

ORIGINAL PAPER

Stability of general *A***-cubic functional equations in modular spaces**

G. Zamani Eskandani1 · John Michael Rassias²

Received: 5 October 2016 / Accepted: 24 February 2017 / Published online: 21 March 2017 © Springer-Verlag Italia 2017

Abstract In this paper, by using fixed point theory, we investigate the generalized Hyers– Ulam stability of an α -cubic functional equation in modular spaces.

Keywords Fixed point · Modular space · Generalized Hyers–Ulam stability

Mathematics Subject Classification Primary 39B52; Secondary 39B72 · 47H09

1 Introduction and preliminaries

In 1940, Ulam [\[23](#page-9-0)] asked the first question on the stability problem. In 1941, Hyers [\[9\]](#page-9-1) solved the problem of Ulam. This result was generalized by Aoki [\[1\]](#page-9-2) for additive mappings and by Rassias [\[20](#page-9-3)] for linear mappings by considering an *unbounded Cauchy difference*. In 1994, a further generalization was obtained by Găvruta $[8]$. Rassias $[16–19]$ $[16–19]$ generalized Hyers result. During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$ $[2,5-7,11,15,16,21]$). We also refer the readers to the books: Czerwik [\[3](#page-9-13)] and Hyers, Isac and Rassias [\[10](#page-9-14)].

The theory of modulars on linear spaces and the corresponding theory of modular linear spaces were founded by Nakano [\[12\]](#page-9-15) and were intensively developed by Amemiya, Koshi, Shimogaki, Yamamuro [\[14,](#page-9-16)[25](#page-10-0)] and others.

B G. Zamani Eskandani zamani@tabrizu.ac.ir

> John Michael Rassias jrassias@primedu.uoa.gr; jrass@otenet.gr

¹ Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran

² Pedagogical Department, National and Capodistrian University of Athens, 4 Agamemnonos Street, Aghia Paraskevi, Athens 15342, Greece

Definition 1.1 Let *X* be a vector space over a field $K \times \mathbb{C}$. A generalized functional $\rho: X \longrightarrow [0, \infty]$ is called a modular if for arbitrary $x, y \in X$, ρ satisfies:

- (a) $\rho(x) = 0$ if and only if $x = 0$,
- (b) $\rho(ax) = \rho(x)$ for every scalar *a* with $|a| = 1$,
- (c) $\rho(ax + by) \leq \rho(x) + \rho(y)$, whenever $a, b \geq 0$ and $a + b = 1$.

If we replace (c) by

 $(c') \rho(ax + by) \le a\rho(x) + b\rho(y)$, whenever $a, b \ge 0$ and $a + b = 1$, then the modular ρ is called convex. A modular ρ defines a corresponding modular space, i.e., the vector space X_ρ given by:

$$
X_{\rho} = \{x \in X | \rho(\lambda x) \longrightarrow 0 \text{ as } \lambda \longrightarrow 0\}.
$$

Definition 1.2 Let $\{x_n\}$ and *x* be in X_ρ . Then

- (i) The sequence $\{x_n\}$, with $x_n \in X_\rho$, is ρ -convergent to *x* if $\rho(x_n x) \to 0$ as $n \to \infty$.
- (ii) The sequence $\{x_n\}$, with $x_n \in X_\rho$, is called ρ -Cauchy if $\rho(x_n x_m) \to 0$ as $n, m \to \infty$.
- (iii) A subset *S* of X_ρ is called ρ -complete if and only if any ρ -Cauchy sequence is ρ convergent to an element of *S*.

Fatou property The modular ρ has the Fatou property if and only if $\rho(x) \leq \liminf_{n \to \infty} \rho(x_n)$ whenever the sequence $\{x_n\}$ is ρ -convergent to *x*. A function modular is said to satisfy the Δ_{α} -condition ($\alpha \in \mathbb{N}, \alpha \geq 2$) if there exists $\kappa > 0$ such that $\rho(\alpha x) \leq \kappa \rho(x)$, for all $x \in X_{\rho}$.

Remark Δ_{α} -condition implies Δ_2 -condition.

Definition 1.3 Let X_ρ be a modular space and *C* be a nonempty subset of X_ρ . The self-map *T* : $C \rightarrow C$ is said to be quasicontraction if there exists $k < 1$ such that

$$
\rho(Tx-Ty) \le k \max \Big\{ \rho(x-y), \rho(x-Ty), \rho(y-Tx), \rho(x-Tx), \rho(y-Ty) \Big\},\,
$$

for any $x, y \in C$.

