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Abstract We study splittability over some classes of compact spaces which are useful in
functional analysis and general topology. Among other things we show that a scattered pseu-
docompact space splittable over the class of Eberlein compact spaces is Eberlein compact.
We also prove that a compact space splittable over the class of Eberlein compact spaces is
hereditarily σ -metacompact, and that if X is a compact space splittable over the class of
Corson compact spaces, then d(X) = w(X). We also obtain several results on Rosenthal and
on descriptive compact spaces. For instance: (1) a compact space is Rosenthal if and only if it
is splittable over the class of Rosenthal compacta, (2) c-metrizable countably compact spaces
which split over the class of descriptive compacta are descriptive compact spaces, (3) if X is a
compact space splittable over the class of descriptive compact spaces, then hd(X) = w(X),
(4) scattered compact spaces splittable over the class of descriptive compact spaces are σ -
discrete descriptive compacta, and (5) it is consistent with Z FC that a compact space which
splits over the class of descriptive compacta is a descriptive compact space.
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1 Introduction

All spaces under consideration are Tychonoff. The study of subspaces of function spaces
embraces a number of interesting aspects of General Topology and Functional Analysis.
In this framework, Arhangelskii [3] defined Eberlein-Grothendieck spaces as those spaces
which are homeomorphic to a subspace of the space C p(K ) where K is some compact
space. Eberlein-Grothendieck spaces include Eberlein compacta (compact topological spaces
homeomorphic to a subset of a Banach space with the weak topology): indeed, a compact
space is an Eberlein compact space if and only if it is an Eberlein-Grothendieck compact
space. An equivalent useful description: a compact space K is Eberlein compact if and only
if there exists in C p(K ) a dense σ -compact subspace. The advantage of this criterion is that
it describes the class of Eberlein compacta by means of a topological property of C p(K ).

This last characterization points out that arguments involving density inC p(K ) (or inRK )
play a key role in Functional Analysis. In this set-up Tkachuk defined in [20] a space X as
splittable if for each f ∈ R

X , there exists a countable set A ⊂ C p(X) such that f belongs
to the closure of A in R

X . Arhangel’skii and Shakhmatov proved in [6] that a Tychonoff
space X is splittable if and only if for any A ⊂ X , there exists a continuous function from
f : X → R

ω such that f −1( f (A)) = A. By using this helpful characterization, they also
showed that a pseudocompact splittable space is metrizable. Taking as a point of starting
these results, Jardon [12] introduced the class of weakly splittable spaces: a Tychonoff space
X is weakly splittable if, for each function f ∈ R

X , there exists a σ -compact subspace
F ⊂ C p(X) such that f is in the closure of F in R

X . Weakly splittable compact spaces are
called weakly Eberlein compact. It was proved in [12] that if X is a weakly Eberlein compact
space then C p(X) is Lindelöf and that a weakly Eberlein compact space is Eberlein compact
whenever |X | ≤ c.

Arhangel’skii-Shakmatov characterization can be generalized in the following way. Given
a class P of topological spaces, a space X is splittable over P if for any A ⊂ X there exist
a space Y ∈ P and a continuous function f : X → Y such that f −1( f (A)) = A. In [12]
it was proved that a Tychonoff space is weakly splittable if and only if it is splittable over
the class of Eberlein–Grothendieck spaces. Moreover, if P is the class of Eberlein compacta,
Jardón and Tkachuk showed in [13] that if X is a scattered or a σ -metrizable compact space
splittable over the class P , then X is an Eberlein compact space, and that under the axiom of
constructibility, X is an Eberlein compact space.

Some other results which are helpful in this paper are the outcomes on descriptive compact
spaces obtained byOncina and Raja. Raja proved in [17] that a compact space is descriptive if
and only if it is fragmentable and hereditarily weakly θ -refinable (weakly submetacompact).
Oncina and Raja [15] proved that the class of descriptive compact spaces is stable by closed
subspaces, countable products and continuous images. They also proved that any countably
compact subspace of a descriptive compact space is compact and that a hereditarily separable
closed subset of a descriptive compact space is metrizable.

