enough to study geometric prop-
erties of lΦ((Rn)) and if such geometric properties are inherited by subspaces then cesΦ

will have the same properties. Thanks to Lemma 1 conditions that are sufficient for some
geometric properties of lΦ((Rn)) are also sufficient for these geometric properties of cesΦ .

To establish our results, the following important lemma will be needed.

Lemma 2 Let Ψ be a complementary function to Φ. Then Ψ ∈ δ2 if and only if there exist
constants θ ∈ (0, 1), β ∈ (0, 1), u0 > 0 and a sequence (cn) of non negative real numbers
such that (cn) ∈ l1 and

ϕn(βu) ≤ (1 − θ)βϕn(u) + cn

holds for every u ∈ R satisfying ϕn(u) ≤ u0 for each n ∈ N. The result also holds when
u0 = 1.

Proof The proof of this lemma is a combination of Lemma 2.5. and Remark 2.0.1. presented
in [26]. So it is omitted. ��
Define hΦ((En)) is a subspace of lΦ((En)) as

hΦ((En)) = {x ∈ l0 : σΦ(r x) < ∞, for all r > 0},
equipped with both the Luxemburg norm ‖ · ‖L

Φ and the Amemiya norm ‖ · ‖A
Φ and denoted

by hL
Φ((En)) and h A

Φ((En)), respectively.
We assume that the Musielak–Orlicz function Φ = (ϕn)∞n=1 is finite. In the sequel, the

following known lemmas are used:
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Lemma 3 Let x ∈ hΦ((En)) be an arbitrary element. Then ‖x‖L
Φ = 1 if and only if σΦ(x) =

1.

Proof The proof will run on the parallel lines of the proof of Lemma 2.1 given in [10]. ��
Lemma 4 Suppose Φ ∈ δ2 and Φ > 0. Then for any (xl) ⊂ lΦ((En)), ‖xl‖L

Φ → 0
(‖xl‖A

Φ → 0) if and only if σΦ(xl) → 0.

Proof For the proof of this lemma, the work of Kamińska (see [18]) is referred to the reader.
��

Lemma 5 If Φ ∈ δ2, i.e., inequality (1) holds, then for any x ∈ lΦ((En)),

‖x‖L
Φ = 1 if and only if σΦ(x) = 1.

Proof Since Φ ∈ δ2 implies that lΦ((En)) = hΦ((En)), the proof follows from Lemma 3. ��
Lemma 6 Suppose Φ ∈ δ2, i.e., inequality (1) holds and Φ satisfies the condition (∗), i.e.,
inequality (2) holds. Then for any x ∈ lΦ((En)) and every ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1)
such that σΦ(x) ≤ 1 − ε implies ‖x‖L

Φ ≤ 1 − δ.

Proof The proof of this lemma can be given in a similar way as the proof of Lemma 9 in
[18]. ��
Lemma 7 Let Φ ∈ δ2, i.e., inequality (1) holds, Φ > 0 and satisfies the condition (∗), i.e.,
inequality (2) holds. Then for each d ∈ (0, 1) and ε > 0 there exists δ = δ(d, ε) > 0 such
that σΦ(u) ≤ d, σΦ(v) ≤ δ imply

|σΦ(u + v) − σΦ(u)| < ε for any u, v ∈ lΦ((En)). (3)

Proof For the proof of this lemma, the authors refer any one of the references [10,18,25] to
the reader. ��
Now, we are in a position to state our first result. The result is as follows:

Theorem 1 Let Φ = (ϕn)∞n=1 be a Musielak–Orlicz function vanishing only at zero and
Ψ = (ψn)∞n=1 be the complementary function to Φ. If Φ ∈ δ2, Ψ ∈ δ2 and Φ satisfies the
condition (∗), i.e., inequality (2) holds. Then l L

Φ((En)) has the (k-β)-property for any fixed
integer k ≥ 1.

Proof Let k ≥ 1, ε > 0 be arbitrary. Choose x ∈ Bl L
Φ((En)), (xl)

∞
l=1 ⊂ Bl L

Φ((En)),
xl = (xl(i))∞i=1, l ∈ N, be such that sep(xl) > ε. For each m ∈ N denote

xm
l = (0, 0, . . . , 0, xl(m), xl(m + 1), . . .).