Definition 1.4 Given a modular space X_ρ , a nonempty subset $C \subseteq X_\rho$, and a mapping $T: C \to C$, the orbit of *T* around a point *x* is the set

$$
O(T) := \{x, Tx, T^2x, \ldots\},\
$$

the quantity

$$
\delta_{\rho}(T) := \sup \{ \rho(u - v) | u, v \in O(T) \},\
$$

is then associated to *T* and is called the orbital diameter of *T* at *x*. In particular, if $\delta_{\rho}(T) < \infty$, one says that *T* has a bounded orbit at *x*.

Theorem 1.5 ([\[13\]](#page-9-17)) *Let* X_{ρ} *be a modular space such that* ρ *satisfies the Fatou property and let* $C \subseteq X_{\rho}$ *be a* ρ *-complete subset. If* $T : C \rightarrow C$ *is a quasicontraction and* T *has a bounded orbit at* x_0 *, then the sequence* $\{T^n x_0\}$ *is* ρ *-convergent to a point* $\omega \in C$ *.*

Stability of quadratic and generalized Jensen functional equation in modular spaces have been investigated in [\[22](#page-9-18)] and [\[24](#page-10-1)].

In this paper, we investigate the generalized Hyers–Ulam stability of the α - cubic functional equation

$$
f(\alpha x + y) + f(\alpha x - y) + f(x + \alpha y) - f(x - \alpha y)
$$

= $2\alpha f(x + y) + 2\alpha (\alpha^2 - 1)[f(x) + f(y)],$ (1.1)

with $\alpha \in \mathbb{N}, \alpha \neq 1$ via the extensive studies of fixed point theory in modular spaces.

2 Stability of *α***-cubic functional equation [\(1.1\)](#page-1-0)**

Throughout this section, we assume that ρ is a convex modular on ρ -complete modular space X_ρ with the Fatou property such that satisfies the Δ_α -condition with $0 < \kappa < \alpha$. In addition, let *V* be a linear space. For convenience, we use the following abbreviation for a given function $f: V \longrightarrow X_0$:

$$
D_{\alpha} f(x, y) := f(\alpha x + y) + f(\alpha x - y) + f(x + \alpha y) - f(x - \alpha y)
$$

-2\alpha f(x + y) - 2\alpha (\alpha^{2} - 1)[f(x) + f(y)]

with $\alpha \in \mathbb{N}, \alpha \neq 1$ and for all $x, y \in V$. We shall need the following lemmas:

Lemma 2.1 *If a mapping* $f: X \rightarrow Y$ *satisfies the functional equation*

$$
f(x + \alpha y) - f(x - \alpha y) = \alpha[f(x + y) - f(x - y)] + 2\alpha(\alpha^2 - 1)f(y),
$$
 (2.1)

with $\alpha \in \mathbb{N}, \alpha \neq 1$ *and for all* $x, y \in X$ *, then f is cubic.*

Proof Replacing (x, y) with $(0, 0)$ in (2.1) , we get $2\alpha(\alpha^2 - 1) f(0) = 0$ with $\alpha \in \mathbb{N}, \alpha \neq 1$. Therefore $f(0) = 0$. Replacing (x, y) with $(0, x)$ and $(0, -x)$ in [\(2.1\)](#page-2-0), we get, respectively, equations:

$$
f(\alpha x) - f(-\alpha x) = \alpha[(2\alpha^2 - 1)f(x) - f(-x)],
$$

$$
f(-\alpha x) - f(\alpha x) = \alpha[(2\alpha^2 - 1)f(-x) - f(x)].
$$
 (2.2)

By adding these two equations, one can obtain $f(-x) = -f(x)$. By using [\(2.2\)](#page-2-1) and $f(-x) =$ $-f(x)$, we get $f(\alpha x) = \alpha^3 f(x)$ with $\alpha \in \mathbb{N}, \alpha \neq 1$ and for all $x \in X$ (See [\[4\]](#page-9-19)). \Box

Lemma 2.2 *If a mapping* $f : X \to Y$ *satisfies* [\(1.1\)](#page-1-0) *for all* $x, y \in X$ *, then f is cubic.*

Proof Replacing (x, y) with $(0, 0)$ in (1.1) , we get $f(0) = 0$. Replacing (x, y) with $(x, 0)$ in (1.1) , we get,

$$
f(\alpha x) = \alpha^3 f(x),\tag{2.3}
$$

for all $x \in X$. By setting $x = 0$ and using [\(2.3\)](#page-2-2), we get $f(-y) = -f(y)$ for all $y \in X$, that is *f* is odd. Replacing (x, y) with $(x, -y)$ in [\(1.1\)](#page-1-0) and using oddness of *f*, we get,

$$
f(\alpha x - y) + f(\alpha x + y) + f(x - \alpha y) - f(x + \alpha y)
$$

= $2\alpha f(x - y) + 2\alpha (\alpha^2 - 1)[f(x) - f(y)]$ (2.4)

for all $x, y \in X$. It follows from (1.1) and (2.4) that

$$
f(x + \alpha y) - f(x - \alpha y) = \alpha[f(x + y) - f(x - y)] + 2\alpha(\alpha^2 - 1)f(y),
$$
 (2.5)

for all $x, y \in X$. It follows from Lemma [2.1](#page-2-4) that *f* is cubic.

