CrossMark

ORIGINAL PAPER

Stability of general A-cubic functional equations in modular spaces

G. Zamani Eskandani¹ · John Michael Rassias²

Received: 5 October 2016 / Accepted: 24 February 2017 / Published online: 21 March 2017 © Springer-Verlag Italia 2017

Abstract In this paper, by using fixed point theory, we investigate the generalized Hyers–Ulam stability of an α -cubic functional equation in modular spaces.

Keywords Fixed point · Modular space · Generalized Hyers–Ulam stability

Mathematics Subject Classification Primary 39B52; Secondary 39B72 · 47H09

1 Introduction and preliminaries

In 1940, Ulam [23] asked the first question on the stability problem. In 1941, Hyers [9] solved the problem of Ulam. This result was generalized by Aoki [1] for additive mappings and by Rassias [20] for linear mappings by considering an *unbounded Cauchy difference*. In 1994, a further generalization was obtained by Găvruta [8]. Rassias [16–19] generalized Hyers result. During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [2,5–7,11,15,16,21]). We also refer the readers to the books: Czerwik [3] and Hyers, Isac and Rassias [10].

The theory of modulars on linear spaces and the corresponding theory of modular linear spaces were founded by Nakano [12] and were intensively developed by Amemiya, Koshi, Shimogaki, Yamamuro [14,25] and others.

John Michael Rassias jrassias@primedu.uoa.gr; jrass@otenet.gr

G. Zamani Eskandani zamani@tabrizu.ac.ir

Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran

Pedagogical Department, National and Capodistrian University of Athens, 4 Agamemnonos Street, Aghia Paraskevi, Athens 15342, Greece

Definition 1.1 Let X be a vector space over a field K (\mathbb{R} or \mathbb{C}). A generalized functional $\rho: X \longrightarrow [0, \infty]$ is called a modular if for arbitrary $x, y \in X$, ρ satisfies:

- (a) $\rho(x) = 0$ if and only if x = 0,
- (b) $\rho(ax) = \rho(x)$ for every scalar a with |a| = 1,
- (c) $\rho(ax + by) \le \rho(x) + \rho(y)$, whenever $a, b \ge 0$ and a + b = 1.

If we replace (c) by

 $(c') \rho(ax+by) \le a\rho(x) + b\rho(y)$, whenever $a, b \ge 0$ and a+b=1, then the modular ρ is called convex. A modular ρ defines a corresponding modular space, i.e., the vector space X_{ρ} given by:

$$X_{\rho} = \{x \in X | \rho(\lambda x) \longrightarrow 0 \text{ as } \lambda \longrightarrow 0\}.$$

Definition 1.2 Let $\{x_n\}$ and x be in X_ρ . Then

- (i) The sequence $\{x_n\}$, with $x_n \in X_\rho$, is ρ -convergent to x if $\rho(x_n x) \to 0$ as $n \to \infty$.
- (ii) The sequence $\{x_n\}$, with $x_n \in X_\rho$, is called ρ -Cauchy if $\rho(x_n x_m) \to 0$ as $n, m \to \infty$.
- (iii) A subset S of X_{ρ} is called ρ -complete if and only if any ρ -Cauchy sequence is ρ -convergent to an element of S.

Fatou property The modular ρ has the Fatou property if and only if $\rho(x) \leq \liminf_{n \to \infty} \rho(x_n)$ whenever the sequence $\{x_n\}$ is ρ -convergent to x. A function modular is said to satisfy the Δ_{α} -condition ($\alpha \in \mathbb{N}, \alpha \geq 2$) if there exists $\kappa > 0$ such that $\rho(\alpha x) \leq \kappa \rho(x)$, for all $x \in X_{\rho}$.

Remark Δ_{α} -condition implies Δ_2 -condition.

Definition 1.3 Let X_{ρ} be a modular space and C be a nonempty subset of X_{ρ} . The self-map $T: C \to C$ is said to be quasicontraction if there exists k < 1 such that

$$\rho \big(Tx - Ty \big) \le k \max \Big\{ \rho(x - y), \rho(x - Ty), \rho(y - Tx), \rho(x - Tx), \rho(y - Ty) \Big\},\,$$

for any $x, y \in C$.