Since for each i ∈ N, the sequence (xl(i))∞l=1 is bounded, so byBolzano–Weierstrass theorem
(xl(i))∞l=1 has convergent subsequence for each i ∈ N. By Cantor’s diagonal method one
can find a subsequence (xlk )

∞
k=1 of (xl)

∞
l=1 such that for each i ∈ N, (xlk (i))

∞
k=1 converges,

i.e., the sequence (xlk (i))
∞
k=1 converges pointwise and so one can make the coordinates

xlk (1), xlk (2), . . . , xlk (m − 1) differ by as a little as one want for k sufficiently large. Since
(xlk )

∞
k=1 is a subsequence of (xl)

∞
l=1, so one gets ε < sep(xl) ≤ sep(xlk ). Therefore, for

every m ∈ N, there exists a km ∈ N such that sep(xm
lk

) ≥ ε for all k ≥ km . Hence by
definition of the separation of sequence, for each m ∈ N, there exists lm ∈ N such that

‖xm
lm ‖L

Φ ≥ min(ε, 1)

2
holds. (4)
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By Lemma 4, there exists η ∈ (0, 1) such that σΦ(x) ≥ η whenever ‖x‖L
Φ ≥ min(ε,1)

2 ,

x ∈ l L
Φ((En)). Defining ε1 = ηθ

4k(k+1) , where θ = θ(k) is the constant from Lemma 2. Since
Φ vanishes only at zero and satisfy the conditions δ2 and (∗), so by Lemma 7 there exists a
δ = δ(1, ε1) > 0 such that σΦ(u) ≤ 1 and σΦ(v) ≤ δ imply

|σΦ(u + v) − σΦ(u)| < ε1. (5)

Without loss of generality, one can assume that δ = δ(1, ε1) ≤ η
2 . Setting the constants m1,

m2, m3, . . . , mk−1 ∈ N such that m1 < m2 < m3 < m4 < . . . < mk−1 for x1 = xl1 ,
x2 = xl2 , . . ., xk−1 = xlk−1 . Since x, x j ∈ B(l L

Φ((En))), so for every δ > 0 there exist
natural constants m1, m2, m3, . . . , mk−1, one obtain σΦ(xm1) ≤ δ, and σΦ(x

m j
j ) ≤ δ for

all j = 1, 2, . . . , k − 1. Since (cn)∞n=1 ∈ l1 as in Lemma 2, so it can be assumed that
∑∞

n=mk+1 cn ≤ ηθ
2(k+1) . By inequality (4) there exists lk ∈ N such that ‖xmk+1

lk
‖L
Φ ≥ min(ε,1)

2 .

Consequently, one gets σΦ(xmk+1
lk

) ≥ η. Since Φ is convex, so applying Lemma 2 and using
the inequality (5), one obtains

σΦ

( x + xl1 + xl2 + . . . + xlk

k + 1

)

=
m1∑

n=1

ϕn

(∥
∥
∥

x(n) + xl1(n) + xl2(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

+
∞
∑

n=m1+1

ϕn

(∥
∥
∥

x(n) + xl1(n) + xl2(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

≤ 1

k + 1

m1∑

n=1

{

ϕn(‖x(n)‖) +
k
∑

i=1

ϕn(‖xli (n)‖)
}

+
∞
∑

n=m1+1

ϕn

(∥
∥
∥

xl1(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

+ ε1 [Using inequality (5) and the fact that each ϕn is convex]

= 1

k + 1

m1∑

n=1

ϕn(‖x(n)‖) + 1

k + 1

m1∑

n=1

k
∑

i=1

ϕn(‖xli (n)‖)

+
m2∑

n=m1+1

ϕn

(∥
∥
∥

xl1(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

+
∞
∑

n=m2+1

ϕn

(∥
∥
∥

xl1(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

+ ε1

≤ 1

k + 1
σΦ(x) + 1

k + 1

m1∑

n=1

k
∑

i=1

ϕn(‖xli (n)‖) +
m2∑

n=m1+1

ϕn

(∥
∥
∥

xl1(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

+
∞
∑

n=m2+1

ϕn

(∥
∥
∥

xl2(n) + . . . + xlk (n)

k + 1

∥
∥
∥

)

+ 2ε1.

