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Abstract In this paper, by using fixed point theory, we investigate the generalized Hyers–
Ulam stability of an α-cubic functional equation in modular spaces.
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1 Introduction and preliminaries

In 1940, Ulam [23] asked the first question on the stability problem. In 1941, Hyers [9]
solved the problem of Ulam. This result was generalized by Aoki [1] for additive mappings
and by Rassias [20] for linear mappings by considering an unbounded Cauchy difference.
In 1994, a further generalization was obtained by Găvruta [8]. Rassias [16–19] generalized
Hyers result. During the last two decades, a number of papers and research monographs have
been published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings (see [2,5–7,11,15,16,21]). We
also refer the readers to the books: Czerwik [3] and Hyers, Isac and Rassias [10].

The theory of modulars on linear spaces and the corresponding theory of modular linear
spaces were founded by Nakano [12] and were intensively developed by Amemiya, Koshi,
Shimogaki, Yamamuro [14,25] and others.
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Definition 1.1 Let X be a vector space over a field K (R or C). A generalized functional
ρ : X −→ [0,∞] is called a modular if for arbitrary x, y ∈ X, ρ satisfies:

(a) ρ(x) = 0 if and only if x = 0,
(b) ρ(ax) = ρ(x) for every scalar a with |a| = 1,
(c) ρ(ax + by) ≤ ρ(x) + ρ(y), whenever a, b ≥ 0 and a + b = 1.

If we replace (c) by
(c′) ρ(ax + by) ≤ aρ(x)+ bρ(y), whenever a, b ≥ 0 and a + b = 1, then the modular ρ

is called convex. A modular ρ defines a corresponding modular space, i.e., the vector space
Xρ given by:

Xρ = {x ∈ X | ρ(λx) −→ 0 as λ −→ 0}.
Definition 1.2 Let {xn} and x be in Xρ . Then

(i) The sequence {xn}, with xn ∈ Xρ , is ρ-convergent to x if ρ(xn − x) → 0 as n → ∞.
(ii) The sequence {xn}, with xn ∈ Xρ , is called ρ-Cauchy if ρ(xn−xm) → 0 as n,m → ∞.
(iii) A subset S of Xρ is called ρ-complete if and only if any ρ-Cauchy sequence is ρ-

convergent to an element of S.

Fatou property The modular ρ has the Fatou property if and only if ρ(x) ≤ lim inf
n→∞ ρ(xn)

whenever the sequence {xn} is ρ-convergent to x . A function modular is said to satisfy the
�α-condition (α ∈ N,α ≥ 2) if there exists κ > 0 such that ρ(αx) ≤ κρ(x), for all x ∈ Xρ .

Remark �α-condition implies �2-condition.

Definition 1.3 Let Xρ be a modular space and C be a nonempty subset of Xρ . The self-map
T : C → C is said to be quasicontraction if there exists k < 1 such that

ρ
(
T x − T y

) ≤ kmax
{
ρ(x − y), ρ(x − T y), ρ(y − T x), ρ(x − T x), ρ(y − T y)

}
,

for any x, y ∈ C.

Definition 1.4 Given a modular space Xρ , a nonempty subset C ⊆ Xρ , and a mapping
T : C → C , the orbit of T around a point x is the set

O(T ) := {x, T x, T 2x, . . .},
the quantity

δρ(T ) := sup{ρ(u − v)|u, v ∈ O(T )},
is then associated to T and is called the orbital diameter of T at x . In particular, if δρ(T ) < ∞,

one says that T has a bounded orbit at x .

Theorem 1.5 ([13]) Let Xρ be a modular space such that ρ satisfies the Fatou property
and let C ⊆ Xρ be a ρ-complete subset. If T : C → C is a quasicontraction and T has a
bounded orbit at x0, then the sequence {T nx0} is ρ-convergent to a point ω ∈ C.

Stability of quadratic and generalized Jensen functional equation in modular spaces have
been investigated in [22] and [24].