Definition 1.4 Given a modular space X_{ρ} , a nonempty subset $C \subseteq X_{\rho}$, and a mapping $T: C \to C$, the orbit of T around a point x is the set

$$O(T) := \{x, Tx, T^2x, \ldots\},\$$

the quantity

$$\delta_{\rho}(T) := \sup \{ \rho(u - v) | u, v \in O(T) \},$$

is then associated to T and is called the orbital diameter of T at x. In particular, if $\delta_{\rho}(T) < \infty$, one says that T has a bounded orbit at x.

Theorem 1.5 ([13]) Let X_{ρ} be a modular space such that ρ satisfies the Fatou property and let $C \subseteq X_{\rho}$ be a ρ -complete subset. If $T: C \to C$ is a quasicontraction and T has a bounded orbit at x_0 , then the sequence $\{T^n x_0\}$ is ρ -convergent to a point $\omega \in C$.

Stability of quadratic and generalized Jensen functional equation in modular spaces have been investigated in [22] and [24].

In this paper, we investigate the generalized Hyers–Ulam stability of the α - cubic functional equation

$$f(\alpha x + y) + f(\alpha x - y) + f(x + \alpha y) - f(x - \alpha y)$$

= $2\alpha f(x + y) + 2\alpha(\alpha^2 - 1)[f(x) + f(y)],$ (1.1)

with $\alpha \in \mathbb{N}$, $\alpha \neq 1$ via the extensive studies of fixed point theory in modular spaces.

2 Stability of α -cubic functional equation (1.1)

Throughout this section, we assume that ρ is a convex modular on ρ -complete modular space X_{ρ} with the Fatou property such that satisfies the Δ_{α} -condition with $0 < \kappa \le \alpha$. In addition, let V be a linear space. For convenience, we use the following abbreviation for a given function $f: V \longrightarrow X_{\rho}$:

$$D_{\alpha} f(x, y) := f(\alpha x + y) + f(\alpha x - y) + f(x + \alpha y) - f(x - \alpha y)$$
$$-2\alpha f(x + y) - 2\alpha (\alpha^{2} - 1)[f(x) + f(y)]$$

with $\alpha \in \mathbb{N}$, $\alpha \neq 1$ and for all $x, y \in V$. We shall need the following lemmas:

Lemma 2.1 If a mapping $f: X \to Y$ satisfies the functional equation

$$f(x + \alpha y) - f(x - \alpha y) = \alpha [f(x + y) - f(x - y)] + 2\alpha(\alpha^2 - 1)f(y), \tag{2.1}$$

with $\alpha \in \mathbb{N}$, $\alpha \neq 1$ and for all $x, y \in X$, then f is cubic.

Proof Replacing (x, y) with (0, 0) in (2.1), we get $2\alpha(\alpha^2 - 1) f(0) = 0$ with $\alpha \in \mathbb{N}$, $\alpha \neq 1$. Therefore f(0) = 0. Replacing (x, y) with (0, x) and (0, -x) in (2.1), we get, respectively, equations:

$$f(\alpha x) - f(-\alpha x) = \alpha [(2\alpha^2 - 1)f(x) - f(-x)],$$

$$f(-\alpha x) - f(\alpha x) = \alpha [(2\alpha^2 - 1)f(-x) - f(x)].$$
(2.2)

By adding these two equations, one can obtain f(-x) = -f(x). By using (2.2) and f(-x) = -f(x), we get $f(\alpha x) = \alpha^3 f(x)$ with $\alpha \in \mathbb{N}$, $\alpha \neq 1$ and for all $x \in X$ (See [4]).

Lemma 2.2 If a mapping $f: X \to Y$ satisfies (1.1) for all $x, y \in X$, then f is cubic.

Proof Replacing (x, y) with (0, 0) in (1.1), we get f(0) = 0. Replacing (x, y) with (x, 0) in (1.1), we get,

$$f(\alpha x) = \alpha^3 f(x), \tag{2.3}$$

for all $x \in X$. By setting x = 0 and using (2.3), we get f(-y) = -f(y) for all $y \in X$, that is f is odd. Replacing (x, y) with (x, -y) in (1.1) and using oddness of f, we get,

$$f(\alpha x - y) + f(\alpha x + y) + f(x - \alpha y) - f(x + \alpha y)$$

= $2\alpha f(x - y) + 2\alpha(\alpha^2 - 1)[f(x) - f(y)]$ (2.4)

for all $x, y \in X$. It follows from (1.1) and (2.4) that

$$f(x + \alpha y) - f(x - \alpha y) = \alpha [f(x + y) - f(x - y)] + 2\alpha(\alpha^2 - 1)f(y), \qquad (2.5)$$

for all $x, y \in X$. It follows from Lemma 2.1 that f is cubic.