Theorem 2.3 *Let* $\varphi : V^2 \longrightarrow [0, +\infty)$ *be a function such that*

$$
\lim_{n \to \infty} \frac{1}{\alpha^{3n}} \varphi(\alpha^n x, \alpha^n y) = 0,
$$
\n(2.6)

and

$$
\varphi(\alpha x, \alpha y) \le \alpha^3 L \varphi(x, y), \tag{2.7}
$$

 \Box

for all x, $y \in V$ *with* $L < 1$ *. Suppose that* $f : V \longrightarrow X_{\rho}$ *satisfies the condition*

$$
\rho(D_{\alpha}f(x, y)) \le \varphi(x, y), \tag{2.8}
$$

for all x, $y \in V$ *and f* (0) = 0. Then there exists a unique cubic mapping $C_{\alpha}: V \longrightarrow X_{\beta}$ *such that*

$$
\rho\big(C_{\alpha}(x) - f(x)\big) \le \frac{1}{\alpha^3 (1 - L)} \varphi(x, 0),\tag{2.9}
$$

for all $x \in V$.

Proof We consider the set

$$
M = \{ g : V \to X_{\rho} \}
$$

and define the function $\overline{\rho}$ on *M* as follows,

$$
\overline{\rho}(g) =: \inf\{c > 0: \ \rho(g(x)) \leq c\varphi(x,0), \ \forall x \in V\}.
$$

We show that $\overline{\rho}$ is a convex modular on *M*. It is also easy to verify that $\overline{\rho}$ satisfies the axioms (a) and (b) of a modular. We will next show that $\overline{\rho}$ is convex, and hence (c') is satisfied. Let $\epsilon > 0$ be given. Then there exist real constants $c_1 > 0$ and $c_2 > 0$ such that

$$
\overline{\rho}(g) \leq c_1 \leq \overline{\rho}(g) + \epsilon, \quad \overline{\rho}(h) \leq c_2 \leq \overline{\rho}(h) + \epsilon.
$$

Also

$$
\rho(g(x)) \leq c_1 \varphi(x, 0), \ \ \rho(h(x)) \leq c_2 \varphi(x, 0).
$$

for all $x \in V$. If $a + b = 1$ and $a, b \ge 0$, then we get

$$
\rho(ag(x) + bh(x)) \le a\rho(g(x)) + b\rho(h(x))
$$

$$
\le (c_1a + c_2b)\varphi(x, 0),
$$

so we get

$$
\overline{\rho}(ag + bh) \le a\overline{\rho}(g) + b\overline{\rho}(h) + (a + b)\epsilon,
$$

This concludes that $\overline{\rho}$ is a convex modular on *M*. Now we show that $M_{\overline{\rho}}$ is $\overline{\rho}$ -complete. Let ${g_n}$ be a $\overline{\rho}$ -Cauchy sequence in $M_{\overline{\rho}}$ and let $\epsilon > 0$ be given. There exists a positive integer $n_0 \in \mathbb{N}$ such that

$$
\overline{\rho}(g_n - g_m) < \epsilon,\tag{2.10}
$$

for all $n, m \geq n_0$. We have

$$
\rho(g_n(x) - g_m(x)) \le \epsilon \varphi(x, 0) \tag{2.11}
$$

for all $x \in V$ and $n, m \ge n_0$. Therefore if x is any given point of V, $\{g_n(x)\}\$ is a ρ -Cauchy sequence in X_ρ . Since X_ρ is ρ -complete, so $\{g_n(x)\}\$ is convergent in X_ρ , for each $x \in V$. Hence, we can define a function $g: V \to X_0$ by:

$$
g(x) := \lim_{n \to \infty} g_n(x), \tag{2.12}
$$

for all $x \in V$. Since ρ satisfies the Fatou property, it follows from (2.11) that

$$
\rho(g_n(x) - g(x)) \le \liminf_{m \to \infty} \rho(g_n(x) - g_m(x)) \le \epsilon \varphi(x, 0),
$$
\n(2.13)

so

$$
\overline{\rho}(g_n - g) \le \epsilon,\tag{2.14}
$$

for all $n \ge n_0$. Thus, $\{g_n\}$ is $\overline{\rho}$ -converges, so that $M_{\overline{\rho}}$ is $\overline{\rho}$ -complete.