Now repeating the same process using inequality (5) k times and since σΦ(x) = 1, one gets

σΦ

( x + xl1 + xl2 + . . . + xlk

k + 1

)

≤ 1

k + 1
+ 1

k + 1

m1∑

n=1

k
∑

i=1

ϕn(‖xli (n)‖) + 1

k + 1

m2∑

n=m1+1

k
∑

i=1

ϕn(‖xli (n)‖)
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+ 1

k + 1

m3∑

n=m2+1

k
∑

i=1

ϕn(‖xli (n)‖) + . . . + 1

k + 1

mk∑

n=mk−1+1

k
∑

i=1

ϕn(‖xli (n)‖)

+
∞
∑

n=mk+1

ϕn

(∥
∥
∥

xlk (n)

k + 1

∥
∥
∥

)

+ kε1.

Now from each term, we separate i = kth term and the rest of (k − 1) terms are taken
together and since σΦ(xli ) = 1 for i = 1, 2, . . . , k − 1, so from the right hand side of the
last inequality, one obtains

1

k + 1
+ 1

k + 1

k−1
∑

i=1

⎧

⎨

⎩

m1∑

n=1

ϕn(‖xli (n)‖) +
m2∑

n=m1+1

ϕn(‖xli (n)‖) + · · ·

+
mk∑

n=mk−1+1

ϕn(‖xli (n)‖)
⎫

⎬

⎭
+ 1

k + 1

{
m1∑

n=1

ϕn(‖xlk (n)‖)

+
m2∑

n=m1+1

ϕn(‖xlk (n)‖) + · · · +
mk∑

n=mk−1+1

ϕn(‖xlk (n)‖)
⎫

⎬

⎭

+
∞
∑

n=mk+1

ϕn

(∥
∥
∥

xlk (n)

k + 1

∥
∥
∥

)

+ kε1

≤ 1

k + 1
+ 1

k + 1

k−1
∑

i=1

σΦ(xli ) + 1

k + 1

mk∑

n=1

ϕn(‖xlk (n)‖)

+
∞
∑

n=mk+1

ϕn

(∥
∥
∥

xlk (n)

k + 1

∥
∥
∥

)

+ kε1 ≤ k

k + 1
+ 1

k + 1

mk∑

n=1

ϕn(‖xlk (n)‖)

+ 1 − θ

k + 1

∞
∑

n=mk+1

ϕn(‖xlk (n)‖) +
∞
∑

n=mk+1

cn + kε1

≤ k

k + 1
+ 1

k + 1

∞
∑

n=1

ϕn(‖xlk (n)‖) − θ

k + 1

∞
∑

n=mk+1

ϕn(‖xlk (n)‖) + ηθ

2(k + 1)
+ kε1

≤ 1 − θ

k + 1
.η + ηθ

2(k + 1)
+ kε1 = 1 − ηθ

(k + 1)

+ ηθ

2(k + 1)
+ ηθ

4(k + 1)
= 1 − ηθ

4(k + 1)
,

where ε1 = ηθ
4k(k+1) .

Hence, by Lemma 6, there exists τ(= ηθ
4(k+1) ) > 0 such that

∥
∥
∥

x+xl1+xl2+...+xlk
k+1

∥
∥
∥

L

Φ
< 1 − τ .

Thus the space l L
Φ((En)) has the property (k-β) for integer k ≥ 1. ��

Corollary 1 If En = R
1 for any n ∈ N, then l L

Φ has the property (k-β) for k ≥ 1. In
particular, when ϕn = ϕ for all n ∈ N, k = 1 then l L

ϕ has the property (β) as obtained by Cui

et al. [6] and Cui and Thompson [12]. In addition, l L
ϕ is (k-NUC) for any k ≥ 2 as obtained

by Cui et al. [9].
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Corollary 2 If ϕn(u) = |u|pn with pn = p for all n ∈ N, En = R
n, n ∈ N and 1 < p < ∞,

then l L
p ((En)) possesses the property (k-β) for k ≥ 1. Hence by Lemma 1, we have cesL

p

possesses the property (k-β) for k ≥ 1 too and therefore sequence space cesL
p has the

property (β) as obtained by Cui and Meng [7] and is (k-NUC) for any k ≥ 2 as obtained
by Cui and Hudzik [8].