Theorem 2.3 Let $\varphi: V^2 \longrightarrow [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} \frac{1}{\alpha^{3n}} \varphi(\alpha^n x, \alpha^n y) = 0, \tag{2.6}$$

and

$$\varphi(\alpha x, \alpha y) \le \alpha^3 L \varphi(x, y),$$
 (2.7)

for all $x, y \in V$ with L < 1. Suppose that $f: V \longrightarrow X_{\rho}$ satisfies the condition

$$\rho(D_{\alpha}f(x,y)) \le \varphi(x,y), \tag{2.8}$$

for all $x, y \in V$ and f(0) = 0. Then there exists a unique cubic mapping $C_{\alpha} : V \longrightarrow X_{\rho}$ such that

$$\rho\left(C_{\alpha}(x) - f(x)\right) \le \frac{1}{\alpha^3(1-L)}\varphi(x,0),\tag{2.9}$$

for all $x \in V$.

Proof We consider the set

$$M = \{g: V \to X_{\rho}\}$$

and define the function $\overline{\rho}$ on M as follows,

$$\overline{\rho}(g) =: \inf\{c > 0 : \rho(g(x)) \le c\varphi(x, 0), \ \forall x \in V\}.$$

We show that $\overline{\rho}$ is a convex modular on M. It is also easy to verify that $\overline{\rho}$ satisfies the axioms (a) and (b) of a modular. We will next show that $\overline{\rho}$ is convex, and hence (c') is satisfied. Let $\epsilon > 0$ be given. Then there exist real constants $c_1 > 0$ and $c_2 > 0$ such that

$$\overline{\rho}(g) \le c_1 \le \overline{\rho}(g) + \epsilon, \ \overline{\rho}(h) \le c_2 \le \overline{\rho}(h) + \epsilon.$$

Also

$$\rho(g(x)) \le c_1 \varphi(x, 0), \quad \rho(h(x)) \le c_2 \varphi(x, 0).$$

for all $x \in V$. If a + b = 1 and $a, b \ge 0$, then we get

$$\rho(ag(x) + bh(x)) \le a\rho(g(x)) + b\rho(h(x))$$

$$\le (c_1a + c_2b)\varphi(x, 0),$$

so we get

$$\overline{\rho}(ag+bh) \leq a\overline{\rho}(g) + b\overline{\rho}(h) + (a+b)\epsilon$$

This concludes that $\overline{\rho}$ is a convex modular on M. Now we show that $M_{\overline{\rho}}$ is $\overline{\rho}$ -complete. Let $\{g_n\}$ be a $\overline{\rho}$ -Cauchy sequence in $M_{\overline{\rho}}$ and let $\epsilon > 0$ be given. There exists a positive integer $n_0 \in \mathbb{N}$ such that

$$\overline{\rho}(g_n - g_m) < \epsilon, \tag{2.10}$$

for all $n, m \ge n_0$. We have

$$\rho(g_n(x) - g_m(x)) \le \epsilon \varphi(x, 0) \tag{2.11}$$

for all $x \in V$ and $n, m \ge n_0$. Therefore if x is any given point of V, $\{g_n(x)\}$ is a ρ -Cauchy sequence in X_ρ . Since X_ρ is ρ -complete, so $\{g_n(x)\}$ is convergent in X_ρ , for each $x \in V$. Hence, we can define a function $g: V \to X_\rho$ by:

$$g(x) := \lim_{n \to \infty} g_n(x), \tag{2.12}$$

for all $x \in V$. Since ρ satisfies the Fatou property, it follows from (2.11) that

$$\rho(g_n(x) - g(x)) \le \liminf_{m \to \infty} \rho(g_n(x) - g_m(x)) \le \epsilon \varphi(x, 0), \tag{2.13}$$

so

$$\overline{\rho}(g_n - g) \le \epsilon, \tag{2.14}$$

for all $n \ge n_0$. Thus, $\{g_n\}$ is $\overline{\rho}$ -converges, so that $M_{\overline{\rho}}$ is $\overline{\rho}$ -complete.