In this paper, we investigate the generalized Hyers–Ulam stability of the α- cubic func-
tional equation

f (αx + y) + f (αx − y) + f (x + αy) − f (x − αy)

= 2α f (x + y) + 2α(α2 − 1)[ f (x) + f (y)], (1.1)

with α ∈ N, α 	= 1 via the extensive studies of fixed point theory in modular spaces.
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2 Stability of α-cubic functional equation (1.1)

Throughout this section, we assume that ρ is a convex modular on ρ-complete modular
space Xρ with the Fatou property such that satisfies the �α-condition with 0 < κ ≤ α. In
addition, let V be a linear space. For convenience, we use the following abbreviation for a
given function f : V −→ Xρ :

Dα f (x, y) : = f (αx + y) + f (αx − y) + f (x + αy) − f (x − αy)

−2α f (x + y) − 2α(α2 − 1)[ f (x) + f (y)]
with α ∈ N, α 	= 1 and for all x, y ∈ V . We shall need the following lemmas:

Lemma 2.1 If a mapping f : X → Y satisfies the functional equation

f (x + αy) − f (x − αy) = α[ f (x + y) − f (x − y)] + 2α(α2 − 1) f (y), (2.1)

with α ∈ N, α 	= 1 and for all x, y ∈ X, then f is cubic.

Proof Replacing (x, y) with (0, 0) in (2.1), we get 2α(α2 − 1) f (0) = 0 with α ∈ N, α 	= 1.
Therefore f (0) = 0. Replacing (x, y) with (0, x) and (0,−x) in (2.1), we get, respectively,
equations:

f (αx) − f (−αx) = α[(2α2 − 1) f (x) − f (−x)],
f (−αx) − f (αx) = α[(2α2 − 1) f (−x) − f (x)]. (2.2)

By adding these two equations, one can obtain f (−x) = − f (x). By using (2.2) and f (−x) =
− f (x), we get f (αx) = α3 f (x) with α ∈ N, α 	= 1 and for all x ∈ X (See [4]). 
�
Lemma 2.2 If a mapping f : X → Y satisfies (1.1) for all x, y ∈ X, then f is cubic.

Proof Replacing (x, y) with (0, 0) in (1.1), we get f (0) = 0. Replacing (x, y) with (x, 0)
in (1.1), we get,

f (αx) = α3 f (x), (2.3)

for all x ∈ X. By setting x = 0 and using (2.3), we get f (−y) = − f (y) for all y ∈ X, that
is f is odd. Replacing (x, y) with (x,−y) in (1.1) and using oddness of f , we get,

f (αx − y) + f (αx + y) + f (x − αy) − f (x + αy)

= 2α f (x − y) + 2α(α2 − 1)[ f (x) − f (y)] (2.4)

for all x, y ∈ X. It follows from (1.1) and (2.4) that

f (x + αy) − f (x − αy) = α[ f (x + y) − f (x − y)] + 2α(α2 − 1) f (y), (2.5)

for all x, y ∈ X. It follows from Lemma 2.1 that f is cubic. 
�
Theorem 2.3 Let ϕ : V 2 −→ [0,+∞) be a function such that

lim
n→∞

1

α3n ϕ(αnx, αn y) = 0, (2.6)

and

ϕ(αx, αy) ≤ α3Lϕ(x, y), (2.7)
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for all x, y ∈ V with L < 1. Suppose that f : V −→ Xρ satisfies the condition

ρ
(
Dα f (x, y)

) ≤ ϕ(x, y), (2.8)

for all x, y ∈ V and f (0) = 0. Then there exists a unique cubic mapping Cα : V −→ Xρ

such that

ρ
(
Cα(x) − f (x)

) ≤ 1

α3(1 − L)
ϕ(x, 0), (2.9)

for all x ∈ V .

Proof We consider the set

M = {g : V → Xρ}
and define the function ρ on M as follows,

ρ(g) =: inf{c > 0 : ρ(g(x)) ≤ cϕ(x, 0), ∀x ∈ V }.
We show that ρ is a convex modular on M . It is also easy to verify that ρ satisfies the axioms
(a) and (b) of a modular. We will next show that ρ is convex, and hence (c′) is satisfied. Let
ε > 0 be given. Then there exist real constants c1 > 0 and c2 > 0 such that

ρ(g) ≤ c1 ≤ ρ(g) + ε, ρ(h) ≤ c2 ≤ ρ(h) + ε.

