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Abstract In this paper we use topological degree to establish the existence of nontrivial
solutions for a first-order discrete fractional boundary value problem with a sign-changing
nonlinearity. Also using the monotone iterative technique we discuss problems with a non-
negative nonlinearity and establish the uniqueness of positive solutions.
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1 Introduction

In this paper we study the existence and uniqueness of solutions for the first-order discrete
fractional boundary value problem

{Azlm) =ft+v—1y(t+v—1), tel0. Tl

1.1
ywv—1=ywv+T), (-0

where v is a real number with 0 < v < 1 and A" is a discrete fractional operator. For the
nonlinear term f, we assume that
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HD ft,yyeC(v—-1,v+T —1]z, , xR, R).

Note that, in this paper we use [a, b]g to stand for [a, b] N E for some set E.

In [1-4], Atici and Eloe developed the fundamental theory of both discrete delta and nabla
fractional calculus. For more recent results we refer the reader to [5-9] and the references
cited therein. In [5], the authors considered a three-point fractional sum boundary value
problem, where the nonlinearity f is either superlinear or sublinear:

fo= lim fw =0 or 0o, foo= lim fw

u—0t U u—>00 Y

=ooor 0; (1.2)

here fo = 0, foo = o0 is the superlinear case, and fy = 00, foo = 0 is the sublinear case.
In [6-8], the authors adopted the growth conditions in (1.2) to study many types of discrete
fractional boundary value problems with nonnegative and semipositone nonlinearities. For
more details in this direction, we refer the reader to the recent book [9], which summarizes
some results on discrete fractional equations.

Motivated by the above, in this paper we use topological degree to study the existence
of nontrivial solutions for the discrete fractional boundary value problem (1.1). The novelty
is threefold: (1) with the aid of some inequalities of Green’s function, our growth condition
on the nonlinearity improves that in (1.2) (see conditions (H3) and (H4) in the following
section); (2) nontrivial solutions are obtained using topological degree with a semipositone
nonlinearity (this is seldom considered in discrete fractional equations); (3) with a sublinear
growth condition, a unique positive solution is obtained from the monotone iterative technique
with a nonnegative nonlinearity (in addition the iterative sequences are given).

2 Preliminaries

We first introduce some background materials from discrete fractional calculus, and for more
details, we refer the reader to [1-4,9].

Definition 2.1 We define ¥ := F(Ft(r{l)v) for any ¢, v € R for which the right-hand side is
well-defined. We use the convention that if # + 1 — v is a pole of the Gamma function and

t + 1 is not a pole, then r* = 0.

Definition 2.2 For v > 0, the v—th fractional sum of a function f is AV f(1) =

F(lv) Z’Y;Z (t—s— 1)ﬂf(s), fort € Nyyny—y. We also define the v—th fractional dif-

ference for v > 0 by A} f(¢) = ANAZ’Nf(t), fort € Nypny—y, where N € N with
O<N-1<v<N.

From [7], we know (1.1) is equivalent to

T
G(t,s
y(t) = Z F((v)) fes+v—1,y6s+v—1), fortelv—1,v+T—1lz_,, .1
s=0
where
(vT—s—Dr=lpr=L v—1
S — -5 — DL, 0<s<r—v<T,
Gir.s)= ] TO-O+D= (2.2)

W4T —s—Dr=lr=l
r(w)—(+7)=L
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LetC* =1+ % forall (¢,s) e [v—1,v+T —1]z,_, x [0, Tz, and note the

(v+T—1)2=L >
inequality

T v—

< w+7) T (v VT —s— 1)L

L) —@+T)—
c*r

<G(,s) < o) S+ T —5— D=L, 2.3)

) —@+7T)—

Letp(t+v—1)=@w+T—t—D>"=L t [0, Tlzand ¢*(t) = Qv+ T —t —2)>=L
[v—1,v+T —1]z,_,. Then, forall s € [0, T]z, we have

v—1

v+T—1

2

t=v—1

Gt,5) . ~Gl+v—15)
o 0TS T T

t=0
Consequently, for all s € [0, Tz, from (2.3) and (2.4) we have

ot +v—1). (2.4)

v+T—1

W+ lp@+v -1 G(t,s) .
: —1
2 Poaw - vy PE TS B e
T
C*op(t+v—1)
LT - ST
2.5)
For convenience, we let
B (v + T)x=! B
- §0 T @) — = Pe v and

C*

T
@=Lt T

AR

Let E be the collection of all maps from [v — I,v + T — 1]z,_, to R, equipped
with the max norm, || - ||. Then E is a Banach space. Let P C E be P =
{y eE:yt)>0,telv—1,v+T— I]Zu—l}' Then P is a cone in E. Define a linear
operator L by (Ly)(t) = Y1_y &2 y(s + v — 1), fort € [v — 1,v+ T — 1lz,_,. Then
we easily have L(P) C P, i.e., L is a positive operator.