Now we show that $\overline{\rho}$ satisfies the Fatou property. Suppose that $\{g_n\}$ is a sequence in $M_{\overline{\rho}}$ which is $\overline{\rho}$ - convergent to an element $g \in M_{\overline{\rho}}$. Let $\epsilon > 0$ be given. For each $n \in \mathbb{N}$, let c_n be a constant such that

$$\overline{\rho}(g_n) \le c_n \le \overline{\rho}(g_n) + \epsilon.$$
 (2.15)

so

$$\rho(g_n(x)) \le c_n \varphi(x, 0), \tag{2.16}$$

for all $x \in V$. Since ρ satisfies the Fatou property, we have

$$\rho(g(x)) \leq \liminf_{n \to \infty} \rho(g_n(x))$$

$$\leq \liminf_{n \to \infty} c_n \varphi(x, 0)$$

$$\leq \left[\liminf_{n \to \infty} \overline{\rho}(g_n) + \epsilon \right] \varphi(x, 0)$$

Thus, we have

$$\overline{\rho}(g) \leq \liminf_{n \to \infty} \overline{\rho}(g_n) + \epsilon.$$

So $\overline{\rho}$ satisfies the Fatou property. We consider the function $\tau: M_{\overline{\rho}} \to M_{\overline{\rho}}$ defined by:

$$\tau g(x) = \frac{1}{\alpha^3} g(\alpha x),$$

for all $x \in V$ and $g \in M_{\overline{\rho}}$. Let $g, h \in M_{\overline{\rho}}$ and let $c \in [0, 1]$ be an arbitrary constant with $\overline{\rho}(g-h) < c$. From the definition of $\overline{\rho}$, we have $\rho(g(x) - h(x)) \le c\varphi(x, 0)$ for all $x \in V$. By (2.7) and the last inequality, we get

$$\rho\left(\frac{g(\alpha x)}{\alpha^3} - \frac{h(\alpha x)}{\alpha^3}\right) \le \frac{1}{\alpha^3} \rho(g(\alpha x) - h(\alpha x))$$
$$\le \frac{1}{\alpha^3} c\varphi(\alpha x, 0)$$
$$\le cL\varphi(x, 0),$$

for all $x \in V$. Hence, $\overline{\rho}(\tau g - \tau h) \le L\overline{\rho}(g - h)$, for all $g, h \in M_{\overline{\rho}}$, that is, τ is a $\overline{\rho}$ -contraction. Next, we show that τ has a bounded orbit at f. Letting y = 0 in (2.8), we get

$$\rho\left(\frac{f(\alpha x)}{\alpha^3} - f(x)\right) \le \frac{1}{\alpha^3}\varphi(x,0),\tag{2.17}$$

for all $x \in V$. Replacing x with αx in (2.17), we get

$$\rho\left(\frac{f(\alpha^2 x)}{\alpha^3} - f(\alpha x)\right) \le \frac{1}{\alpha^3}\varphi(\alpha x, 0),\tag{2.18}$$

By using (2.17) and (2.18), we get

$$\rho\left(\frac{f(\alpha^{2}x)}{\alpha^{6}} - f(x)\right) \leq \rho\left(\frac{f(\alpha^{2}x)}{\alpha^{6}} - \frac{f(\alpha x)}{\alpha^{3}}\right) + \rho\left(\frac{f(\alpha x)}{\alpha^{3}} - f(x)\right)$$

$$\leq \frac{1}{\alpha^{6}}\varphi(\alpha x, 0) + \frac{1}{\alpha^{3}}\varphi(x, 0), \tag{2.19}$$

for all $x \in V$. By induction, we can easily see that

$$\rho(\frac{f(\alpha^n x)}{\alpha^{3n}} - f(x)) \le \sum_{i=1}^n \frac{1}{\alpha^{3i}} \varphi(\alpha^{i-1} x, 0)$$

