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Abstract In this paper, by using fixed point theory, we investigate the generalized Hyers—
Ulam stability of an «-cubic functional equation in modular spaces.
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1 Introduction and preliminaries

In 1940, Ulam [23] asked the first question on the stability problem. In 1941, Hyers [9]
solved the problem of Ulam. This result was generalized by Aoki [1] for additive mappings
and by Rassias [20] for linear mappings by considering an unbounded Cauchy difference.
In 1994, a further generalization was obtained by Gavruta [8]. Rassias [16—19] generalized
Hyers result. During the last two decades, a number of papers and research monographs have
been published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings (see [2,5-7,11,15,16,21]). We
also refer the readers to the books: Czerwik [3] and Hyers, Isac and Rassias [10].

The theory of modulars on linear spaces and the corresponding theory of modular linear
spaces were founded by Nakano [12] and were intensively developed by Amemiya, Koshi,
Shimogaki, Yamamuro [14,25] and others.
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Definition 1.1 Let X be a vector space over a field K (R or C). A generalized functional
p: X — [0, oo] is called a modular if for arbitrary x, y € X, p satisfies:

(a) p(x) =0ifandonly if x =0,

(b) p(ax) = p(x) for every scalar a with |a| = 1,

(¢) plax +by) < p(x) + p(y), whenevera,b > 0anda + b = 1.
If we replace (c) by

(c") p(ax +by) < ap(x)+bp(y), whenevera, b > 0 and a + b = 1, then the modular p
is called convex. A modular p defines a corresponding modular space, i.e., the vector space
X, given by:
X, ={xeX|p(x) — Oas r, — 0}.

Definition 1.2 Let {x,} and x be in X,. Then

(i) The sequence {x,}, with x,, € X,, is p-convergent to x if p(x, —x) — Oasn — oo.

(ii) The sequence {x,}, withx, € X,,is called p-Cauchy if p (x, —x,,) — Oasn,m — oo.

(iii) A subset S of X, is called p-complete if and only if any p-Cauchy sequence is p-
convergent to an element of S.

Fatou property The modular p has the Fatou property if and only if p(x) < liminf p(x,)
n—oo

whenever the sequence {x,} is p-convergent to x. A function modular is said to satisfy the
Agy-condition (o € N, > 2) if there exists k > 0 such that p(ax) < kp(x), forallx € X,,.

Remark A, -condition implies A;-condition.
Definition 1.3 Let X, be a modular space and C be a nonempty subset of X ,. The self-map
T : C — C is said to be quasicontraction if there exists k < 1 such that

p(Tx = Ty) = kmax {p(x = v, p(x = Ty), p(y = ), p(x = Tx), p(y = Tw)},
forany x,y € C.

Definition 1.4 Given a modular space X,, a nonempty subset C € X,, and a mapping
T : C — C, the orbit of T around a point x is the set

O(T) :={x,Tx,T?x,.. .},
the quantity
3p(T) = sup{p(u — v)u, v € O(T)},

is then associated to T and is called the orbital diameter of T" at x. In particular, if 6,,(T') < oo,
one says that 7" has a bounded orbit at x.

Theorem 1.5 ([13]) Let X, be a modular space such that p satisfies the Fatou property
and let C C X, be a p-complete subset. If T : C — C is a quasicontraction and T has a
bounded orbit at xo, then the sequence {T"xo} is p-convergent to a point w € C.

Stability of quadratic and generalized Jensen functional equation in modular spaces have
been investigated in [22] and [24].

In this paper, we investigate the generalized Hyers—Ulam stability of the «- cubic func-
tional equation

flax+y)+ flax —y) + f(x +ay) — f(x —ay)
=2af(x +y) + 2a(@® — Df(x) + fFOD)], (1.1)

with @ € N, o # 1 via the extensive studies of fixed point theory in modular spaces.
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2 Stability of a-cubic functional equation (1.1)

Throughout this section, we assume that p is a convex modular on p-complete modular
space X, with the Fatou property such that satisfies the Ay-condition with 0 < ¥ < a. In
addition, let V be a linear space. For convenience, we use the following abbreviation for a
given function f : V — X,;:

Do f(x,y):= flax+y)+ flax —y) + f(x +ay) — f(x —ay)
—2af(x +y) = 2a(@® = DIfx) + f()]

witho € N, o # 1 and for all x, y € V. We shall need the following lemmas:
Lemma 2.1 Ifa mapping f : X — Y satisfies the functional equation

fa+ay) = fx—ay) =alf(x+y) = fx =]+ 2@ = Df(), Q1)
witha € N,a # 1 and forall x, y € X, then f is cubic.