Lemma 2.3 Let r(L) be the spectral radius of L. Then k1 < r(L) < k3.

Proof For all n € NT, we have

”Ln” — max Z Z Z G(t Sl) G(S17S2) X G(Sn—lvsn).

relv—1,v+T—1lz, ovar Sowr S I'v) I'(v) I'(v)

From (2.3), forallt € [v — 1,v+ T — 1]z,_, we have

W4+ T =L+ T —s— =L XT:Gt 5)

T
EO FO)T) — v+ T)=h r)
T

§=|

C*(v+T —s— 1)yt
r(v)—(@+7)=L

IA

= K3. (2.6)
s=0
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Hence, we have «{ < |L"| < «j. From Gelfand’s theorem, we have r(L)
lim,— oo «/||L"|| € [k1, k2]. This completes the proof.

- ol

Lemma 2.4 Let Py = {y €P Yl pl+v— Dy +v—1)> QCW=0+DD 1
Then Py is a cone in E, and L(P) C Py.

Proof Note that Ztho ¢pt+v—Dy@t+v—-1) = ”+T ! | ¢*(®)y(t). Then we have

v+T—1 v+T—1

Yoo rowym =Y ¢* (z)Z F( ) Dyis +v—1)

t=v—1 t=v—1

ZK12¢(S+V—1)y(S+v—1)
5s=0
K1 (C(W) — (v + T)2=) G\ G(t, 5)
> o ZO oy YYD,

for all t € [v — 1,v + T — 1]z, ,. This implies that Z;:;T:ll ¢*(t)(Ly)(t) >
T W) —+T)*=h
C*

|ILy]||. This completes the proof. ]
We now recall the following three well known results (see [10]).

Lemma 2.5 Let E be a Banach space and Q a bounded open set in E. Suppose A : Q@ — E
is a continuous compact operator. If there exists a wy # 0 such that o — Aw # lwo, Vo €
02, A > 0, then the topological degree deg(I — A, 2,0) = 0.

Lemma 2.6 Let E be a Banach space and 2 a bounded open set in E with 0 € Q. Suppose
A : Q — E is a continuous compact operator. If o — LAw # 0,Vw € 022, X € [0, 1], then
deg(l — A,2,0)=1.

Lemma 2.7 Let E be a partially ordered Banach space, and xo, yo € E with xo < yo,
D = [xo, Yol Suppose that A : D — E satisfies the following conditions

1. A is an increasing operator;
2. x0 < Axg, yo = Ay, L.e., xo and yq is a subsolution and a supersolution of A;
3. A is a continuous compact operator.

Then A has the smallest fixed point x* and the largest fixed point y* in [xo, yo], respectively.
Moreover, x* = lim,_, o0 A"xg and y* = lim,_, oo A" yo.

3 Nontrivial solutions for (1.1)

Let (Ay)(1) = > (o $62 f(s+v—1,y(s +v—1)), fort € [v—1,v+T —1]z,_,, where
G is defined in (2.2). Then we note, from the Arzela—Ascoli theorem, that A is a completely
continuous operator on E. Moreover, y is a solution of (1.1) if and only if y is a fixed point
of the operator A.

Let A = Kl_l, Ay = Kz_], and B, := {x € E : |lx]| < o} for ¢ > 0. For convenience, we
use ¢y, €3, ... to stand for different positive constants. Now we list our assumptions on f.

(H2) Thereexists M > Osuchthat f(z, y) > —M forally € Randt € [v—1,v+T—1]z,_,
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(H3) liminfy_, f(;’ > A1, lim Supy_,q ‘f(' })‘ < Az uniformlyonz € [v — 1,v +

T — 1]2%1 .
(H4) liminf,_o L jg:ﬁ') > 21, limsup, L (g;” < ) uniformlyons e [v—1,v+T —
1]Zv—l .