$$\le \frac{1}{L\alpha^3} \varphi(x, 0) \sum_{i=1}^n L^i$$

$$\le \frac{1}{\alpha^3 (1 - L)} \varphi(x, 0), \tag{2.20}$$

for all $x \in V$. It follows from inequality (2.20) that

$$\begin{split} \rho\left(\frac{f(\alpha^n x)}{\alpha^{3n}} - \frac{f(\alpha^k x)}{\alpha^{3k}}\right) &\leq \frac{1}{2}\rho\left(2\frac{f(\alpha^n x)}{\alpha^{3n}} - 2f(x)\right) + \frac{1}{2}\rho\left(2\frac{f(\alpha^k x)}{\alpha^{3k}} - 2f(x)\right) \\ &\leq \frac{\kappa}{2}\rho\left(\frac{f(\alpha^n x)}{\alpha^{3n}} - f(x)\right) + \frac{\kappa}{2}\rho\left(\frac{f(\alpha^k x)}{\alpha^{3k}} - f(x)\right) \\ &\leq \frac{\kappa}{\alpha^3(1-L)}\varphi(x,0), \end{split}$$

for every $x \in V$ and $n, k \in \mathbb{N}$, By the definition of $\overline{\rho}$, we conclude that

$$\overline{\rho}(\tau^n f - \tau^k f) \le \frac{\kappa}{\alpha^3 (1 - L)},$$

which implies the boundedness of an orbit of τ at f. It follows from Theorem 1.5 that, the sequence $\{\tau^n f\} \overline{\rho}$ -converges to $C_{\alpha} \in M_{\overline{\rho}}$. Now, by the $\overline{\rho}$ -contractivity of τ , we have

$$\overline{\rho}(\tau^n f - \tau C_\alpha) \le L\overline{\rho}(\tau^{n-1} f - C_\alpha).$$

Passing to the limit $n \to \infty$ and applying the Fatou property of $\overline{\rho}$, we obtain that

$$\overline{\rho}(\tau C_{\alpha} - C_{\alpha}) \leq \liminf_{n \to \infty} \overline{\rho}(\tau C_{\alpha} - \tau^{n} f)$$

$$\leq L \liminf_{n \to \infty} \overline{\rho}(C_{\alpha} - \tau^{n-1} f) = 0.$$

Therefore, C_{α} is a fixed point of τ . Letting $x = \alpha^{n}x$ and $y = \alpha^{n}y$ in (2.8), we get

$$\rho(D_{\alpha}f(\alpha^n x, \alpha^n y)) \le \varphi(\alpha^n x, \alpha^n y),$$

for all $x, y \in V$. Therefore

$$\rho\left(\frac{1}{\alpha^{3n}}D_{\alpha}f(\alpha^{n}x,\alpha^{n}y)\right) \leq \frac{1}{\alpha^{3n}}\varphi(\alpha^{n}x,\alpha^{n}y),\tag{2.21}$$

Employing the limit $n \to \infty$, we get

$$D_{\alpha}C_{\alpha}(x, y) = 0,$$

for all $x, y \in V$. It follows from Lemma 2.2, that C_{α} is cubic. By using (2.20), we get (2.9).

To prove the uniqueness of C_{α} , let $C: V \to X_{\rho}$ be another cubic mapping satisfying (2.9). Then, C is a fixed point of τ .

$$\overline{\rho}(C_{\alpha}-C)=\overline{\rho}(\tau C_{\alpha}-\tau C)\leq L\overline{\rho}(C_{\alpha}-C),$$

which implies that $\overline{\rho}(C_{\alpha} - C) = 0$ or $C_{\alpha} = C$. This completes the proof.

Corollary 2.4 Let X be a Banach space, $\varphi: V^2 \longrightarrow [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} \frac{1}{\alpha^{3n}} \varphi(\alpha^n x, \alpha^n y) = 0,$$

and

$$\varphi(\alpha x, \alpha y) \le L\alpha^3 \varphi(x, y),$$

for all $x, y \in V$ with L < 1. Suppose that $f: V \longrightarrow X$ satisfies the following condition

$$||D_{\alpha}f(x,y)|| \leq \varphi(x,y),$$

 $x, y \in V$ and f(x) = 0. Then there exists a unique cubic mapping $C_{\alpha}: V \longrightarrow X$ such that

$$||C_{\alpha}(x) - f(x)|| \le \frac{1}{\alpha^3 (1 - L)} \varphi(x, 0),$$

for all $x \in V$.

Proof It is known that every normed space is modular space with the modular $\rho(x) = ||x||$ and satisfies the Δ_{α} -condition with $\kappa = \alpha$.