Proof Replacing (x, y) with (0, 0) in (2.1), we get 2a(a? — 1) f(0) =0witha e N, # 1.
Therefore f(0) = 0. Replacing (x, y) with (0, x) and (0, —x) in (2.1), we get, respectively,
equations:

flax) — f(—ax) = a[a® — 1) f(x) — f(—x)],

f(=ax) — f(ax) = a[2o® — 1) f(=x) — f(x)]. (2.2)
By adding these two equations, one can obtain f(—x) = — f(x). Byusing(2.2)and f(—x) =
—f(x), we get f(ax) =a’ f(x) witha € N, o # 1 and for all x € X (See [4]). o

Lemma 2.2 Ifa mapping f : X — Y satisfies (1.1) forall x, y € X, then f is cubic.

Proof Replacing (x, y) with (0, 0) in (1.1), we get f(0) = 0. Replacing (x, y) with (x, 0)
in (1.1), we get,

flax) =ao’ f(x), (2.3)

for all x € X. By setting x = 0 and using (2.3), we get f(—y) = —f(y) forall y € X, that
is f is odd. Replacing (x, y) with (x, —y) in (1.1) and using oddness of f, we get,

Slax —y)+ flax+y)+ f(x —ay) — f(x +ay)
=2af (x — y) + 2a(a® — D[f(x) — F)] (2.4)

for all x, y € X. It follows from (1.1) and (2.4) that
fa4ay) — fx—ay) =alf(x+y) — fx =] +2@* = DfQ), (2.5

for all x, y € X. It follows from Lemma 2.1 that f is cubic. O

Theorem 2.3 Let ¢ : V2 — [0, +00) be a function such that

1
lim W(p(a"x, ay) =0, (2.6)

n—00

and

plax,ay) < &’ Lo(x, y), 2.7)
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forallx,y € V with L < 1. Suppose that f : V —> X, satisfies the condition

P(Daf(xv}’))f(;o(xd’)’ (28)

forall x,y € V and f(0) = 0. Then there exists a unique cubic mapping Cy : V —> X,
such that

p(Ca) = f()) < ¢(x,0), (2.9)

-
a3(1—1L)
forallx € V.
Proof We consider the set
M={g:V — X,}
and define the function p on M as follows,
p(g) =1inf{c > 0: p(g(x)) < cp(x,0), Vx € V}.

We show that p is a convex modular on M. It is also easy to verify that p satisfies the axioms
(a) and (b) of a modular. We will next show that p is convex, and hence (c’) is satisfied. Let
€ > 0 be given. Then there exist real constants ¢; > 0 and ¢ > 0 such that

p(g) <c1 <p(g) +e, ph) <cx=ph)+e.
Also
p(g(x)) < c1o(x,0), ph(x)) < c29(x,0).
forallx e V.Ifa+ b =1anda, b > 0, then we get

plag(x) +bh(x)) < ap(g(x)) + bp(h(x))
< (c1a + c2b)p(x, 0),

so we get
plag + bh) < ap(g) +bp(h) + (a + b)e,

This concludes that  is a convex modular on M. Now we show that M is p-complete. Let
{gn} be a p-Cauchy sequence in M and let € > 0 be given. There exists a positive integer
no € N such that

0(gn — gm) <€, (2.10)
for all n, m > ny. We have
P(gn(x) — gm(x)) < €p(x,0) (2.11)

for all x € V and n, m > ng. Therefore if x is any given point of V, {g,(x)} is a p-Cauchy
sequence in X ,. Since X, is p-complete, so {g,(x)} is convergent in X, for each x € V.
Hence, we can define a function g : V — X, by:

g(x) = lim g,(x), (2.12)
n—oo
for all x € V. Since p satisfies the Fatou property, it follows from (2.11) that

pgn(x) —gx)) < ljnrgigofp(gn (x) — gm(x)) < €p(x,0), (2.13)
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SO

plgn —8) <€, (2.14)

for all n > ng. Thus, {g,} is p-converges, so that M is p-complete.