Theorem 3.1 Suppose that (HI1)—(H3) hold. Then (1.1) has at least one nontrivial solution.

Proof Let

y(t)_MZGF(z ;) fortelv—-1,v+T—-1]z,,.

From the first limit in (H3), there exist ¢ > 0 and ¢; > 0 such that
f@&,y)>=h+ey—c, VyeR, telv-1,v+T—-1lz,_,. 3.1)
We now prove that

y#Ay+2rp™, VyeE, |yl=R, 1=0, (3.2)

C*(eMxkr+cik1+Miy—Miy)
e} (D (v)—(v+T)=h

where ¢** € Py is an arbitrarily fixed element and R > ||| +

ST b +v—1).
Suppose there exist yo € E, ||yo|| = R and X9 > 0 such that

T
G, s)
Yo(t) = (Ayo) (1) + 2o¢™ (1) = ) fs+v—1yo(s+v—1)
~ T (3.3)

+ do9p™ (@), Vielv—1,v+T—1lg,_,.

Then we have

T
G(t,
o)+ 50 = 3 S

s=0
+ 0™ (), Vte[v—1,v+T — 1z,_,-

[fGs+v—=1,y(G6+v—-1)+M]

Note ¢** € Py and Lemma 2.4, so yg +y € Py. From (3.1), (2.4) and (2.5), we have

v+T—1 v+T—1

D (A ®e ) — Y w0t 1)

t=v—1 t=v—1

v+T—1 G(l S) v+T—1
= > ¢>()Z oy Gy Lol v 1) = D w0t
t=v—1 t=v—1
v+T—1
G
= Z ¢* (t)Z T?z ;)[f(s—i-v—l,yo(s—i-v—l))—i-M]
t=v—1
v+T—1 v+T—1
G
MY ¢ (t)Z F(z j) 3 ")
t=v—1 t=v—1
T

v

D kgl +v—DIOa +)yols +v — 1) —c1 + M]
s=0
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T v+T—1
Moy ps+v—1— Y 3" @)
s=0 t=v—1

T
= K1) Z¢(s+v —Dyos+v—1)

s=0
v+T—1 T
— 3 ®e* @) +ex1 Y d(s+v—Dyols +v—1)
t=v—1 s=0
T
— (1w + Mia — Mky) ) (s +v—1)
5s=0
v+T—1 T
=ek1 Yy Yo(DP* () — (crkr + My — Mk1) Y (s +v — 1)
t=v—1 s=0
v+T—1 v+T—1 T G(t S)
= ki ,:;_1 [yo(t) + ¥()1$* (1) — ek t;_I ¢*(OM ;0 )
T
—(c1k1 + MKy — Mky) Zd)(s +v—1)
s=0
'(v) — T)r=L
> o1 L) c(: T o+ 3
T
— (eMriica + ekt + Micz = Mky) ) (s +v — 1)
s=0
k1 (T() — (v + T)»=1) ki (TW) — v+ 7=l
> ek C [lyoll — ex1 C 71l
T
—(eMK1ky 4+ c1k1 + Mky — Mky) Zd)(s +v—1)
s=0
> 0. (3.4)
Note ¢™* € Py and A9 > 0, so (3.3) enables us to obtain
v+T—1 v+T—1 v4T—1
D 00D = Y (AT = Y k™ (09 (@) 2 0.
t=v—1 t=v—1 t=v—1

That is a contradiction with (3.4). As a result, (3.2) holds true. Now Lemma 2.5 implies that
deg(I — A, Bg,0) =0. (3.5

From the second limit in (H3), there exist r € (0, R) and ¢ € (0, ;) such that | f (¢, y)| <
(A2 —8)|yl, forall [y| <r,t e[v—1,v+T — 1]z, ,. Next we claim

Ay #)Ly, VyedB, r> 1. (3.6)

If this is false, then there exists a y; € 9B, and a Ao > 1 such that Ay; = Aoy;. We may
assume that Ag > 1 (otherwise we have a fixed point y;). Hence, we have |Ay;| = [Aoy1| >
|y1] and
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T

G 9
i)l = Z F(zv;)f(s—kv—l,yl(s+v_1))
s=0
" G, s)
5§ I [fs+v—1,y(s+v—1))]