In this work we study splittability over, among others, the class of Eberlein compacta,
Rosenthal compacta and descriptive compacta. Among other things, we show in Sect. 3
that a scattered pseudocompact space splittable over the class of Eberlein compact spaces is
Eberlein compact and that a countably compact space splittable over the class of Eberlein
compact spaces is compact. These results provide, respectively, partial answers to Questions
4.16 and 4.17 of [13]. We also prove that a compact space splittable over the class of Eberlein
compact spaces is hereditarily σ -metacompact which generalizes a result of Yakovlev [21] on
Eberlein compact spaces, and that if X is a compact space splittable over the class of Corson
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compact spaces, then d(X) = w(X). This outcome answers in the positive Question 4.2 of
[13]. In the fourth section we deal whit splittability over other classes of compact spaces.
Some of the results obtained are: (1) a compact space is Rosenthal if and only if it is splittable
over the class of Rosenthal compacta, (2) if a compact space X of cardinality≤ c is splittable
over the class of fragmentable (respectively, Radon-Nikodym) compact spaces, then it is a
fragmentable (respectively, a Radon-Nikodym) compact space, (3) c-metrizable countably
compact spaces which split over the class of descriptive compacta are descriptive compact
spaces, (4) if X is a compact space splittable over the class of descriptive compact spaces,
then hd(X) = w(X), (5) scattered compact spaces splittable over the class of descriptive
compact spaces are σ -discrete descriptive compact spaces, and (6) under AC P� or V = L ,
compact spaces splittable over the class of descriptive compacta are descriptive compact
spaces.

2 Notation and terminology

Given a cardinal κ > ωwe denote by L(κ) the one-point Lindelöfication of a discrete space of
cardinality κ . Continuous images of a closed subset of (L(κ))ω are called primarily Lindelöf
spaces. A family F is said to be a network modulo a cover C if for any C ∈ C and every open
subset U of X with C ⊂ U there exists F ∈ F such that C ⊂ F ⊂ U . A space X is Lindeöf
� if there exists a countable family F of subsets of X which is a network modulo a compact
cover C of the space X .

Some interesting subclasses of Eberlein compacta we will also deal with are Gul’ko
compacta and Corson compacta. Recall that a space X is called a Gul’ko (respectively, a
Corson) compact space if C p(X) is a Lindelöf �–space (respectively, a primarily Lindelöf
space).

We also discuss splittability over other classes of compact spaces. Recall that a compact
space is said to be Rosenthal if it can be represented as a space of functions of the first
Baire class on some Polish space, equipped with the pointwise convergence topology. They
emerge from the study, initiated by Rosenthal, of Banach spaces in which the classical space
�1 embeds isomorphically.

Let ϕ : X × X → R be a non negative function such that ϕ(x, y) = 0 if and only if x = y.
A topological space (X, τ ) is called fragmentable by ϕ if for any non-empty A ⊂ X and
ε > 0 there exists a τ -open setU such thatU ∩ A �= ∅ and ϕ-diam(U ∩ A) < ε. As usual, the
ϕ-diameter of a set B ⊂ X is defined by ϕ-diam(B) = sup{ϕ(x, y) : x, y ∈ B}. A function
ρ : X × X → [0,∞) is lower semicontinuous if {(x, y) : ρ(x, y) ≤ r} is closed for any
r ∈ R. A space is called fragmentable if it is fragmentable by some metric on X . A compact
space X is said to be Radon-Nikodym if it is a fragmentable space by a lower semicontinuous
metric.

A familyH is called isolated if it is discrete in its union endowedwith the relative topology;
that means that for every i ∈ I and each x ∈ Hi there exists an open neighborhood U of x
such that Hj ∩ U = ∅ for every j ∈ I with j �= i . A compact space X is called descriptive
if its topology has a σ -isolated network.

Given two spaces X and Y ,C p(X, Y ) stands for the space of all continuous functions from
X to Y endowed with the pointwise convergence topology. When Y = R, the reals endowed
with the usual topology, wewriteC p(X) instead ofC p(X,R). If Y is a subspace ofC p(X), eY

denotes the canonical evaluation function eY : X → C p(Y ) defined as eY (x) = ex : Y → R