Theorem 2.5 Let $\varphi: V^2 \longrightarrow [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} \kappa^{3n} \varphi\left(\frac{x}{\alpha^n}, \frac{y}{\alpha^n}\right) = 0, \tag{2.22}$$

and

$$\varphi\left(\frac{x}{\alpha}, \frac{y}{\alpha}\right) \le \frac{L}{\alpha^3} \varphi(x, y),$$
 (2.23)

for all $x, y \in V$ with L < 1. Suppose that $f: V \longrightarrow X_{\rho}$ satisfies the condition

$$\rho(D_{\alpha}f(x,y)) \le \varphi(x,y), \tag{2.24}$$

for all $x, y \in V$ and f(0) = 0. Then there exists a unique mapping $C_{\alpha}: V \longrightarrow X_{\rho}$ such that

$$\rho\left(C_{\alpha}(x) - f(x)\right) \le \frac{L}{\alpha^{3}(1-L)}\varphi(x,0),\tag{2.25}$$

for all $x \in V$.

Proof We consider the set

$$M = \{g : V \to X_o\}$$

and define the function $\overline{\rho}$ on M as follows,

$$\overline{\rho}(g) =: \inf\{c > 0 : \rho(g(x)) \le c\varphi(x, 0), \ \forall x \in V\}.$$

Similar to the proof of Theorem 2.3, we have:

- 1. $\overline{\rho}$ is a convex modular on M,
- 2. $M_{\overline{\rho}}$ is $\overline{\rho}$ -complete.
- 3. $\overline{\rho}$ satisfies the Fatou property.

Now, we consider the function $\tau: M_{\overline{\rho}} \to M_{\overline{\rho}}$ defined by:

$$\tau g(x) = \alpha^3 g\left(\frac{x}{\alpha}\right),\,$$

for all $x \in V$ and $g \in M_{\overline{\rho}}$. Let $g, h \in M_{\overline{\rho}}$ and let $c \in [0, 1]$ be an arbitrary constant with $\overline{\rho}(g-h) < c$. From the definition of $\overline{\rho}$, we have $\rho(g(x) - h(x)) \le c\varphi(x, 0)$ for all $x \in V$. By the assumption and the last inequality, we get

$$\begin{split} \rho\left(\alpha^{3}g\left(\frac{x}{\alpha}\right) - \alpha^{3}h\left(\frac{x}{\alpha}\right)\right) &\leq \kappa^{3}\rho\left(g\left(\frac{x}{\alpha}\right) - g\left(\frac{x}{\alpha}\right)\right) \\ &\leq \kappa^{3}c\varphi\left(\frac{x}{\alpha}, 0\right) \\ &\leq cL\varphi(x, 0), \end{split}$$

for all $x \in V$. Hence, $\overline{\rho}(\tau g - \tau h) \leq L\overline{\rho}(g - h)$, for all $g, h \in \mathfrak{M}_{\overline{\rho}}$ that is, τ is a $\overline{\rho}$ -contraction. Next, we show that τ has a bounded orbit at f. Letting y = 0 in (2.24), we get

$$\rho(\alpha^3 f(x) - f(\alpha x)) \le \varphi(x, 0), \tag{2.26}$$

for all $x \in V$. Replacing x with $\frac{x}{\alpha}$ in (2.26), we get

$$\rho\left(\alpha^{3} f\left(\frac{x}{\alpha}\right) - f(x)\right) \le \varphi(\frac{x}{\alpha}, 0),\tag{2.27}$$

for all $x \in V$. Replacing x with $\frac{x}{\alpha}$ in (2.27), we get

$$\rho\left(\alpha^{3} f\left(\frac{x}{\alpha^{2}}\right) - f\left(\frac{x}{\alpha}\right)\right) \leq \varphi(\frac{x}{\alpha^{2}}, 0), \tag{2.28}$$

for all $x \in V$. By using (2.26), (2.27) and (2.28), we get

$$\rho(\alpha^{6} f(\frac{x}{\alpha^{2}}) - f(x)) \leq \rho(\alpha^{6} f(\frac{x}{\alpha^{2}}) - \alpha^{3} f(\frac{x}{\alpha})) + \rho(\alpha^{3} f(\frac{x}{\alpha}) - f(x))$$