ZT:G( (A2 —&) Iyi(s +v—1DI.
= T

Multiply both sides of the above inequality by ¢*(¢) and sum fromv — 1tov + T — 1, and
from (2.4) and (2.5) we obtain

v+T—1 v+T—1

G
Yo gt < Y ¢t (r)Z F(E) (2 = &)lyi(s +v = 1)
t=v—1 t=v—1

T v4+T—1
G(t,
Z( ) F(Zvj)w(z)) (2= O)lyi(s +v —1)|

s=0 \r=v—1
T
<Y kapls+v— D02 —&)lyils +v— 1)
s=0
A2—8v+T_1
== > g

t=v—1

ThisimpliesthatZ”fT_1 [y1(t)|¢*(t) = Oandthen |y (z)| = Ofort € [v—1,v+T—1]z, ,.

t=v—1
This contradicts y; € dB,. Consequently, (3.6) is true. Now Lemma 2.6 implies that

deg(l — A, B,0) = 1. 3.7)

From (3.5) and (3.7), we have that deg(/ — A, BR\Er, 0) = deg(/ — A, Bg,0) —deg(I —
A, B, 0) = —1, which implies that / — A has at least a zero point in Br\B,,ie., A has at
least one fixed point in Bg\B,. Thus (1.1) has at least one nontrivial solution. This completes
the proof. O

Theorem 3.2 Suppose that (HI), (H2) and (H4) hold. Then (1.1) has at least one nontrivial
solution.

Proof From the first limit in (H4), there exist ¢ > 0 and r; > 0 such that

f&, )= +olyl, Vivisrn, teb—-1Lv+T—1]z,_,. (3.8)
Therefore, for each y € Brl, we obtain (Ay)(t) > (A1 + ¢) ZY —0 Gr((tv;) |ly(s +v — 1)| for
telv—1,v+T —1]z,,. Then A(B,l) C P.Forevery y € 0B, N P, we claim

y # Ay + 1™, A >0, (3.9

where ¢*** € P is an arbitrarily fixed element. Suppose there exist yop € 9B, N P and
Ao > O such that yo(t) = (Ayo)(t) + ro@™*(¢) fort € [v—1,v+ T — 1]z, _,. This implies
that

,8)
1*( )

() = (Ayo)(®) = (1 +e)Z Yo(s +v —1).
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Multiply both sides of the above inequality by ¢*(¢) and sum fromv — 1tov + T — 1, and
from (2.4) and (2.5) we obtain

v+T—1 v+T—1 )

> et = Y ¢t (t)Z(M+ ) ) Yols +v—1)

t=v—1 t=v—1

T G
M +8)Z ( Z F(;)) qb*(t)) Yo(s +v—1)

t=v—1

\

T

> k1(h+8) ) yols +v—Dels +v—1)
s=0
v+T—1

> y®e* ).

t=v—1

AM+e
>
Z

and then yg(t) =0fort € [v—1,v+ T — 1]z,_,. This contradicts yo € 9B, N P. Hence,
(3.9) is satisfied. Note that A(B,,) C P. Then from the permanence property of the fixed
point index and Lemma 2.5, we obtain

deg(l — A,B,;,,0) =i(A,B, NP, P)=0, (3.10)

where i denotes the fixed point index on P.

Define an operator Ay = A(y —y) +y. Then A : E — P is a completely continuous
operator. From the second limit in (H4), there exist r, € (r; + ||¥]|, +00) and o € (0, 1)
such that

f@,y) <oky, Vy=>r,telv=1Lv+T—-1]z, . (3.11)

Let L1y = oipLy. Then Ly : E — E is a bounded linear operator and L{(P) C P.
Moreover, note o € (0, 1), and Lemma 2.3 enables us to find (L) = oAyr(L) < ociyky =
o < 1. Therefore, (I — L) has an inverse operator, denoted by (I — Ly~h

Let W={yeP:y=2AAy, 0 <A < 1}. We show that W is bounded. For y € W, we
note thatif y(s + v —1) — y(s + v — 1) < 0, then we have

ye+v—D=ys+v-Dzys+v-D -yl ==yl > —r2.