with ex ( f ) = f (x) for any f ∈ Y . A function f : X → Y is called a condensation if it is a
continuous bijection; in this case we say that X condenses onto Y .
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As usual, ω stands for the set of all natural numbers, ω1 is the first uncountable ordinal
number and c for the continuum. Given a space X , the well-known cardinal functions density,
weight and cellularity are denoted by d(X), w(X) and c(X), respectively. For the cardinal
function d(X), we denote by hd(X) the cardinal function whose value on a space X is equal
to sup d(A), where the sup is taken over all subspaces A of the space X ; the function hd is
called hereditary density. The tightness of a point x in a topological space X is the smallest
cardinal number m ≥ ℵ0 with the property that if x ∈ C , then there exists C0 ⊂ C such
that |C0| ≤ m and x ∈ C0. If we denote this cardinal number by t (x, X), the tightness of X ,
t (X), is the supremum of all numbers t (x, X) for x ∈ X . A space X is Fréchet–Urysohn, if
for any A ⊂ X and x ∈ A, there exists a sequence in A converging to x . Recall that X is a
Preiss–Simon space if for every closed subset A of X , each x ∈ A is a limit of a sequence of
non-empty open subsets of A. Notice that every Preiss–Simon space is Fréchet-Urysohn.

The rest of our notation and terminology is standard and follows [3,9,18].

3 Pseudocompact spaces splittable over the class of
Eberlein–Grothendieck spaces

A space X is called point-splittable over the class of spaces P if for any x ∈ X there exist
Y ∈ P and a continuous function f : X → Y such that f −1( f (x)) = x . It is evident that
splittability over the class P implies point-splittability over the class P . Our first result states
the following

Proposition 1 Let X be space. The following hold:

(i) If X is a pseudocompact space point-splittable over the class of Eberlein–Grothendieck
spaces, then X is Preiss–Simon.

(ii) If X is a countable space point-splittable over the class of Gul’ko compacta, then X is
Fréchet–Uryshon.

Proof (i) Let B be a closed subset of X and pick any x ∈ B. By the point-splittability
assumption on X , there exist an Eberlein–Grothendieck space Y and an onto continuous
function f : X → Y such that f −1( f (x)) = x . Observe that Y is a pseudocompact
Eberlein–Grothendieck space and, consequently, it is an Eberlein compact space. Thus, Y
is Preiss-Simon and there exists a sequence {Un : n ∈ ω} of open sets in f (B) converging
to f (x). Now consider the sequence

{
f −1(Un) ∩ B : n ∈ ω

}
of open sets in B. We will

prove that this sequence converges to x . For this, let W be an open set in B such that
x ∈ W and take an open set E in X such that E ∩ B = W . Then there exists an open set H

for which x ∈ H ⊂ H ⊂ E . It is clear that the set X\H is open, X\H is pseudocompact

and x ∈ X\X\H ⊂ E . Being the subspace Z = f (X\H) a pseudocompact Eberlein–
Grothendieck space, it is compact. Since f (x) /∈ Z , the set V = Y\Z is an open
neighborhood of f (x). Thus, there exists m ∈ ω such that Un ⊂ V ∩ B for any n ≥ m.

Let us observe now that f −1(V ) ⊂ E because f −1(V ) = (X\ f −1(Z)), X\H ⊂
f −1( f (X\H)) = f −1(Z), and X\X\H ⊂ E . HenceWn = f −1(Un)∩B ⊂ E∩B = W
for any n ≥ m. We have just showed that X is a Preiss–Simon space.

(ii) Since any Gul’ko compact space is Fréchet–Urysonh, the results follows from [4, Theo-
rem 16].

�
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As we commented in the Introduction, a space is weakly splittable if and only if it is
splittable over the class of Eberlein–Grothendieck spaces, and a compact space is weakly
Eberlein compact if and only if it is splittable over the class of Eberlein compact spaces (see
[12]). We can use these facts to show

Proposition 2 Let X be a weakly splittable pseudocompact space. If A ⊂ X is pseudocom-
pact, then it is closed.

Proof By the above comment, there exist anEberlein–Grothendieck spaceY and a continuous
function f : X → Y such that f −1( f (A)) = A. Since f (A) ⊂ Y is a pseudocom-
pact Eberlein-Grothendieck space, it is compact. Thus f (A) is closed in Y and so is
A = f −1( f (A)) in X . �

Proposition 2 provides a connection between weakly splittable pseudocompact spaces
and maximal pseudocompact spaces. Let us remember that a Tychonoff pseudocompact
space (X, τ ) is called maximal pseudocompact if any stronger Tychonoff topology on X
fails to be pseudocompact. In [1, Theorem 3.12] the authors show that every pseudocompact
subset of X is maximal pseudocompact if and only if every pseudocompact subset of X is
closed. In particular, Eberlein compact spaces are hereditarily maximal pseudocompact ([16,
Corollary 6]). Thus, we have

Corollary 1 If X is a weakly splittable pseudocompact space, then X is hereditarily maximal
pseudocompact.