$$\leq \kappa^{3} \rho(\alpha^{3} f(\frac{x}{\alpha^{2}}) - f(\frac{x}{\alpha})) + \rho(\alpha^{3} f(\frac{x}{\alpha}) - f(x))$$

$$\leq \alpha^{3} \varphi(\frac{x}{\alpha^{2}}, 0) + \varphi(\frac{x}{\alpha}, 0), \tag{2.29}$$

for all $x \in V$. By induction, we can easily see that

$$\rho\left(\alpha^{3n} f\left(\frac{x}{\alpha^n}\right) - f(x)\right) \le \frac{1}{\alpha^3} \sum_{i=1}^n \alpha^{3i} \varphi\left(\frac{x}{\alpha^i}, 0\right)$$

$$\le \frac{1}{\alpha^3} \varphi(x, 0) \sum_{i=1}^n L^i$$

$$\le \frac{L}{\alpha^3 (1 - L)} \varphi(x, 0), \tag{2.30}$$

for all $x \in V$. It follows from inequality (2.30) that

$$\rho\left(\alpha^{3n} f\left(\frac{x}{\alpha^n}\right) - \alpha^{3k} f\left(\frac{x}{\alpha^k}\right)\right) \le \frac{1}{2} \rho\left(2\alpha^{3n} f\left(\frac{x}{\alpha^n}\right) - 2f(x)\right) + \frac{1}{2} \rho\left(2\alpha^{3k} f\left(\frac{x}{\alpha^k}\right) - 2f(x)\right)$$

$$\le \frac{kL}{\alpha^3 (1-L)} \varphi(x,0), \tag{2.31}$$

for every $x \in V$ and $n, k \in \mathbb{N}$, By the definition of $\overline{\rho}$, we conclude that

$$\overline{\rho}(\tau^n f - \tau^k f) \le \frac{kL}{\alpha^3 (1 - L)},$$

which implies the boundedness of an orbit of τ at f. It follows from Theorem 1.5 that, the sequence $\{\tau^n f\}\overline{\rho}$ -converges to $C_{\alpha} \in M_{\overline{\rho}}$. Now, by the $\overline{\rho}$ -contractivity of τ , we have

$$\overline{\rho}(\tau^n f - \tau C_\alpha) \le L\overline{\rho}(\tau^{n-1} f - C_\alpha).$$

Employing the limit $n \to \infty$ and applying the Fatou property of $\overline{\rho}$, we obtain that

$$\overline{\rho}(\tau C_{\alpha} - C_{\alpha}) \leq \liminf_{n \to \infty} \overline{\rho}(\tau C_{\alpha} - \tau^{n} f)$$

$$\leq L \liminf_{n \to \infty} \overline{\rho}(C_{\alpha} - \tau^{n-1} f) = 0.$$

Therefore, C_{α} is a fixed point of τ . Letting $x = \frac{x}{\alpha^n}$ and $y = \frac{y}{\alpha^n}$ in (2.24), we get

$$\rho(D_{\alpha}f(\frac{x}{\alpha^n},\frac{y}{\alpha^n})) \leq \varphi(\frac{x}{\alpha^n},\frac{y}{\alpha^n}),$$

for all $x, y \in V$. Therefore

$$\rho\left(\alpha^{3n}D_{\alpha}f\left(\frac{x}{\alpha^{n}},\frac{y}{\alpha^{n}}\right)\right) \leq \kappa^{3n}\varphi\left(\frac{x}{\alpha^{n}},\frac{y}{\alpha^{n}}\right),$$

Passing to the limit $n \to \infty$, we get

$$D_{\alpha}C_{\alpha}(x, y) = 0$$

for all $x, y \in V$. It follows from Lemma 2.2 that C_{α} is cubic. By using (2.30), we get (2.25).

Corollary 2.6 Let X be a Banach space, $\varphi: V^2 \longrightarrow [0, +\infty)$ be a function such that

$$\lim_{n\to\infty}\alpha^{3n}\varphi\left(\frac{x}{\alpha^n},\frac{y}{\alpha^n}\right)=0,$$

and

$$\varphi\left(\frac{x}{\alpha}, \frac{y}{\alpha}\right) \le \frac{L}{\alpha^3} \varphi(x, y),$$

for all $x, y \in V$ with L < 1. Suppose that $f: V \longrightarrow X$ satisfies the condition

$$||D_{\alpha}f(x,y)|| \leq \varphi(x,y),$$

for all $x, y \in V$ and f(0) = 0. Then there exists a unique cubic mapping $C_{\alpha}: V \longrightarrow X$ such that

$$||C_{\alpha}(x) - f(x)|| \le \frac{L}{\alpha^3 (1 - L)} \varphi(x, 0),$$

for all $x \in V$.