Now we show that $\overline{\rho}$ satisfies the Fatou property. Suppose that {*g_n*} is a sequence in $M_{\overline{\rho}}$ which is $\overline{\rho}$ - convergent to an element $g \in M_{\overline{\rho}}$. Let $\epsilon > 0$ be given. For each $n \in \mathbb{N}$, let c_n be a constant such that

$$
\overline{\rho}(g_n) \le c_n \le \overline{\rho}(g_n) + \epsilon. \tag{2.15}
$$

so

$$
\rho(g_n(x)) \le c_n \varphi(x, 0),\tag{2.16}
$$

for all $x \in V$. Since ρ satisfies the Fatou property, we have

$$
\rho(g(x)) \le \liminf_{n \to \infty} \rho(g_n(x))
$$

\n
$$
\le \liminf_{n \to \infty} c_n \varphi(x, 0)
$$

\n
$$
\le \left[\liminf_{n \to \infty} \overline{\rho}(g_n) + \epsilon\right] \varphi(x, 0)
$$

Thus, we have

$$
\overline{\rho}(g) \le \liminf_{n \to \infty} \overline{\rho}(g_n) + \epsilon.
$$

So $\overline{\rho}$ satisfies the Fatou property. We consider the function $\tau : M_{\overline{\rho}} \to M_{\overline{\rho}}$ defined by:

$$
\tau g(x) = \frac{1}{\alpha^3} g(\alpha x),
$$

for all $x \in V$ and $g \in M_{\overline{\rho}}$. Let $g, h \in M_{\overline{\rho}}$ and let $c \in [0, 1]$ be an arbitrary constant with $\overline{\rho}(g - h) < c$. From the definition of $\overline{\rho}$, we have $\rho(g(x) - h(x)) \leq c\varphi(x, 0)$ for all $x \in V$. By (2.7) and the last inequality, we get

$$
\rho\left(\frac{g(\alpha x)}{\alpha^3} - \frac{h(\alpha x)}{\alpha^3}\right) \le \frac{1}{\alpha^3} \rho(g(\alpha x) - h(\alpha x))
$$

$$
\le \frac{1}{\alpha^3} c\varphi(\alpha x, 0)
$$

$$
\le cL\varphi(x, 0),
$$

for all $x \in V$. Hence, $\overline{\rho}(\tau g - \tau h) \leq L\overline{\rho}(g-h)$, for all $g, h \in M_{\overline{\rho}}$, that is, τ is a $\overline{\rho}$ -contraction. Next, we show that τ has a bounded orbit at f. Letting $y = 0$ in [\(2.8\)](#page-3-1), we get

$$
\rho\left(\frac{f(\alpha x)}{\alpha^3} - f(x)\right) \le \frac{1}{\alpha^3} \varphi(x, 0),\tag{2.17}
$$

for all $x \in V$. Replacing *x* with αx in [\(2.17\)](#page-4-0), we get

$$
\rho\left(\frac{f(\alpha^2 x)}{\alpha^3} - f(\alpha x)\right) \le \frac{1}{\alpha^3} \varphi(\alpha x, 0),\tag{2.18}
$$

By using (2.17) and (2.18) , we get

$$
\rho \left(\frac{f(\alpha^2 x)}{\alpha^6} - f(x) \right) \le \rho \left(\frac{f(\alpha^2 x)}{\alpha^6} - \frac{f(\alpha x)}{\alpha^3} \right) + \rho \left(\frac{f(\alpha x)}{\alpha^3} - f(x) \right) \le \frac{1}{\alpha^6} \varphi(\alpha x, 0) + \frac{1}{\alpha^3} \varphi(x, 0), \tag{2.19}
$$

for all $x \in V$. By induction, we can easily see that

$$
\rho\left(\frac{f(\alpha^n x)}{\alpha^{3n}} - f(x)\right) \le \sum_{i=1}^n \frac{1}{\alpha^{3i}} \varphi(\alpha^{i-1} x, 0)
$$