Recall that a compact space is called dyadic if X is a continuous image ofDκ for some cardinal
κ where D is the discrete space {0, 1}. Taking into account [1, Theorem 3.8, Corollary 3.2],
we get

Corollary 2 Any weakly splittable pseudocompact (para)topological group is a metrizable
Eberlein campact space.

Corollary 3 Any weakly splittable dyadic space is a metrizable Eberlein campact.

The following proposition is useful in the sequel.

Proposition 3 Let P be a class of spaces which is countably productive and suppose that X
is a space splittable over P . If a family {Aα ⊂ X : α ∈ I } of non-empty subsets of X with
|I | = κ ≤ 2ω satisfies:

(i) X = ⋃{Aα : α ∈ I }, and
(ii) Aα ∩ Aβ = ∅ for any distinct index α, β ∈ I ,

then there exist Y ∈ P and a continuous function f : X → Y such that f −1( f (Aα)) = Aα

for any α ∈ I .

Proof There exists a sequence {In ⊂ I : n ∈ ω} such that for any distinct index α, β ∈ I
there are n, m ∈ ω with α ∈ In , β ∈ Im and In ∩ Im = ∅. For any n ∈ ω, consider the set
An = ⋃{Aα : α ∈ In} and a space Yn ∈ P . Choose a continuous map fn : X → Yn such that
f −1
n ( fn(An)) = An (n ∈ ω) and let f = ∏

n∈ω fn : X → Y = ∏
n∈ω Yn ∈ P . It is apparent

that f −1( f (Aα)) = Aα for any α ∈ I . �
We now apply the previous proposition to obtain
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Proposition 4 Let X be a space. The following hold:

(i) If X is a pseudocompact space of cardinality ≤ c splittable over the class of Eberlein
compact spaces, then X is Eberlein compact. Moreover, if X is separable, then it is
metrizable.

(ii) If X is a countably compact space of cardinality ≤ c splittable over the class of Gul’ko
compact spaces, then X is Gul’ko compact. Moreover, if X is separable, then it is
metrizable.

Proof (i) Since any countable product of Eberlein compact spaces is Eberlein compact,
Proposition 3 tells us that there exists an Eberlein compact space Y and an injective con-
tinuous function f : X → Y . The function f : X → f (X) ⊂ Y defines a condensation
onto the pseudocompact subspace f (X) ⊂ Y . Being the space f (X) Eberlein compact,
it is a Preiss-Simon compact space. Condensations from a pseudocompact space to a
Preiss-Simon compact space are homeomorphisms so that X and f (X) are homeomor-
phic. Therefore X is an Eberlein compact space. Moreover, if X is separable, then it is a
separable Eberlein compact space. Thus, X is metrizable.

(ii) Any countable product of Gul’ko compact spaces is a Gul’ko compact space. Thus, if
we argue as in i), there is a Gul’ko compact space Y and an injective continuous function
f : X → Y . The function f : X → f (X) ⊂ Y defines a condensation from X to the
countably compact subspace f (X) of Y . Observe that f (X) is a Gul’ko compact space
because it is a countably compact subspace of a Gul’ko compact space. We will prove
that the function f : X → Z is closed. For this, take any closed subset A ⊂ X . It is clear
that f (A) is a countably compact subspace of aGul’ko compact space and, consequently,
it is compact. This shows that f is closed. Therefore X and f (X) are homeomorphic
which proves that X is a Gul’ko compact space. Since separable Gul’ko compact spaces
are metrizable, X is a separable metrizable space provided that X is separable. �

Yakovlev proved in [21] that an Eberlein compact space is hereditarily σ -metacompact.
We extend this property to spaces which split over the class of Eberlein compacta.

Proposition 5 If X is a compact space splittable over the class of Eberlein compact spaces,
then X is hereditarily σ -metacompact.