Corollary 3 If ϕn(u) = |u|pn with lim inf
n→∞ pn > 1 and En = R

n, n ∈ N, then the Nakano

sequence space l p̂((En)) has the property (k-β) for k ≥ 1 and hence by Lemma 1 the space
cesL(p) is (k-NUC) for any k ≥ 2 established by Sanhan and Suantai [30]. When En = R

1

for any n ∈ N, k = 1, then l p̂ has the property (β) as obtained by Dhompongsa [13].

Corollary 4 Suppose En = R
n, n ∈ N. Since l L

Φ((En)) has the property (k-β) for integer
k ≥ 1, so by Lemma 1, the sequence space cesL

Φ is (k-NUC) for any k ≥ 2 as studied by
Wangkeeree [31].

Theorem 2 Let Φ be a Musielak–Orlicz function satisfying the condition (∞1), vanishing
only at zero and Ψ = (ψn)∞n=1 be the complementary function to Φ. If Φ ∈ δ2, Ψ ∈ δ2 and
Φ satisfies the condition (∗), i.e., inequality (2) holds, then l A

Φ((En)) has the (k-β)-property
for any fixed integer k ≥ 1.

Proof Let k ≥ 1, ε > 0 be arbitrary. Take x ∈ B(l A
Φ((En))), xl ∈ B(l A

Φ((En))), xl =
(xl(i))∞i=1, l ∈ N be such that sep(xl) > ε. As in the previous theorem, for each m ∈ N,
we denote xm

l = (0, 0, . . . , 0, xl(m), xl(m + 1), . . .). Consider the subsequence (xlk )
∞
k=1 of

(xl)
∞
l=1. Hence proceeds in a similar way as first part of the Theorem 1, for every m ∈ N

there exists a lm ∈ N, one obtains

‖xm
lm ‖L

Φ ≥ min(ε, 1)

2
.

This inequality and Lemma 4 together imply that, there exist η ∈ (0, 1), lk , m1 ∈ N such that

σΦ(xm1+1
lk

) ≥ η holds. (6)

Choose k0, kn ≥ 1, n ∈ N such that

‖x0‖A
Φ = 1

k0
(1 + σΦ(k0xn)) & ‖xn‖A

Φ = 1

kn
(1 + σΦ(kn xn)) holds.

Since Ψ ∈ δ2, so the sequence (kn) is bounded (see [5]). Take sup{kn : n ∈ N} = M .
It is obvious that M is finite. We consider fixed natural numbers l1, l2, . . . , lk such that
l1 < l2 < · · · < lk .

Denote (here the following symbol
∏

indicates the product of real numbers)

G = k0

k
∏

i=1

kli , g0 = kl1kl2 . . . klk , g j = k0
∏

i �= j

kli for 1 ≤ j ≤ k and g = G
∑k

i=0 gi
.

Note that g0k0 = G, gi kli = G for integer 1 ≤ i ≤ k and gk
∑k

i=0 gi
= gk

gk+∑k−1
i=0 gi

≤ Mk

Mk+1
=:

μ.
Choose ε1 = ηθ

4(k+1)Mk , where θ = θ(k) is a constant from Lemma 2. Since Φ vanishes
only at zero and satisfy the conditions δ2 and (∗), so by Lemma 7 there exists a δ, 0 < δ =
δ(1, ε1) <

η
2 such that σΦ(u) ≤ M and σΦ(v) ≤ δ imply

|σΦ(u + v) − σΦ(u)| < ε1 for any u, v ∈ l A
Φ((En)). (7)
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Since σΦ(x0) < ∞, σΦ(xli ) < ∞ for i = 1, 2, . . . , (k − 1) and σΦ

(
x0+xl1+...+xlk−1

k+1

)

< ∞,

so there exists a constant m1 ∈ N such that

∞
∑

n=m1+1

ϕn

(∥
∥
∥

x0(n) + xl1(n) + . . . + xlk−1(n)

k + 1

∥
∥
∥

)

≤ δ,

∞
∑

n=m1+1

ϕn

(

gk
∑k

i=0 gi
klk ‖xlk (n)‖

)

≤ Mk

Mk + 1

∞
∑

n=m1+1

ϕn(M‖xlk (n)‖) ≤ M.