$$
\le \frac{1}{L\alpha^3} \varphi(x, 0) \sum_{i=1}^n L^i
$$

$$
\le \frac{1}{\alpha^3 (1 - L)} \varphi(x, 0), \tag{2.20}
$$

for all $x \in V$. It follows from inequality [\(2.20\)](#page-5-0) that

$$
\rho \left(\frac{f(\alpha^n x)}{\alpha^{3n}} - \frac{f(\alpha^k x)}{\alpha^{3k}} \right) \le \frac{1}{2} \rho \left(2 \frac{f(\alpha^n x)}{\alpha^{3n}} - 2f(x) \right) + \frac{1}{2} \rho \left(2 \frac{f(\alpha^k x)}{\alpha^{3k}} - 2f(x) \right)
$$

$$
\le \frac{\kappa}{2} \rho \left(\frac{f(\alpha^n x)}{\alpha^{3n}} - f(x) \right) + \frac{\kappa}{2} \rho \left(\frac{f(\alpha^k x)}{\alpha^{3k}} - f(x) \right)
$$

$$
\le \frac{\kappa}{\alpha^3 (1 - L)} \varphi(x, 0),
$$

for every $x \in V$ and $n, k \in \mathbb{N}$, By the definition of $\overline{\rho}$, we conclude that

$$
\overline{\rho}(\tau^n f - \tau^k f) \le \frac{\kappa}{\alpha^3 (1 - L)},
$$

which implies the boundedness of an orbit of τ at f . It follows from Theorem [1.5](#page-1-1) that, the sequence $\{\tau^n f\}$ $\overline{\rho}$ -converges to $C_\alpha \in M_{\overline{\rho}}$. Now, by the $\overline{\rho}$ -contractivity of τ , we have

$$
\overline{\rho}(\tau^n f - \tau C_\alpha) \leq L\overline{\rho}(\tau^{n-1} f - C_\alpha).
$$

Passing to the limit $n \to \infty$ and applying the Fatou property of $\overline{\rho}$, we obtain that

$$
\overline{\rho}(\tau C_{\alpha} - C_{\alpha}) \le \liminf_{n \to \infty} \overline{\rho}(\tau C_{\alpha} - \tau^n f)
$$

$$
\le L \liminf_{n \to \infty} \overline{\rho} (C_{\alpha} - \tau^{n-1} f) = 0.
$$

Therefore, C_{α} is a fixed point of τ . Letting $x = \alpha^n x$ and $y = \alpha^n y$ in [\(2.8\)](#page-3-1), we get

$$
\rho(D_{\alpha}f(\alpha^n x, \alpha^n y)) \leq \varphi(\alpha^n x, \alpha^n y),
$$

for all $x, y \in V$. Therefore

$$
\rho\left(\frac{1}{\alpha^{3n}}D_{\alpha}f(\alpha^n x, \alpha^n y)\right) \le \frac{1}{\alpha^{3n}}\varphi(\alpha^n x, \alpha^n y),\tag{2.21}
$$

Employing the limit $n \to \infty$, we get

$$
D_{\alpha}C_{\alpha}(x, y) = 0,
$$

for all $x, y \in V$. It follows from Lemma [2.2,](#page-2-6) that C_{α} is cubic. By using [\(2.20\)](#page-5-0), we get [\(2.9\)](#page-3-2).

To prove the uniqueness of C_{α} , let $C: V \rightarrow X_{\beta}$ be another cubic mapping satisfying [\(2.9\)](#page-3-2). Then, *C* is a fixed point of τ .

$$
\overline{\rho}(C_{\alpha}-C)=\overline{\rho}(\tau C_{\alpha}-\tau C)\leq L\overline{\rho}(C_{\alpha}-C),
$$

which implies that $\overline{\rho}(C_{\alpha} - C) = 0$ or $C_{\alpha} = C$. This completes the proof.

Corollary 2.4 *Let X be a Banach space,* $\varphi : V^2 \longrightarrow [0, +\infty)$ *be a function such that*

$$
\lim_{n \to \infty} \frac{1}{\alpha^{3n}} \varphi(\alpha^n x, \alpha^n y) = 0,
$$

and

$$
\varphi(\alpha x, \alpha y) \leq L\alpha^3 \varphi(x, y),
$$

for all x, $y \in V$ *with* $L < 1$ *. Suppose that* $f : V \longrightarrow X$ *satisfies the following condition*

$$
\|D_{\alpha}f(x, y)\| \leq \varphi(x, y),
$$

 $x, y \in V$ and $f(x) = 0$. *Then there exists a unique cubic mapping* $C_{\alpha}: V \longrightarrow X$ such that

$$
\|C_{\alpha}(x)-f(x)\| \leq \frac{1}{\alpha^3(1-L)}\varphi(x,0),
$$

for all $x \in V$ *.*

Proof It is known that every normed space is modular space with the modular $\rho(x) = ||x||$ and satisfies the Δ_{α} -condition with $\kappa = \alpha$. \Box