Proof Take any A ⊂ X . There exist an Eberlein compact space Y and an onto continuous
function f : X → Y such that f −1( f (A)) = A. Since Y is hereditarily σ -metacompact,
f (A) is σ -metacompact. Notice now that the function g = f |A : A → f (A) is perfect.
Since σ -metacompactness is inverse invariant by perfect functions (see [9, Problem 5.3H]),
A is σ -metacompact. Thus, X is hereditarily σ -metacompact. �

As we say above, pseudocompact Eberlein-Grothendieck spaces are Eberlein compacta.
We study whether a pseudocompact space splittable over the class of Eberlein compact
spaces is compact (see questions 4.16 and 4.17 of [13]). The next proposition provides a
partial answer to Question 4.17 of [13].

Proposition 6 If X is a countably compact space splittable over the class of Gul’ko compact
spaces, then X is compact.

Proof Suppose that X is not Lindelöf. Then there exists an open cover B of X such that⋃D �= X for any countable subfamily D ⊂ B. It is clear that κ = |B| is a non countable
cardinal. It follows from Proposition 1 that the cardinality of A is ≤ c for any countable
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subset A ⊂ X . Thus, Proposition 4 implies that A is a (metrizable) compact space. We will
define by transfinite induction a free sequence of cardinality ω1 ≤ κ . For the first step of the
induction, choose any non-empty set U0 ∈ B and take any point x0 ∈ U0. If 0 < α < ω1,
our induction hypothesis is that two sequences {xλ}λ<α and {Uλ}η<α have been defined with,
for all λ < α, xλ ∈ Uλ and Uλ a non-empty open subset of B. Now consider, for any β ≤ α,
a finite subcover Vβ ⊂ B of the compact subspace Aβ with Aβ = {xλ : λ < β}.

Since X is not Lindelof,
⋃{Uλ : λ < α} ∪ ⋃{Vβ : β ≤ α} �= X for all α < ω1. Thus, we

can now choose Uα ∈ B and xα ∈ Uα \ [⋃{Uλ : λ < α} ∪ ⋃{Vβ : β ≤ α}]. This completes
the transfinite induction.

Notice that the definition of the sequence {xλ : λ < α} implies that {xλ : λ < α} ∩
{xλ : λ ≥ α} = ∅ for any α < ω1. Thus, Aω1 = {xλ : λ < ω1} is a free sequence.

By Proposition 1 Aω1 is a countably compact Fréchet–Urysohn space so that |Aω1 | ≤ c.
From Proposition 4, Aω1 is a Gul’ko compact space. Since the tightness of a Gul’ko compact
space is countable, we have that the tightness of Aω1 is countable as well. This implies that
Aω1 does not have free sequences of cardinality ω1, a contradiction. Thus, X is compact. �

From [1, Theorem 3.8], a linearly ordered space is hereditarily maximal pseudocompact
if and only if it is countably compact and first countable. Thus, Propositions 2 and 6 imply

Corollary 4 If a pseudocompact linearly ordered space splits over the class of Eberlein
compacta, then it is compact.

Example 1 Reznichenko constructs a Gul’ko compact space Z for which there exists a point
z0 ∈ Z such that X = Z\{z0} is pseudocompact (see Problem 222 of [19]). The space X is
a pseudocompact non-countably compact space and there exists a condensation ϕ : X → Y
onto a Gul’ko compact space Y (see Problem 224 of [19]). Notice that ϕ splits X over the
Gul’ko compact space Y . Therefore X is a pseudocompact non-countably compact space
splittable over the class of Gul’ko compact spaces. Thus, we can not replace countably
compact by pseudocompact in Proposition 6. �

The following proposition answers partially Question 4.16 of [13]. It also generalizes [13,
Theorem 3.3] and the well-known result of Alster [2] stating that every scattered Corson
compact is Eberlein compact. Recall that a space X is scattered if every non-empty subspace
Y ⊂ X has an isolated point.

Proposition 7 If X is a scattered pseudocompact space which splits over the class of Eberlein
compact spaces, then X is Eberlein compact.