It is to be noted that for i = 1, 2, . . . , (k − 1) there exists η ∈ (0, 1) for which

σΦ(xm1+1
li

) =
∞
∑

n=m1+1

ϕn
(‖xli (n)‖) ≤ δ < η holds.

Since Ψ ∈ δ2, so by Lemma 2, there exists θ ∈ (0, 1), μ ∈ (0, 1) and a sequence (cn) of non
negative real numbers such that (cn) ∈ l1 and

ϕn(μu) ≤ (1 − θ)μϕn(u) + cn

holds whenever ϕn( u
M ) ≤ 1 and for each n ∈ N.

The convexity of Musielak–Orlicz function Φ implies that for any ϑ ∈ [0, μ] such that

ϕn(ϑu) ≤ (1 − θ)ϑϕn(u) + cn

holds whenever ϕn( u
M ) ≤ 1 and sequence (cn) ∈ l1, n ∈ N. Thus for ϕn( u

M ) ≤ 1, one obtains

ϕn

⎛

⎜
⎜
⎜
⎜
⎜
⎝

gk

k
∑

i=0

gi

u

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ (1 − θ)
gk

∑k
i=0 gi

ϕn(u) + cn . (8)

Since (cn) ∈ l1, so there exists a m1 ∈ N such that
∑∞

n=m1+1 cn ≤ ηθ

2(k+1)Mk . With the help

of inequalities (6), (7) and (8), the definition of norm ‖ · ‖A
Φ gives

‖x0 + xl1 + · · · + xlk ‖A
Φ

=
∑k

i=0 gi

G

[

1 + σΦ

(

G
∑k

i=0 gi

(

x0 + xl1 + · · · + xlk

)

)](

where G = k0

k
∏

i=1

kli

)

=
∑k

i=0 gi

G

[

1 +
m1∑

n=1

ϕn

(

G
∑k

i=0 gi

(∥
∥
∥x0(n) + xl1(n) + · · · + xlk (n)

∥
∥
∥

)
)

+
∞
∑

n=m1+1

ϕn

(

G
∑k

i=0 gi

(∥
∥
∥x0(n) + xl1(n) + · · · + xlk (n)

∥
∥
∥

)
)⎤

⎦

≤
∑k

i=0 gi

G

[

1 +
∑m1

n=1
ϕn

(

g0
∑k

i=0 gi
k0‖x0(n)‖

+ g1
∑k

i=0 gi
kl1‖xl1(n)‖ + · · · + gk

∑k
i=0 gi

klk ‖xlk (n)‖
)
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+
∞
∑

n=m1+1

ϕn

(

G
∑k

i=0 gi

(‖x0(n) + xl1(n) + · · · + xlk−1(n)‖)+ G
∑k

i=0 gi
‖xlk (n)‖

)⎤

⎦

≤
∑k

i=0 gi

G

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 +
∑m1

n=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g0
k
∑

i=0

gi

ϕn(k0‖x0(n)‖) + g1
k
∑

i=0

gi

ϕn(kl1‖xl1(n)‖) + · · ·

· · · + gk
∑k

i=0 gi
ϕn(klk ‖xlk (n)‖)

)

+
∑∞

n=m1+1
ϕn

⎛

⎜
⎜
⎜
⎜
⎜
⎝

gk

k
∑

i=0

gi

klk ‖xlk (n)‖

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ ε1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 1

k0
+

m1∑

n=1

1

k0
ϕn(k0‖x0(n)‖) +

k
∑

j=1

{

1

kl j

+
m1∑

n=1

1

kl j

ϕn(kl j ‖xl j (n)‖)
}

+
∑k

i=0 gi

G

⎡

⎣

∞
∑

n=m1+1

ϕn

(

gk
∑k

i=0 gi
klk ‖xlk (n)‖

)