Also

ρ(g(x)) ≤ c1ϕ(x, 0), ρ(h(x)) ≤ c2ϕ(x, 0).

for all x ∈ V . If a + b = 1 and a, b ≥ 0, then we get

ρ(ag(x) + bh(x)) ≤ aρ(g(x)) + bρ(h(x))

≤ (c1a + c2b)ϕ(x, 0),

so we get

ρ(ag + bh) ≤ aρ(g) + bρ(h) + (a + b)ε,

This concludes that ρ is a convex modular on M . Now we show that Mρ is ρ-complete. Let
{gn} be a ρ-Cauchy sequence in Mρ and let ε > 0 be given. There exists a positive integer
n0 ∈ N such that

ρ(gn − gm) < ε, (2.10)

for all n,m ≥ n0. We have

ρ(gn(x) − gm(x)) ≤ εϕ(x, 0) (2.11)

for all x ∈ V and n,m ≥ n0. Therefore if x is any given point of V , {gn(x)} is a ρ-Cauchy
sequence in Xρ . Since Xρ is ρ-complete, so {gn(x)} is convergent in Xρ , for each x ∈ V .
Hence, we can define a function g : V → Xρ by:

g(x) := lim
n→∞ gn(x), (2.12)

for all x ∈ V . Since ρ satisfies the Fatou property, it follows from (2.11) that

ρ(gn(x) − g(x)) ≤ lim inf
m→∞ ρ(gn(x) − gm(x)) ≤ εϕ(x, 0), (2.13)
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so

ρ(gn − g) ≤ ε, (2.14)

for all n ≥ n0. Thus, {gn} is ρ-converges, so that Mρ is ρ-complete.
Now we show that ρ satisfies the Fatou property. Suppose that {gn} is a sequence in Mρ

which is ρ- convergent to an element g ∈ Mρ . Let ε > 0 be given. For each n ∈ N, let cn be
a constant such that

ρ(gn) ≤ cn ≤ ρ(gn) + ε. (2.15)

so

ρ(gn(x)) ≤ cnϕ(x, 0), (2.16)

for all x ∈ V . Since ρ satisfies the Fatou property, we have

ρ(g(x)) ≤ lim inf
n→∞ ρ(gn(x))

≤ lim inf
n→∞ cnϕ(x, 0)

≤
[
lim inf
n→∞ ρ(gn) + ε

]
ϕ(x, 0)

Thus, we have

ρ(g) ≤ lim inf
n→∞ ρ(gn) + ε.

So ρ satisfies the Fatou property. We consider the function τ : Mρ → Mρ defined by:

τg(x) = 1

α3 g(αx),

for all x ∈ V and g ∈ Mρ . Let g, h ∈ Mρ and let c ∈ [0, 1] be an arbitrary constant with
ρ(g − h) < c. From the definition of ρ, we have ρ(g(x) − h(x)) ≤ cϕ(x, 0) for all x ∈ V .
By (2.7) and the last inequality, we get

ρ
(g(αx)

α3 − h(αx)

α3

) ≤ 1

α3 ρ(g(αx) − h(αx))

≤ 1

α3 cϕ(αx, 0)

≤ cLϕ(x, 0),

for all x ∈ V . Hence, ρ(τg−τh) ≤ Lρ(g−h), for all g, h ∈ Mρ , that is, τ is a ρ-contraction.
Next, we show that τ has a bounded orbit at f . Letting y = 0 in (2.8), we get

ρ

(
f (αx)

α3 − f (x)

)
≤ 1

α3 ϕ(x, 0), (2.17)

for all x ∈ V . Replacing x with αx in (2.17), we get

ρ

(
f (α2x)

α3 − f (αx)

)
≤ 1

α3 ϕ(αx, 0), (2.18)



430 G. Z. Eskandani, J. M. Rassias

By using (2.17) and (2.18), we get

ρ

(
f (α2x)

α6 − f (x)

)
≤ ρ(

f (α2x)

α6 − f (αx)

α3 ) + ρ(
f (αx)

α3 − f (x))

≤ 1

α6 ϕ(αx, 0) + 1

α3 ϕ(x, 0), (2.19)

for all x ∈ V . By induction, we can easily see that

ρ(
f (αnx)

α3n − f (x)) ≤
n∑

i=1

1

α3i ϕ(αi−1x, 0)

≤ 1

Lα3 ϕ(x, 0)
n∑

i=1

Li

≤ 1

α3(1 − L)
ϕ(x, 0), (2.20)

for all x ∈ V . It follows from inequality (2.20) that

ρ

(
f (αnx)

α3n − f (αk x)

α3k

)
≤ 1

2
ρ

(
2
f (αnx)

α3n − 2 f (x)

)
+ 1

2
ρ

(
2
f (αk x)

α3k − 2 f (x)

)

≤ κ

2
ρ

(
f (αnx)

α3n − f (x)

)
+ κ

2
ρ

(
f (αk x)

α3k − f (x)

)

≤ κ

α3(1 − L)
ϕ(x, 0),

for every x ∈ V and n, k ∈ N, By the definition of ρ, we conclude that

ρ(τ n f − τ k f ) ≤ κ

α3(1 − L)
,

which implies the boundedness of an orbit of τ at f . It follows from Theorem 1.5 that, the
sequence {τ n f } ρ-converges to Cα ∈ Mρ . Now, by the ρ-contractivity of τ , we have

ρ(τ n f − τCα) ≤ Lρ(τ n−1 f − Cα).