Proof Let X0 ⊂ X be the subset of all isolated points of X . It is easy to see that X0 is open
and dense. First we will prove that X is countably compact. Suppose the contrary and let
A = {an : n ∈ ω} ⊂ X be an infinite countable closed subset of X . Proposition 1 tells us
that for any n ∈ ω there exists a countable set Bn ⊂ X0 such that an ∈ Bn . Consider now
the open set B = ⋃{Bn : n ∈ ω}. Then B is a pseudocompact spaces which splits over the
class of Eberlein-Grothendieck spaces. Notice that Proposition 1 implies that its cardinality
is ≤ c. Now Proposition 4 implies that B is an Eberlein compact space. It is clear that A ⊂ B
so that A is compact. This contradiction shows that X is a countably compact space. Thus,
it follows from Proposition 6 that X is compact. Now Proposition 5 tells us that X is a
hereditarily σ -metacompact space. Therefore X is an Eberlein compact because any here-
ditarily σ -metacompact scattered compact space is Eberlein compact (see [21, Theorem 7]).

�
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A space is said to be submaximal if every dense subset is open. One of the reasons
to consider submaximal spaces is provided by the theory of maximal spaces (a space X
is maximal if it is dense-in-itself and no larger topology on the set X is dense-in-itself).
Submaximal spaces were characterized by Bourbaki as spaces that do not admit a larger
topology with the same semi–regularisation. By above proposition and [5, Corollary 5.13,
Corollary 7.9], we have

Corollary 5 Suppose that X is a pseudocompact submaximal space. If X splits over the
class of Eberlein compact spaces, then X is Eberlein compact and the set of all non isolated
points of X is finite.

If X is the set of real numbers endowed with the discrete topology, then the identity
map id splits X over R with its natural topology. Thus, id sends any closed discrete space
of cardinality c to a non discrete subspace of R. This fact and the techniques used in the
proof of Propositions 6 and 7 point out the usefulness and interest of discrete subspaces of
pseudocompact spaces which split over the class of Eberlein compact spaces.

Proposition 8 If X is a pseudocompact space splittable over the class of Eberlein compact
spaces and A ⊂ X is a discrete subspace of cardinality κ ≤ c, then there exist an Eberlein
compact space Y and a continuous onto function f : X → Y such that f −1( f (x)) = x for
any x ∈ A and f (A) is a discrete set of cardinality κ .

Proof Let A = {xα : α ∈ I } be a discrete subspace of cardinality κ such that xα �= xβ

for distinct α, β ∈ I . By Proposition 3, there exist an Eberlein compact space Y and a
continuous function f : X → Y such that f −1( f (xα)) = xα for any α ∈ I . Being f (X) a
pseudocompact subspace of anEberlein compact space, it is compact.Assume,without loss of
generality, that the function f is surjective. Take, for any xα , an open setUα such that {xα} =
Uα ∩ A. From the regularity of X there exists an open set Vα with xα ∈ Vα ⊂ V α ⊂ Uα .

Since X\Vα is open and Vα ∩ (X\Vα) = ∅, the set X\Vα is pseudocompact and xα /∈ X\Vα .

Hence Zα = f (X\Vα) is compact because it is a pseudocompact subspace of an Eberlein
compact space. Now, since f −1( f (xβ)) = xβ for any β ∈ I , we have yα = f (xα) /∈ Zα

and yβ = f (xβ) ∈ Zα for each β ∈ I\{α}. Note that the set W = Y\Zα is open in Y and
W ∩ {yγ : γ ∈ I } = {yα}. Therefore {yγ : γ ∈ I } is a discrete subset of cardinality κ . �

Any discrete space splits over the two point discrete space. It is worth noting that compact
spaces have a different behavior. The following result is implicit in the proof of Theorem 1
of [10].

Proposition 9 If X is a compact space splittable over the class of compact spaces of cardi-
nality ≤ κ , then |X | ≤ κ .

The following result answers Question 4.2 of [13] in the positive. Surprisingly, the proof
is not a complicated task.

Proposition 10 If X is a compact space splittable over the class of Corson compact spaces,
then d(X) = w(X).

Proof If |X | ≤ c, then from Proposition 3.12 of [13] it follows that X is a Corson compact
space. By [19, Problem 121], we have d(X) = w(X).

Suppose that |X | = κ > c. Since X is Fréchet-Urysohn (see Proposition 3.12 of [13]),
d(X) > c and the cardinality of X is≤ d(X)ω = d(X). On the other hand, it is a well-known
fact that, for any space X , we have d(X) ≤ w(X). Since for any compact space the inequality
w(X) ≤ |X | holds, we obtain d(X) = w(X). �
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The following result generalizes [12, Proposition 2.7] and [13, Theorem 3.13].