+ ε1

⎤

⎦

≤ 1

k0
+

m1∑

n=1

1

k0
ϕn(k0‖x0(n)‖) +

k
∑

j=1

{

1

kl j

+
m1∑

n=1

1

kl j

ϕn(kl j ‖xl j (n)‖)
}

+
∑k

i=0 gi

G

⎡

⎣(1 − θ)
gk

∑k
i=0 gi

∞
∑

n=m1+1

ϕn(klk ‖xlk (n)‖) +
∞
∑

n=m1+1

cn + ε1

⎤

⎦

≤ ‖x0‖A
Φ + ‖xl1‖A

Φ + · · · + ‖xlk ‖A
Φ − θ

gk

G
klk

∞
∑

n=m1+1

ϕn(‖xlk (n)‖)

+

k
∑

i=0

gi

G

( ∞
∑

n=m1+1

cn + ε1

)

≤ (k + 1) − ηθ + (k + 1)Mk ηθ

2(k + 1)Mk

+ (k + 1)Mk ηθ

4(k + 1)Mk
= (k + 1)

(

1 − ηθ

4(k + 1)

)

.

Therefore
∥
∥
∥
∥

x0 + xl1 + · · · + xlk

k + 1

∥
∥
∥
∥

A

Φ

≤ 1 − ηθ

4(k + 1)
.

Thus for any fixed integer k ≥ 1, the space l A
Φ((En)) possesses the property (k-β). ��

Corollary 5 If En = R
1 for any n ∈ N, then l A

Φ has the property (k-β) for k ≥ 1. In
particular, when ϕn = ϕ for all n ∈ N, k = 1 then l A

ϕ has the property (β) as obtained by

Cui et al. [6]. Further l A
ϕ is (k-NUC) for any k ≥ 2 as studied by Cui and Hudzik [9].

Corollary 6 Suppose En = R
n, n ∈ N. Since l A

Φ((En)) has the property (k-β) for k ≥ 1, so
by Lemma 1, we have that ces A

Φ possesses the property (k-β) for each fixed integer k ≥ 1.
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3 Some applications

In this section, the results related to the Cesàro sequence spaces of order α(≥ 1) and Cesàro
difference sequence spaces of order m are discussed.

3.1 Cesàro sequence spaces of order α

First, we begin with the definition of Cesàro sequence spaces of order α(≥ 1). Let p > 1.
Then Cesàro sequence spaces of order α(≥ 1) is denoted by ces(α, p) and defined by

ces(α, p)=
{

x ∈ l0 :
∞
∑

n=0

(

1
(n+α

n

)

n
∑

k=0

(
n − k+α − 1

n − k

)

|x(k)|
)p

<∞
}

(see [3], pp. 113).

Note that ces(1, p) coincides with cesp and the spaces ces(α, p) contain all l p . Further,
the spaces ces(α, p) do not depend on α for α ≥ 1. The ces(α, p) are Banach spaces with
respect to the norm

‖x‖ces(α,p) =
( ∞
∑

n=0

(

1
(n+α

n

)

n
∑

k=0

(
n − k + α − 1

n − k

)

|x(k)|
)p) 1

p

.

Recently, Braha [4] studied geometric properties such as (β)-property, (k-NUC) property
for integer k ≥ 2 and uniform Opial property of the second order Cesàro space ces(2, p). As
these properties are inherited by subspaces so the results can be concluded immediately with
the help of following Lemma 8 and Theorem 1. Now, we establish the following lemma.

Lemma 8 The sequence space ces(α, p) is linearly isometric to a closed subspace in the
infinite l p-sum of finite dimensional spaces lp((En+1)), where En+1 = R

n+1, n ∈ N0 is the
(n + 1)-dimensional Euclidean space equipped with the norm defined below:

‖(α0, α1, . . . , αn)‖ =
n
∑

i=0

|αi | for (α0, α1, . . . , αn) ∈ En+1. (9)

Proof For all x = (x(i)) ∈ ces(α, p), the following linear isometric map T : ces(α, p) →
l p((En+1)) is defined:

T ((x(i)))

=
(

x(0),

( (
α
1

)

(
α+1
1

) x(0),

(
α−1
0

)

(
α+1
1

) x(1)

)

, . . . ,

((
α+n−1

n

)

(
α+n

n

) x(0), . . . ,

(
α−1
0

)

(
α+n

n

) x(n)

)

, . . .