Passing to the limit n → ∞ and applying the Fatou property of ρ, we obtain that

ρ(τCα − Cα) ≤ lim inf
n→∞ ρ(τCα − τ n f )

≤ L lim inf
n→∞ ρ(Cα − τ n−1 f ) = 0.

Therefore, Cα is a fixed point of τ . Letting x = αnx and y = αn y in (2.8), we get

ρ
(
Dα f (αnx, αn y)

) ≤ ϕ(αnx,α
n y),

for all x, y ∈ V . Therefore

ρ
( 1

α3n Dα f (αnx, αn y)
) ≤ 1

α3n ϕ(αnx,α
n y), (2.21)

Employing the limit n → ∞, we get

DαCα(x, y) = 0,

for all x, y ∈ V . It follows from Lemma 2.2, that Cα is cubic. By using (2.20), we get (2.9).
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To prove the uniqueness of Cα, let C : V → Xρ be another cubic mapping satisfying
(2.9). Then, C is a fixed point of τ .

ρ
(
Cα − C

) = ρ
(
τCα − τC

) ≤ Lρ
(
Cα − C

)
,

which implies that ρ
(
Cα − C

) = 0 or Cα = C . This completes the proof.

Corollary 2.4 Let X be a Banach space, ϕ : V 2 −→ [0,+∞) be a function such that

lim
n→∞

1

α3n ϕ(αnx, αn y) = 0,

and

ϕ(αx, αy) ≤ Lα3ϕ(x, y),

for all x, y ∈ V with L < 1. Suppose that f : V −→ X satisfies the following condition
∥
∥Dα f (x, y)

∥
∥ ≤ ϕ(x, y),

x, y ∈ V and f (x) = 0. Then there exists a unique cubic mapping Cα : V −→ X such that

∥∥Cα(x) − f (x)
∥∥ ≤ 1

α3(1 − L)
ϕ(x, 0),

for all x ∈ V .

Proof It is known that every normed space is modular space with the modular ρ(x) = ‖x‖
and satisfies the �α-condition with κ = α. 
�
Theorem 2.5 Let ϕ : V 2 −→ [0,+∞) be a function such that

lim
n→∞ κ3nϕ

( x

αn
,
y

αn

)
= 0, (2.22)

and

ϕ
( x

α
,
y

α

)
≤ L

α3 ϕ(x, y), (2.23)

for all x, y ∈ V with L < 1. Suppose that f : V −→ Xρ satisfies the condition

ρ
(
Dα f (x, y)

) ≤ ϕ(x, y), (2.24)

for all x, y ∈ V and f (0) = 0. Then there exists a unique mapping Cα : V −→ Xρ such
that

ρ
(
Cα(x) − f (x)

) ≤ L

α3(1 − L)
ϕ(x, 0), (2.25)

for all x ∈ V .

Proof We consider the set

M = {g : V → Xρ}
and define the function ρ on M as follows,

ρ(g) =: inf{c > 0 : ρ(g(x)) ≤ cϕ(x, 0), ∀x ∈ V }.
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Similar to the proof of Theorem 2.3, we have:

1. ρ is a convex modular on M,

2. Mρ is ρ-complete.
3. ρ satisfies the Fatou property.

Now, we consider the function τ : Mρ → Mρ defined by:

τg(x) = α3g
( x

α

)
,

for all x ∈ V and g ∈ Mρ. Let g, h ∈ Mρ and let c ∈ [0, 1] be an arbitrary constant with
ρ(g − h) < c. From the definition of ρ, we have ρ(g(x) − h(x)) ≤ cϕ(x, 0) for all x ∈ V .
By the assumption and the last inequality, we get

ρ
(
α3g

( x

α

)
− α3h

( x

α

))
≤ κ3ρ

(
g

( x

α

)
− g

( x

α

))

≤ κ3cϕ
( x

α
, 0

)

≤ cLϕ(x, 0),

for all x ∈ V . Hence, ρ(τg−τh) ≤ Lρ(g−h), for all g, h ∈ Mρ that is, τ is a ρ-contraction.
Next, we show that τ has a bounded orbit at f . Letting y = 0 in (2.24), we get