Proposition 11 LetP be a class of compact spaces which isκ-productive, stable under closed
subspaces and such that t (Y ) ≤ κ for any Y ∈ P . If c(Y ) = d(Y ) = w(Y ) for any Y ∈ P ,
then a compact space X which splits over P satisfies the equalities c(X) = d(X) = w(X).

Proof If |X | ≤ 2κ , then there is a familyB = {Bλ : λ < κ} of subsets of X such that for every
distinct x, y ∈ X there exists Bλ1 , Bλ2 ∈ B such that Bλ1 ∩ Bλ2 = ∅, x ∈ Bλ1 and y ∈ Bλ2 .
By hypothesis, for any Bλ ∈ B there exist Yλ ∈ P and a continuous function fλ : X → Yλ

such that f −1
λ ( fλ(Bλ)) = Bλ. Since the continuous function f : X → ∏

λ<κ Yλ defined by
f (x) = ( fλ(x))λ<κ is injective, X is homeomorphic to a closed subspace of a product of κ

spaces in P wihch implies that X ∈ P . Therefore c(X) = d(X) = w(X).
Suppose now that |X | > 2κ . For any A ⊂ X there exist Y ∈ P and a continuous onto

function f : X → Y such that f −1( f (A)) = A. It is evident that w(Y ) = c(Y ) ≤ c(X). We
will prove that 2κ < c(X). Suppose contrary we claim that c(X) ≤ 2κ . Then w(Y ) ≤ 2κ

and |Y | ≤ (2κ )κ = 2κ . Thus, X splits over the class of compact spaces of cardinality ≤ 2κ .
Proposition 9 tells us that |X | ≤ 2κ which is a contradiction; thus, 2κ < c(X). Since the
tightness of Y is ≤ κ , the cardinality of Y is ≤ d(Y )κ = c(Y )κ ≤ c(X)κ = c(X). Hence
X is splittable over the class of compact spaces of cardinality ≤ c(X) which implies that
|X | ≤ c(X). Being the tightness of X ≤ κ , we have |X | ≤ w(X)κ = w(X) because
|X | > 2κ . It follows from compactness of X that w(X) ≤ |X |. Therefore w(X) = |X | and,
consequently, c(X) = d(X) = w(X). �

4 Splittability over the classes of Rosenthal and descriptive compacta

In this section, our first result concerns splittability overRosenthal compact spaces. For further
information on the class of Rosenthal compacta, the interested reader can consult Section
C.17 in [11]. The properties of Rosenthal compact spaces suggest that it is reasonable that its
behavior should in some rough sense similar to the behaviour of metrizable compact spaces.
In this spirit we have:

Proposition 12 If X is a compact space splittable over the class of Rosenthal compact
spaces, then X is Rosenthal compact.

Proof The cardinality of any Rosenthal compact space is ≤ c. Hence X is a compact space
splittable over the class of compact spaces of cardinality ≤ c. Proposition 9 implies that the
cardinality of X is ≤ c. Since the class of Rosenthal compact spaces is stable by countable
products and closed subsets, Proposition 3 tells us that X is homeomorphic to a closed
subspace of a countable product of Rosenthal compact spaces. Therefore X is a Rosenthal
compact space. �

We now turn our attention to descriptive compact spaces. It is well known that any Gul’ko
compact space is descriptive compact. Recall that a space X is called weakly θ -refinable (or
weakly submetacompact) if every open cover of X has a σ -isolated refinement.

Raja proved in Proposition 2.3 of [17] the following characterization of descriptive com-
pact spaces.

Theorem 1 A compact space is descriptive if and only if it is fragmentable and hereditarily
weakly θ -refinable.
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Since every countably compact weakly θ -refinable space is compact (see Theorem 9.2 in
[8]), the previous results implies that every countably compact subspace of a descriptive com-
pact is compact. For countably compact spaces of cardinality not greater than the continuum,
we have

Proposition 13 If X is a countably compact space of cardinality ≤ c which splits over the
class of descriptive compact spaces, then it is descriptive compact.