)

.

Then

‖T ((x(i)))‖l p((En+1)) = ‖T (x(0), x(1), . . . , x(i), . . .)‖l p((En+1))

=
∥
∥
∥
∥
∥

(

x(0),

( (
α
1

)

(
α+1
1

) x(0),

(
α−1
0

)

(
α+1
1

) x(1)

)

, . . . ,

((
α+n−1

n

)

(
α+n

n

) x(0), . . . ,

(
α−1
0

)

(
α+n

n

) x(n)

)

, . . .
)
∥
∥
∥
∥
∥

l p((En+1))

=
( ∞
∑

n=0

(

1
(n+α

n

)

n
∑

k=0

(
n − k + α − 1

n − k

)

|x(k)|
)p) 1

p

= ‖(x(i))‖ces(α,p).

Thus the lemma is proved. ��
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Corollary 7 Consider the (n + 1)-dimensional Euclidean space En+1 = R
n+1, n ∈ N0 and

if ϕ(t) = |t |p, 1 ≤ p < ∞. Then by Theorems 1 and 2, it is known that l p((En+1)) has
the property (k-β) for k ≥ 1 and hence property (k − NUC) for k ≥ 2 induced by both
the Luxemburg and the Amemiya norms. Since the property (k-β) for k ≥ 1 is inherited by
subspaces so the spaces ces(α, p) for α ≥ 1 possess this property too.

3.2 Cesàro difference sequence spaces of order m

For an arbitrary positive integer m, the results of Kizmaz who introduced the differ-
ence sequence spaces in [20] are generalized to mth order difference sequence spaces by
Malkowsky and Parashar in [24]. In 1983, Orhan first introduced and studied the Cesàro
difference sequence spaces O(1)

p , 1 ≤ p < ∞ as defined below:

O(1)
p =

{

x ∈ l0 :
∞
∑

n=0

(

1

n + 1

n
∑

k=0

|Δ(1)x(k)|
)p

< ∞
}

for 1 ≤ p < ∞,

where (Δ(1)x)k = (Δ(1)x(k)) = (x(k) − x(k − 1)), k ∈ N0 with the assumption that
all negative subscripts of x are equal to zero. Orhan in [27] has also proved that the strict
inclusion cesp ⊂ O(1)

p holds for 1 ≤ p < ∞ (see [27], p. 59). Using mth order difference

operator Δ(m), the author Et in [15] considered generalized difference sequence spaces O(m)
p

as defined below:

O(m)
p =

{

x ∈ l0 :
∞
∑

n=0

(

1

n + 1

n
∑

k=0

|Δ(m)x(k)|
)p

< ∞
}

for 1 ≤ p < ∞,

where the sequence (Δ(m)x)k =(Δ(m)x(k)) is defined asΔ(m)x(k)=
m
∑

i=0

(−1)i
(

m

i

)

x(k − i),

k ∈ N0 with the convention that all negative subscripts of x are equal to zero. For 1 ≤ p < ∞,
O(m)

p (in particular O(1)
p , when m = 1) is a complete normed linear space induced by the

following norm:

‖x‖p =
( ∞
∑

n=0

(

1

n + 1

n
∑

k=0

|Δ(m)x(k)|
)p) 1

p

.