Now we show that p satisfies the Fatou property. Suppose that {g,} is a sequence in M5
which is p- convergent to an element g € M5. Let € > 0 be given. Foreachn € N, let ¢, be
a constant such that

P(gn) < cn < p(gn) +e€. (2.15)

SO

P(gn(x)) < crp(x,0), (2.16)

for all x € V. Since p satisfies the Fatou property, we have

plgx)) < linrgioréfp(gn(x))

< liminf ¢, (x, 0)
n—o0o
< [lim inf 5(g,) + e] o(x,0)
n—0o0
Thus, we have
p(g) < liminf p(g,) + €.
n—0o0

So p satisfies the Fatou property. We consider the function t : Mz — M defined by:

1
Tg(x) = Eg(ozX),

forall x € V and g € M5. Let g,h € Mz and let ¢ € [0, 1] be an arbitrary constant with
p(g — h) < c. From the definition of p, we have p(g(x) — h(x)) < cp(x,0) forall x € V.
By (2.7) and the last inequality, we get

h 1
p(g(:t3x) _ fj;x)) < gp(g(ax)_h(ax))

IA

1

—3c<p(otx, 0)
o

< cLo(x,0),

forall x € V.Hence, p(tg—th) < Lp(g—h), forall g, h € My, thatis, T is a p-contraction.
Next, we show that 7 has a bounded orbit at f. Letting y = 0 in (2.8), we get

1
p (f(“f) - f(x)) < —¢(x.0). 2.17)
o o

for all x € V. Replacing x with ax in (2.17), we get

2
p(H42 - ran) = otaron 2.18)
o o
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By using (2.17) and (2.18), we get

p(f(“ D ))
(X

for all x € V. By induction, we can easily see that

f(ot"X)

for all x € V. It follows from inequality (2.20) that

<f(01”X) f(akX)>
0 —

oan o3k
=

=

2
f(Z()X) f(ax))+ (f(OlX) )
< i6§0(le, 0) + %ga(x, 0), (2.19)
o o
SLIEDY o0
1 1L
< mw(m);L’
1
1 1
5"( AP )) ( S@0) o fix ))
o’
§p<f(°‘ S2NTN )) fp<M—f( ))
adn 2 ol
K
m‘ﬂ(%o),

for every x € V and n, k € N, By the definition of p, we conclude that

pE"f—1Ff) <

K
o3(1-1L)

L)

which implies the boundedness of an orbit of 7 at f. It follows from Theorem 1.5 that, the
sequence {t" f} p-converges to C, € M5. Now, by the p-contractivity of 7, we have

P f —1Cy) < Lp(t" ' f — Cy).

Passing to the limit n — oo and applying the Fatou property of p, we obtain that

P(xCq = Co) < liminf p(zCq — " f)

< Lliminfp(Cy — 7"~ 'n=o.

n—oo

Therefore, Cy, is a fixed point of 7. Letting x = "x and y = "y in (2.8), we get

p(Daf(@"x,a"y)) < p@"x,a"y),

for all x, y € V. Therefore

1
p(ﬁDaf(a"x, a'y)) <

Employing the limit n — 0o, we get

DyCy(x,y) =0,

1
— @ xa"y),

(2.21)

for all x, y € V. It follows from Lemma 2.2, that C,, is cubic. By using (2.20), we get (2.9).
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To prove the uniqueness of Cy, let C : V — X, be another cubic mapping satisfying
(2.9). Then, C is a fixed point of 7.

p(Ca —C) =p(rCy — TC) < Lp(Co — C),
which implies that ﬁ(CO, -C ) = 0or C, = C. This completes the proof.

Corollary 2.4 Let X be a Banach space, ¢ : V2 —> [0, +00) be a function such that

H ] n n
lim —-px, ay) = 0,
n—o0o (o

and
g(ax, ay) < La’p(x, y),

forall x,y € V with L < 1. Suppose that f : V —> X satisfies the following condition
| Do f(x. y)|| < ox. y),

x,y € Vand f(x) = 0. Then there exists a unique cubic mapping Cy, : V. —> X such that

[Calx) = f0)] < %w(x,o),
a’(

1-1L)
forallx € V.
Proof 1t is known that every normed space is modular space with the modular p(x) = ||x||
and satisfies the A, -condition with k = «. ]

Theorem 2.5 Let ¢ : V2 — [0, +00) be a function such that

e (Y =
Tim Vg (an, a") —0, (2.22)
and
Xy L
0 (2.2) = ey, (2.23)
o o o

forallx,y € V with L < 1. Suppose that f : V —> X, satisfies the condition

p(DO{f(xv )’)) S (p(X, )’)’ (224)

forall x,y € V and f(0) = 0. Then there exists a unique mapping Cy : V. —> X, such
that

P(Calx) = () < ¢(x,0), (2.25)

b
a’3(1—1L)
forallx € V.
Proof We consider the set

M={g:V—= X}
and define the function o on M as follows,

p(g) =:inf{c >0: p(g(x)) <cp(x,0), Vx € V}.
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Similar to the proof of Theorem 2.3, we have:

1. p is a convex modular on M,
2. My is p-complete.