Proof It is known that every normed space is modular space with the modular $\rho(x) = ||x||$ and satisfies the Δ_{α} -condition with $\kappa = \alpha$.

Remark 2.7 In Corollaries 2.4 and 2.6, by replacing φ with:

$$\varphi(x, y) = ||x||^p + ||y||^p,$$

$$\varphi(x, y) = ||x||^p ||y||^q,$$

$$\varphi(x, y) = ||x||^p + ||y||^p + ||x||^r ||y||^s,$$

under suitable conditions, it is possible to obtain some corollaries.

Acknowledgements The first author was supported by University of Tabriz.

References

- Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)
- Bouikhalene, B., Eloqrachi, E.: Hyers-Ulam stability of spherical functions. Georgian Math. J. 23(2), 181–189 (2016)
- Czerwik, S.: Functional equations and inequalities in several variables. World Scientific, New Jersey, London, Singapore, Hong Kong (2002)
- Eskandani, G.Z., Rassias, J.M.: Approximation of general α-cubic functional equations in 2-Banach spaces. Ukr. Math. J. 10, 1430–1436 (2017)
- Eskandani, G.Z., Rassias, J.M., Gavruta, P.: Generalized Hyers-Ulam stability for a general cubic functional equation in quasi-normed spaces, Asian-Eur. J. Math. 4(03), 413–425 (2011)
- Găvruta, P.: On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings. J. Math. Anal. Appl. 261, 543–553 (2001)
- Găvruta, P.: An answer to question of John M. Rassias concerning the stability of Cauchy equation, Advanced in Equation and Inequality, Edited by John M. Rassias, Hadronic Press Mathematics Series pp 67–71 (1999)
- 8. Găvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184**, 431–436 (1994)
- 9. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. 27, 222–224 (1941)
- Hyers, D.H., Isac, G., Rassias, Th.M: Stability of functional equations in several variables. Birkhäuser, Basel (1998)
- Jung, S.M.: Hyers-Ulam-Rassias stability of functional equations in mathematical analysis. Hadronic Press, Palm Harbor (2001)
- 12. Nakano, H.: Modulared semi-ordered linear spaces. Maruzen, Tokyo, Japan (1950)
- Khamsi, M. A.: Quasicontraction Mapping in modular spaces without Δ₂-condition, Fixed Point Theory and Applications Volume, Artical ID 916187, 6 pages (2008)
- Koshi, S., Shimogaki, T.: On F-norms of quasi-modular spaces. J. Fac. Sci. Hokkaido Univ. Ser. I 15(3), 202–218 (1961)
- 15. Park, C.: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36, 79–97 (2005)
- Rassias, J.M.: On approximation of approximately linear mappings by linear mappings, J Funct Anal. 46(1), 126—130 (1982)
- Rassias, J.M.: On approximation of approximately linear mappings by linear mappings. Bull. des Sci. Math. 108(4), 445–446 (1984)
- 18. Rassias, J.M.: Solution of a problem of Ulam. J. Approx. Theory 57(3), 268–273 (1989)
- 19. Rassias, J.M.: Solution of a stability problem of Ulam. Discussiones Mathematicae 12, 95-103 (1992)
- Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72, 297–300 (1978)
- 21. Rassias, Th.M.: On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 158, 106–113 (1991)
- Sadeghi, G.: A fixed point approach to stability of functional equations in modular spaces. Bull. Malaysian Math. Sci. Soc. 37, 333–344 (2014)
- 23. Ulam, S.M.: A collection of the mathematical problems, Interscience Publ. New York, 431-436 (1960)

- Wongkum, K., Chaipunya, P., Kumam, P.: On the Generalized Ulam–Hyers–Rassias Stability of Quadratic Mappings in Modular Spaces without Δ₂-Conditions, Journal of Function Spaces, Volume, Article ID 461719, 7 pages (2014)
- 25. Yamamuro, S.: On conjugate spaces of Nakano spaces. Trans. Amer. Math. Soc. 90, 291–311 (1959)