ρ(α3 f (x) − f (αx)) ≤ ϕ(x, 0), (2.26)

for all x ∈ V . Replacing x with x
α
in (2.26), we get

ρ
(
α3 f

( x

α

)
− f (x)

)
≤ ϕ(

x

α
, 0), (2.27)

for all x ∈ V . Replacing x with x
α
in (2.27), we get

ρ
(
α3 f

( x

α2

)
− f

( x

α

))
≤ ϕ(

x

α2 , 0), (2.28)

for all x ∈ V . By using (2.26), (2.27) and (2.28), we get

ρ(α6 f (
x

α2 ) − f (x)) ≤ ρ(α6 f (
x

α2 ) − α3 f (
x

α
)) + ρ(α3 f (

x

α
) − f (x))

≤ κ3ρ(α3 f (
x

α2 ) − f (
x

α
)) + ρ(α3 f (

x

α
) − f (x))

≤ α3ϕ(
x

α2 , 0) + ϕ(
x

α
, 0), (2.29)

for all x ∈ V . By induction, we can easily see that

ρ
(
α3n f (

x

αn
) − f (x)

) ≤ 1

α3

n∑

i=1

α3iϕ(
x

αi
, 0)

≤ 1

α3 ϕ(x, 0)
n∑

i=1

Li

≤ L

α3(1 − L)
ϕ(x, 0), (2.30)
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for all x ∈ V . It follows from inequality (2.30) that

ρ
(
α3n f (

x

αn ) − α3k f (
x

αk
)
) ≤ 1

2
ρ(2α3n f (

x

αn ) − 2 f (x)) + 1

2
ρ(2α3k f (

x

αk
) − 2 f (x))

≤ kL

α3(1 − L)
ϕ(x, 0), (2.31)

for every x ∈ V and n, k ∈ N, By the definition of ρ, we conclude that

ρ(τ n f − τ k f ) ≤ kL

α3(1 − L)
,

which implies the boundedness of an orbit of τ at f . It follows from Theorem 1.5 that, the
sequence {τ n f } ρ-converges to Cα ∈ Mρ . Now, by the ρ-contractivity of τ , we have

ρ(τ n f − τCα) ≤ Lρ(τ n−1 f − Cα).

Employing the limit n → ∞ and applying the Fatou property of ρ, we obtain that

ρ(τCα − Cα) ≤ lim inf
n→∞ ρ(τCα − τ n f )

≤ L lim inf
n→∞ ρ(Cα − τ n−1 f ) = 0.

Therefore, Cα is a fixed point of τ . Letting x = x

αn
and y = y

αn
in (2.24), we get

ρ
(
Dα f (

x

αn
,
y

αn
)
) ≤ ϕ(

x

αn
,
y

αn
),

for all x, y ∈ V . Therefore

ρ
(
α3nDα f

( x

αn
,
y

αn

))
≤ κ3nϕ

( x

αn
,
y

αn

)
,

Passing to the limit n → ∞, we get

DαCα(x, y) = 0

for all x, y ∈ V . It follows from Lemma 2.2 that Cα is cubic. By using (2.30), we get (2.25).

�

Corollary 2.6 Let X be a Banach space, ϕ : V 2 −→ [0,+∞) be a function such that

lim
n→∞ α3nϕ

( x

αn
,
y

αn

)
= 0,

and

ϕ
( x

α
,
y

α

)
≤ L

α3 ϕ(x, y),

for all x, y ∈ V with L < 1. Suppose that f : V −→ X satisfies the condition
∥∥Dα f (x, y)

∥∥ ≤ ϕ(x, y),

for all x, y ∈ V and f (0) = 0. Then there exists a unique cubic mapping Cα : V −→ X
such that

∥∥Cα(x) − f (x)
∥∥ ≤ L

α3(1 − L)
ϕ(x, 0),

for all x ∈ V .
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Proof It is known that every normed space is modular space with the modular ρ(x) = ‖x‖
and satisfies the �α-condition with κ = α. 
�

Remark 2.7 In Corollaries 2.4 and 2.6, by replacing ϕ with:

ϕ(x, y) = ‖x‖p + ‖y‖p,

ϕ(x, y) = ‖x‖p‖y‖q ,
ϕ(x, y) = ‖x‖p + ‖y‖p + ‖x‖r‖y‖s,

under suitable conditions, it is possible to obtain some corollaries.
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