Theorem 2.5 *Let* $\varphi : V^2 \longrightarrow [0, +\infty)$ *be a function such that*

$$
\lim_{n \to \infty} \kappa^{3n} \varphi \left(\frac{x}{\alpha^n}, \frac{y}{\alpha^n} \right) = 0,
$$
\n(2.22)

and

$$
\varphi\left(\frac{x}{\alpha}, \frac{y}{\alpha}\right) \le \frac{L}{\alpha^3} \varphi(x, y),\tag{2.23}
$$

for all x, $y \in V$ *with* $L < 1$ *. Suppose that* $f : V \longrightarrow X_\rho$ *satisfies the condition*

$$
\rho(D_{\alpha}f(x, y)) \le \varphi(x, y), \tag{2.24}
$$

for all x, $y \in V$ *and f* (0) = 0. *Then there exists a unique mapping* $C_{\alpha}: V \longrightarrow X_{\beta}$ *such that*

$$
\rho\big(C_{\alpha}(x) - f(x)\big) \le \frac{L}{\alpha^3 (1 - L)} \varphi(x, 0),\tag{2.25}
$$

for all $x \in V$.

Proof We consider the set

$$
M = \{ g : V \to X_{\rho} \}
$$

and define the function $\overline{\rho}$ on *M* as follows,

$$
\overline{\rho}(g) =: \inf\{c > 0: \ \rho(g(x)) \leq c\varphi(x,0), \ \forall x \in V\}.
$$

Similar to the proof of Theorem [2.3,](#page-2-7) we have:

- 1. $\overline{\rho}$ is a convex modular on *M*,
- 2. $M_{\overline{Q}}$ is $\overline{\rho}$ -complete.
- 3. $\bar{\rho}$ satisfies the Fatou property.

Now, we consider the function $\tau : M_{\overline{\rho}} \to M_{\overline{\rho}}$ defined by:

$$
\tau g(x) = \alpha^3 g\left(\frac{x}{\alpha}\right),
$$

for all $x \in V$ and $g \in M_{\overline{\rho}}$. Let $g, h \in M_{\overline{\rho}}$ and let $c \in [0, 1]$ be an arbitrary constant with $\overline{\rho}(g - h) < c$. From the definition of $\overline{\rho}$, we have $\rho(g(x) - h(x)) \leq c\varphi(x, 0)$ for all $x \in V$. By the assumption and the last inequality, we get

$$
\rho\left(\alpha^3 g\left(\frac{x}{\alpha}\right) - \alpha^3 h\left(\frac{x}{\alpha}\right)\right) \leq \kappa^3 \rho\left(g\left(\frac{x}{\alpha}\right) - g\left(\frac{x}{\alpha}\right)\right)
$$

$$
\leq \kappa^3 c \varphi\left(\frac{x}{\alpha}, 0\right)
$$

$$
\leq cL\varphi(x, 0),
$$

for all $x \in V$. Hence, $\overline{\rho}(\tau g - \tau h) \leq L\overline{\rho}(g-h)$, for all $g, h \in \mathfrak{M}_{\overline{\rho}}$ that is, τ is a $\overline{\rho}$ -contraction. Next, we show that τ has a bounded orbit at *f*. Letting $y = 0$ in [\(2.24\)](#page-6-0), we get

$$
\rho(\alpha^3 f(x) - f(\alpha x)) \le \varphi(x, 0),\tag{2.26}
$$

for all $x \in V$. Replacing x with $\frac{x}{\alpha}$ in [\(2.26\)](#page-7-0), we get

$$
\rho\left(\alpha^3 f\left(\frac{x}{\alpha}\right) - f(x)\right) \le \varphi\left(\frac{x}{\alpha}, 0\right),\tag{2.27}
$$

for all $x \in V$. Replacing x with $\frac{x}{\alpha}$ in [\(2.27\)](#page-7-1), we get

$$
\rho\left(\alpha^3 f\left(\frac{x}{\alpha^2}\right) - f\left(\frac{x}{\alpha}\right)\right) \le \varphi(\frac{x}{\alpha^2}, 0),\tag{2.28}
$$

for all $x \in V$. By using [\(2.26\)](#page-7-0), [\(2.27\)](#page-7-1) and [\(2.28\)](#page-7-2), we get

$$
\rho(\alpha^6 f(\frac{x}{\alpha^2}) - f(x)) \le \rho(\alpha^6 f(\frac{x}{\alpha^2}) - \alpha^3 f(\frac{x}{\alpha})) + \rho(\alpha^3 f(\frac{x}{\alpha}) - f(x))
$$