Consequently, if y(s +v —1) —y(s +v — 1) < rp, we obtain ||y — V|| < r and then by
the continuity of f, there exists M| > 0 such that

[fs+v—1y@E+v—1) =y +v—-1) <M, forsel0,T]z.
Therefore, for all y € W, from (3.11) and (2.3) we have

y(@) = (Zy)(t) =AY =@ +y@)

N G@s) N B G(t,s)
_g e f( stv—1LyGs+v—1) =y +v 1))+MZ o)
- > G(t’s)f(s+u—1,y(s+u—1)—y(s+u—1))

T(v)

{s€l0,T]z:y(s+v—1)—y(s+v—1)>r}
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G(t,s) _
+ T fs+v—1Lys+v—1) =y +v—-1)
{se[ole-v<s+v—1)—i(s+u—1><rz} Y
G(t,s)
+M Z ')
G(t,s _
<ok Z ( )(y(erv—l)—y(erv—l))
_ ')
{s€[0,T]z:y(s+v—1)=y(s+v—1)>r2}
T
G(t,s) G(t,s)
M M
A 2 ro ML)
{s€l0,T1z:y(s+v—1)=y(s+v—1)<r2} s=0
G(t,s G(t,s
< oA Z ( )(+v—1)+MIZ (¢, 5)
A S () r(v)
s€[0,Tlz:y(s+v—1)=y(s+v—1)>r}
G(t,s)
M
* Z 0
G(t,s G(t,s)
< oA (s+v—1)+(M + M)
? Z r(v) ! Z r()
G(,s (M + M)C* 1
<ok +v—1)+ W+T—s—1H=t
Z I*() rew)—(@ +T)VIZ

(M + M)C* et
L)+ z= (+T)U12(v+T s — =l

M+M)C T —
Then (1 —L)Y)(1) < 530S S0 4T —s—1)>=Lorr € [p—1, v+ T~ 1]z, .

Hence,

(Mt Mycr el
y(6) < (I —Ly) l"()—(v+T)”1Z(v+T s—1)

forte[v—1,v+T —1]z,_,,and so W is bounded.

Let r3 > max({ra, sup W + ||¥]|}. Then A has no fixed points on 3 B,,. If this is false, then
there is a yo € dB,; such that Ayo = yo, and thus yg € W, |yl = r3 > sup W, and this
is a contradiction. As a result, from the permanence property and the homotopy invariance
property of the fixed point index, we obtain deg(I — A, B,;,0) = i(A, B,NP,P)=1.
Next we claim that

deg(l — A, By, 0) = deg(l — A, B,,0) = 1. (3.12)

LetH(l,y) = A(y—=Iy)+Iyfor(l,y) € [0,1]x0B,,.Then H(0, y) = Ay, H(1,y) =

Suppose that there exists (lp, y1) € [0, 1]1x 0B, suchthat H (I, y1) = y1. Then A(y1 —lpy)+
loy = y1, which implies that A(y; — lo) = y1 — Loy, and A(y1 — oY +7) = y1 —loY + 7.
Therefore, y1 —loy +y € W, and [[y1 —loy + ¥l = lIyill = A =)yl = r3 — (1 —
Ip)|¥Il > sup W. This is a contradiction. From the homotopy invariance of the topological
degree, we see that (3.12) holds. From (3.10) and (3.12), we have deg(/ — A, B, \Er, ,0) =
deg(l — A, B,;,0) —deg(I — A, B,,,0) = 1, which implies that I — A has at least a zero
point in B,, \Erl ,i.e., A has at least one fixed point in B,, \§r1. Thus (1.1) has at least one
nontrivial solution. This completes the proof. O
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4 Positive solutions for (1.1)

In this section we have the following assumptions on f.

HI) f@t,y) € C(lv—1L,v+T —1lz,_, x RY,RT), and f(t,y) > Oforall (t,y) €
v—1Lv+T—1]z, , x RT.

(HS) There exits u € (0, 1) such that f(z, ky) > k* f(t, y) fork € (0, 1).

(H6) f(t,y) isincreasingin y,i.e., f(z, y1) < f(t, y2) holds for y; < y».

Theorem 4.1 Suppose that (H1)' and (H5)—(H6) hold. Then there exist yjj, y{ € P\{0} such
that y; < Ayg, yi = Ayy.

Proof Let w(t) = Zsto (f_((’;i) fort elv—1v+T—1]z Then from (2.6), w(t) €
[«1, «2]. Therefore, from (H1)', there exist ay,, by, > 0 such that 0 < a,, < f(t, w) < by,.