3. p satisfies the Fatou property.
wi

Now, we consider the function 7 : M5 — My defined by:

rg) =a'g (%),
o
forallx € V and g € M5. Let g,h € Mz and let ¢ € [0, 1] be an arbitrary constant with

p(g — h) < c. From the definition of p, we have p(g(x) — h(x)) < cp(x,0) forall x € V.
By the assumption and the last inequality, we get

p(@e(5) - () =0 (e (3) -2 (7))
ke

forallx € V.Hence, p(tg—th) < Lp(g—h), forall g, h € M5 thatis, T is a p-contraction.
Next, we show that 7 has a bounded orbit at f. Letting y = 0 in (2.24), we get

p@ f(x) = f(ax)) < ¢(x.0), (2.26)
for all x € V. Replacing x with % in (2.26), we get
p(@f () - r@) =eC.0. 2.27)
for all x € V. Replacing x with % in (2.27), we get
3. (X X X
P (a f (;) -f (;)) (5.0, (2.28)
for all x € V. By using (2.26), (2.27) and (2.28), we get
6, X 6, X 3,.,X 3,.,X
pa” f(—) = f(x) < pla” f(—) —a” f(=)) + pla’ f(=) = fx))
o o o o
< Cp@ ()~ FEN+p@ f(E) = Fx)
o o o
3 X X
=a’9(—,0) +¢(=.0), (2.29)
o o

for all x € V. By induction, we can easily see that
X 1 — X
Pl F(Z) = f) = —= 3 @V, 0)
i=1

1 LR
< 500 L

i=1

IA
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for all x € V. It follows from inequality (2.30) that

3 o, X 3k o X 1 3 g, X 1 3k o0 X
;0(0! f(an)_“ f(ak))SEP(ZOl f(an)—zf(x))-i-ip(za f(ak)—zf(x))
< —=5——0(x,0), 2.31
_a3(1_L)§0(x ) (23D
for every x € V and n, k € N, By the definition of p, we conclude that
kL
—c n ok <
P =D =

which implies the boundedness of an orbit of t at f. It follows from Theorem 1.5 that, the
sequence {t" f} p-converges to C, € Mz. Now, by the p-contractivity of 7, we have

p("f —1Co) < Lo f = Ca).
Employing the limit n — oo and applying the Fatou property of p, we obtain that
2(1Cy — Cy) < liminf p(zCy — " f)
n—oo

< Lliminf 5(Cy — 7" f) = 0.
n—o0
Therefore, Cy, is a fixed point of 7. Letting x = in and y = Ln in (2.24), we get
o o
X oy X oy
P(Daf(afn’ 071)) =< <P(O7l7 071),
for all x, y € V. Therefore

X Yy X Yy
p (" Duf (5 20)) <o (5 35).

Passing to the limit n — oo, we get
Dy,Cy(x,y) =0

forall x, y € V. It follows from Lemma 2.2 that C, is cubic. By using (2.30), we get (2.25).
O

Corollary 2.6 Let X be a Banach space, ¢ : V> —> [0, +00) be a function such that

lim o (i l) -0,

n—oo a”’ ol
and
Xy L
@ (7, 7) = ek, y),
o o o

forallx,y € V with L < 1. Suppose that  : V — X satisfies the condition

|Do f(x. )| < ox. y),
forall x,y € V and f(0) = 0. Then there exists a unique cubic mapping Cy : V —> X
such that

L
”Coz(x) - f(x)” = m@(x» 0),

forallx € V.
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Proof 1t is known that every normed space is modular space with the modular p(x) = ||x]|
and satisfies the A, -condition with k = «. ]

Remark 2.7 In Corollaries 2.4 and 2.6, by replacing ¢ with:

PG, y) = lxlI” + Iyll”,
e, y) = llxlI”llyll,
e, y) = Ixl” + 1yl + el iyl

under suitable conditions, it is possible to obtain some corollaries.
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