$$
\le \kappa^3 \rho(\alpha^3 f(\frac{x}{\alpha^2}) - f(\frac{x}{\alpha})) + \rho(\alpha^3 f(\frac{x}{\alpha}) - f(x))
$$

$$
\le \alpha^3 \varphi(\frac{x}{\alpha^2}, 0) + \varphi(\frac{x}{\alpha}, 0),
$$
 (2.29)

for all $x \in V$. By induction, we can easily see that

$$
\rho\left(\alpha^{3n} f\left(\frac{x}{\alpha^n}\right) - f(x)\right) \le \frac{1}{\alpha^3} \sum_{i=1}^n \alpha^{3i} \varphi\left(\frac{x}{\alpha^i}, 0\right)
$$

$$
\le \frac{1}{\alpha^3} \varphi(x, 0) \sum_{i=1}^n L^i
$$

$$
\le \frac{L}{\alpha^3 (1 - L)} \varphi(x, 0), \tag{2.30}
$$

for all $x \in V$. It follows from inequality [\(2.30\)](#page-7-3) that

$$
\rho(\alpha^{3n} f(\frac{x}{\alpha^n}) - \alpha^{3k} f(\frac{x}{\alpha^k})) \le \frac{1}{2} \rho(2\alpha^{3n} f(\frac{x}{\alpha^n}) - 2f(x)) + \frac{1}{2} \rho(2\alpha^{3k} f(\frac{x}{\alpha^k}) - 2f(x))
$$

$$
\le \frac{kL}{\alpha^3 (1 - L)} \varphi(x, 0),
$$
 (2.31)

for every $x \in V$ and $n, k \in \mathbb{N}$, By the definition of $\overline{\rho}$, we conclude that

$$
\overline{\rho}(\tau^n f - \tau^k f) \leq \frac{kL}{\alpha^3 (1 - L)},
$$

which implies the boundedness of an orbit of τ at f . It follows from Theorem [1.5](#page-1-1) that, the sequence $\{\tau^n f\}$ $\overline{\rho}$ -converges to $C_\alpha \in M_{\overline{\rho}}$. Now, by the $\overline{\rho}$ -contractivity of τ , we have

$$
\overline{\rho}(\tau^n f - \tau C_\alpha) \leq L\overline{\rho}(\tau^{n-1} f - C_\alpha).
$$

Employing the limit $n \to \infty$ and applying the Fatou property of $\overline{\rho}$, we obtain that

$$
\overline{\rho}(\tau C_{\alpha} - C_{\alpha}) \le \liminf_{n \to \infty} \overline{\rho}(\tau C_{\alpha} - \tau^n f)
$$

$$
\le L \liminf_{n \to \infty} \overline{\rho}(C_{\alpha} - \tau^{n-1} f) = 0.
$$

Therefore, C_{α} is a fixed point of τ . Letting $x = \frac{x}{\alpha^n}$ and $y = \frac{y}{\alpha^n}$ in [\(2.24\)](#page-6-0), we get

$$
\rho(D_{\alpha}f(\frac{x}{\alpha^n},\frac{y}{\alpha^n})) \leq \varphi(\frac{x}{\alpha^n},\frac{y}{\alpha^n}),
$$

for all $x, y \in V$. Therefore

$$
\rho\left(\alpha^{3n}D_{\alpha}f\left(\frac{x}{\alpha^n},\frac{y}{\alpha^n}\right)\right) \leq \kappa^{3n}\varphi\left(\frac{x}{\alpha^n},\frac{y}{\alpha^n}\right),\,
$$

Passing to the limit $n \to \infty$, we get

$$
D_{\alpha}C_{\alpha}(x, y) = 0
$$

for all $x, y \in V$. It follows from Lemma [2.2](#page-2-6) that C_{α} is cubic. By using [\(2.30\)](#page-7-3), we get [\(2.25\)](#page-6-1). Ц

Corollary 2.6 *Let X be a Banach space,* $\varphi : V^2 \longrightarrow [0, +\infty)$ *be a function such that*

$$
\lim_{n \to \infty} \alpha^{3n} \varphi \left(\frac{x}{\alpha^n}, \frac{y}{\alpha^n} \right) = 0,
$$

and

$$
\varphi\left(\frac{x}{\alpha},\frac{y}{\alpha}\right) \le \frac{L}{\alpha^3}\varphi(x,y),
$$

for all x, $y \in V$ *with* $L < 1$ *. Suppose that* $f : V \longrightarrow X$ *satisfies the condition*

$$
\|D_{\alpha}f(x, y)\| \leq \varphi(x, y),
$$

for all x, y \in *V and f* (0) = 0. *Then there exists a unique cubic mapping* C_{α} : *V* \longrightarrow *X such that*

$$
||C_{\alpha}(x) - f(x)|| \leq \frac{L}{\alpha^3(1-L)} \varphi(x, 0),
$$

for all $x \in V$.