This implies that

v—1°

aww(t)<z Gl"(z ;) fG+v—1wEs+v—1))=w@)<b,w(t), Vielv—-1,v+T—1lz,

4.1)

Let yo(r) = dSwp(t) with 0 < § < min{l/bw,aw/(1 “)} Then choosing ¢ €
(0, min{1, a,}), we have

T
G
(Aey)) = Y F(E 2 fGs+u = Len(s +v = 1)
s=0
G(t, s) eyols +v—1)
Z F() < U—l,mw(s+v_]))

> s“(aaw)"wo(t) > edwo(t) = eyo(t).

Now, let y; = eyo. Then y5 < Ay;.
Let y; = Ewo(t) with & > max{1/ay, bﬁ/(l_“)}. Taking € > max{l, b,,}, we obtain
G(t,s)

8y1(t)>8“$w0(t)—8"éz ) fs+v—1wE+v—1)

_ G(t,s) wEs+v—1) _
“SZ o ! (e )

G(t,s)

> BEE T/ (Eby) " Z o)

s=0

fG+v—1y(s+v—1))

_ZGF(E v LEnG - 1)

= (Agy) ().
Let yj =€y;. Then Ay} < yj. This completes the proof. O

Theorem 4.2 Let y, yi be defined in Theorem 4.1. Then (1.1) has a unique positive solution
y* € [yg, ¥ 1. Moreover, for any yo € [y, y{], the sequence y, = A"yy — y* (n — 00)
uniformlyint e [v—1,v+T —1lz,_,.
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Proof From (H6), A is an increasing operator. Then from Section 3 and Theorem 4.1, we
note that all conditions of Lemma 2.7 are satisfied. Then A has the smallest fixed point y;*
and the largest fixed point y* in [y, y|1, respectively. Moreover, y5* = lim,, o A" y; and
i =lim, 00 A"y}. Next we claim that y*(t) = y{*(t) fort e [v = Lv+ T — 1z,_,.
Indeed, from (4.1), there exist b; > a; > 0(i = 1, 2) such that

ajw(t) < y5* (@) < biw(t), aaw@®) < y*@) <byw(), Viev—1Lv+T—1lz, _,,

kK kok

from the fact that y5* and y{™ are fixed points of A with y5*, y{* € [yg, yj]. Therefore,
o' = l’%yf*. Let ko = sup{k > 0 : y5* = ky{*}. Then ko > 0 and y3* > koy]™. We now
show kg > 1. Suppose the contrary. Then kg < 1 and

T

G(t,
W=y F(Zvj)f(eru— L yd (s +v — 1)
s=0

T
= G(t’s)f(Sva— L koy™(s +v —1))

= W
L G(t,s)
z; r(;) K f(s+v =1,y +v —1).

Letg(s+v—1)= f(s+v—Lkoy*(s+v—1)—kj f(s+v—1,y*(s+v—1) for
s € [0, T]z. Then g € P\{0}, and from (4.1) there exist b3 > a3 > 0 such that

a

G(t,
CEY 0 gt b= 1) = b,
Consequently, we have
T T
" Gt.s) ~ G(t.s) e
0 (r)zg Ty S6 Y 1)+§ ) K f(s4+v =1,y +v—1)

a
> ;szl** (0) + kL yE(0) > koy (1),

contradicting the definition of ko. As a result, ko > 1, and yj* > y{™*. This implies that
y(")‘*(t) =y*@)fort e [v—1,v+T —1]z,_,. Hence, (1.1) has a unique positive solution
y* € [y§, ¥[1. Moreover, for any yo € [y5, ¥{], then we have y§ < yo < y{ and y; <
Ayj < Ayo < Ayf < y{.Forn € N7 large enough, we have

WS Ay < S ATy < Alyg < AMyf < - < Ay <.

Letn — oo. Then y, = A"y — y* from the fact that lim,, 00 A"y§ = lim, 00 A"y} =
y*. This completes the proof. O

Remark 4.3 In [11], the authors established the existence of a unique positive solution to the
fractional g-difference boundary value problem

{(Dg‘y)(x):—f(x,y(x)), O<x<l, 2<a<3, “2)

y(0) = (Dygy)(0) =0, (Dgy)(1) =0,

where f is a nonnegative continuous function and one of their assumptions is



1016 J. Xu, D. O’Regan

(H)yang for any x € [0, 1], y € R¥, there exist two constants m,n withm <0 <n < 1
such that
AIfx,y) < flx,ey) <M f(x,y), forO<c<l. (4.3)

In our argument above we only need the left inequality of (4.3) (see (HS)) to establish a
unique positive solution for (1.1).
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