Quite recently, in 2014, another generalization O(m)

p̂ of the sequence space O(m)
p was pre-

sented by Et et al. [14]. They considered a positive bounded sequence p̂ = (pn) of real
numbers with pn ≥ 1 instead of a fixed p ≥ 1. Indeed, if we define the convex modular
ζ(x) =∑∞

n=0(
1

n+1

∑n
k=0 |Δ(m)x(k)|)pn , then O(m)

p̂ is defined as follows:

O(m)

p̂ = {x ∈ l0 : ζ(r x) < ∞ for some r > 0}.
The authors also studied the property (H), uniformOpial property and Banach Saks property
of type p for the space O(m)

p̂ . Altay [1] introduced p-summable difference sequence spaces

lΔ
(m)

p and studied several topological properties and matrix transformations. The space lΔ
(m)

p ,
which is introduced as follows:

lΔ
(m)

p =
{

x ∈ l0 :
∞
∑

n=0

|Δ(m)x(n)|p < ∞
}

for 1 ≤ p < ∞,

is a Banach space equipped with the norm ‖x‖p = ‖(Δ(m)x)n‖p .
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Let (En+1, ‖.‖n+1) be finite dimensional real Banach spaces for each n ∈ N0. Consider
the cartesian product

∏∞
n=0 En+1, which consist of all sequences x = (x(n))∞n=0 such that

x(n) ∈ En+1 for each n ∈ N0. Then the Nakano difference sequence spaces lΔ
(m)

p̂ ((En+1))

is defined as

lΔ
(m)

p̂ ((En+1)) =
{

x ∈
∞
∏

n=0

En+1 : ρ(r x) < ∞ for some r > 0

}

,

where on
∏∞

n=0 En+1, a convex modular ρ is defined as ρ(x) =∑∞
n=0 ‖Δ(m)x(n)‖pn

n+1. It is

easy to establish that the pair (lΔ
(m)

p̂ ((En+1)), ‖ · ‖Δ(m)

p̂ ) is a Banach space, where

‖x‖Δ(m)

p̂ = inf
{

r > 0 : ρ
( x

r

)

≤ 1
}

.

We now prove the following lemma.

Lemma 9 The sequence space O(m)

p̂ is linearly isometric to a closed subspace of Nakano

difference sequence spaces lΔ
(m)

p̂ ((En+1)), where En+1 = R
n+1, n ∈ N0 is the (n + 1)-

dimensional Euclidean space equipped with the norm given by equality (9).

Proof For all x = (x(i)) ∈ O(m)

p̂ , the following linear isometric map T : O(m)

p̂ →
lΔ

(m)

p̂ ((En+1)) is defined:

T ((x(i)))

=
(

Δ(m)x(0),
1

2
(Δ(m)x(0),Δ(m)x(1)), . . . ,

1

n + 1
(Δ(m)x(0), . . . , Δ(m)x(n)), . . .

)

.

Indeed the following is holds:

‖T ((x(i)))‖
lΔ

(m)

p̂ ((En+1))

= ‖T (x(0), x(1), . . . , x(i), . . .)‖
lΔ

(m)

p̂ ((En+1))

=
∥
∥
∥

(

Δ(m)x(0),
1

2
(Δ(m)x(0),Δ(m)x(1)), . . . ,

1

n + 1
(Δ(m)x(0), . . .

. . . , Δ(m)x(n)), . . .
)∥
∥
∥

lΔ
(m)

p̂ ((En+1))

= inf

{

r > 0 :
∞
∑

n=0

(
1

r(n + 1)

n
∑

k=0

|Δ(m)x(k)|
)pn

≤ 1

}

= inf
{

r > 0 : ζ
( x

r

)

≤ 1
}

= ‖(x(i))‖
O(m)

p̂
.

Thus the lemma is proved. ��
Corollary 8 Proceeding in a similar approach considered in Theorems 1 and 2 it can be easy
to establish that the space lΔ

(m)

p̂ ((En+1)) possesses the property (k-β) for k ≥ 1 equipped

with both the Luxemburg and the Amemiya norms. Therefore, by Lemma 9, the space O(m)

p̂
possesses the property (k-β) for any fixed integer k ≥ 1.
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4 Conclusions

The geometric properties (k-β), k ≥ 1 for the space lΦ((En)) generated by a Musielak–
Orlicz function Φ and a sequence (En) of n-dimensional spaces En , n ∈ N are studied and
derived the similar properties for the Musielak–Orlicz–Cesàro space cesΦ equipped with
both the Luxemburg and the Amemiya norms. The work provides several new results and
strengthenmany earlier known results. The uniformOpial property for lΦ((En)) can be easily
established by applying the same techniques which are developed ourselves in our earlier
work [25].
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