Proof It is known that every normed space is modular space with the modular $\rho(x) = ||x||$ and satisfies the Δ_{α} -condition with $\kappa = \alpha$. \Box

Remark 2.7 In Corollaries [2.4](#page-6-2) and [2.6,](#page-8-0) by replacing φ with:

$$
\varphi(x, y) = ||x||^{p} + ||y||^{p},
$$

\n
$$
\varphi(x, y) = ||x||^{p} ||y||^{q},
$$

\n
$$
\varphi(x, y) = ||x||^{p} + ||y||^{p} + ||x||^{r} ||y||^{s},
$$

under suitable conditions, it is possible to obtain some corollaries.

Acknowledgements The first author was supported by University of Tabriz.

References

- 1. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan **2**, 64–66 (1950)
- 2. Bouikhalene, B., Eloqrachi, E.: Hyers-Ulam stability of spherical functions. Georgian Math. J. **23**(2), 181–189 (2016)
- 3. Czerwik, S.: Functional equations and inequalities in several variables. World Scientific, New Jersey, London, Singapore, Hong Kong (2002)
- 4. Eskandani, G.Z., Rassias, J.M.: Approximation of general α -cubic functional equations in 2-Banach spaces. Ukr. Math. J. **10**, 1430–1436 (2017)
- 5. Eskandani, G.Z., Rassias, J.M., Gavruta, P.: Generalized Hyers-Ulam stability for a general cubic functional equation in quasi–normed spaces, Asian-Eur. J. Math. 4(03), 413–425 (2011)
- 6. G˘avruta, P.: On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings. J. Math. Anal. Appl. **261**, 543–553 (2001)
- 7. Găvruta, P.: An answer to question of John M. Rassias concerning the stability of Cauchy equation, Advanced in Equation and Inequality, Edited by John M. Rassias, Hadronic Press Mathematics Series pp 67–71 (1999)
- 8. Găvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184**, 431–436 (1994)
- 9. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. **27**, 222–224 (1941)
- 10. Hyers, D.H., Isac, G., Rassias, Th.M: Stability of functional equations in several variables. Birkhäuser, Basel (1998)
- 11. Jung, S.M.: Hyers-Ulam-Rassias stability of functional equations in mathematical analysis. Hadronic Press, Palm Harbor (2001)
- 12. Nakano, H.: Modulared semi-ordered linear spaces. Maruzen, Tokyo, Japan (1950)
- 13. Khamsi, M. A.: Quasicontraction Mapping in modular spaces without Δ_2 -condition, Fixed Point Theory and Applications Volume, Artical ID 916187, 6 pages (2008)
- 14. Koshi, S., Shimogaki, T.: On F-norms of quasi-modular spaces. J. Fac. Sci. Hokkaido Univ. Ser. I **15**(3), 202–218 (1961)
- 15. Park, C.: Homomorphisms between Poisson *JC*∗-algebras. Bull. Braz. Math. Soc. **36**, 79–97 (2005)
- 16. Rassias, J.M.: On approximation of approximately linear mappings by linear mappings, J Funct Anal. 46(1), 126—130 (1982)
- 17. Rassias, J.M.: On approximation of approximately linear mappings by linear mappings. Bull. des Sci. Math. **108**(4), 445–446 (1984)
- 18. Rassias, J.M.: Solution of a problem of Ulam. J. Approx. Theory **57**(3), 268–273 (1989)
- 19. Rassias, J.M.: Solution of a stability problem of Ulam. Discussiones Mathematicae **12**, 95–103 (1992)
- 20. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. **72**, 297–300 (1978)
- 21. Rassias, Th.M.: On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. **158**, 106–113 (1991)
- 22. Sadeghi, G.: A fixed point approach to stability of functional equations in modular spaces. Bull. Malaysian Math. Sci. Soc. **37**, 333–344 (2014)
- 23. Ulam, S.M.: A collection of the mathematical problems, Interscience Publ. New York, 431–436 (1960)
-
- 24. Wongkum, K., Chaipunya, P., Kumam, P.: On the Generalized Ulam–Hyers–Rassias Stability of Quadratic Mappings in Modular Spaces without Δ_2 -Conditions, Journal of Function Spaces, Volume, Article ID 461719, 7 pages (2014)
- 25. Yamamuro, S.: On conjugate spaces of Nakano spaces. Trans. Amer. Math. Soc. **90**, 291–311 (1959)