Proof Since the class of descriptive compacta is closed under countable products and closed
subspaces, Proposition 3 tells us that there exist a descriptive compact spaceY and an injective
continuous function f : X → Y . Then the space f (X) is descriptive compact because it is
a countably compact subspace of a descriptive compact space. Choose a closed subset E
of X . Since X is countably compact, E and h(E) ⊂ f (X) are countably compact and, a
posteriori, they are compact. Thus, h(E) is closed in f (X). Hence f : X → f (X) is closed
which implies that it is homeomorphism. Therefore X is a descriptive compact space. �

In Proposition 13 descriptive can not be replaced by Radon–Nikodym as the following
example shows.

Example 2 The identity map i : ω1 → ω1+1 splits the countably compact spaceω1 over the
compact spaceω1+1. Being a scattered space, the compact spaceω1+1 is Radon–Nikodym
compact. However, ω1 is not compact.

The previous example is in marked contrast to the behaviour of compact spaces.

Proposition 14 If X is a compact space of cardinality ≤ c splittable over the class
of fragmentable (respectively, Radon–Nikodym) compact spaces, then it is fragmentable
(Radon–Nikodym) compact.

Proof Analogous to the proof of Proposition 13. �
The following definition is helpful in the proof of Proposition 15.

Definition 1 (see [13]) Let τ1 and τ2 topologies on a set X . The set X is said to haveP(τ1, τ2)

if there exists a sequence {An : n ∈ ω} of subsets of X such that for every x ∈ X and every
V ∈ τ1 with x ∈ V , there is n ∈ ω and U ∈ τ2 such that x ∈ An ∩ U ⊂ V . If τ1 is the
topology defined by a metric ρ on X we denote P(τ1, τ2) by P(ρ, τ2).

It is a well-known fact that there exists a separable non metrizable scattered descriptive
compact space. If X is a hereditarily separable descriptive compact space, then its weight is
countable (see Proposition 4.2 in [15]). Introducing the natural modifications, the arguments
used in [15] can be generalized to obtain a similar result independent of the weight of X .

Proposition 15 If X is a descriptive compact space, then hd(X) = w(X).

Proof It is clear that hd(X) ≤ w(X). Suppose that κ = hd(X). From Theorem 2.5 of [15]
it follows that there exists a finer fragmentable metric ρ such that X has P(ρ, τ ) with a
sequence of τ -closed sets {An : n ∈ ω}, where τ is the topology of X . By the definition of
κ , we have τ -density of An is ≤ κ; hence for every n ∈ ω we can choose a τ -dense set Bn

of cardinality ≤ κ with Bn ⊂ An . Since X has P(ρ, τ ) with the sequence of τ -closed sets
{An : n ∈ ω}, the set B = ⋃{Bn : n ∈ ω} is ρ-dense in X .
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It follows from fragmentability of X that for any n ∈ ω there exists a family {U n
α : α < γn}

of non-empty Fσ -open (in (X, τ )) sets such that theρ-diameter of Dn
α = U n

α \⋃{U n
β : β < α}

is < 1
n and X = ⋃{Dn

α : α < γn}. It is worth mentioning that every U n
α is open in (X, ρ).

The Lindelöf number of (X, ρ) is less or equal to the cardinality of B so that it is ≤ κ .
Thus, we can assume without loss of generality that |γn | ≤ κ . Next observe that the sets
{Dn

α : α < γn, n ∈ ω} separates the points of X . Since X is normal, for any Dn
α (n ∈ ω,

α < γn) there exists a continuous function f n
α from X to [0, 1] such that f n

α (X \ U n
α ) = 0

and f n
α (U n

α ) ⊂ (0, 1]. It is easy to see that Y = { f n
α : α < γn, n ∈ ω} ⊂ C p(X) separates

the points of X and |Y | ≤ κ . Then the evaluation map eY : X → C p(Y ) is injective (see
problem 166 in [18]). Thus, compactness of X implies that X and eY (X) are homeomorphic.
Since w(C p(Y )) is the cardinality of Y , we have w(X) = w(eY (X)) ≤ w(C p(Y )) = |Y | ≤
κ = hd(X). Therefore w(X) = hd(X) �

Descriptive can be replaced by splittable over the class of descriptive compacta.

Proposition 16 If X is a compact space splittable over the class of descriptive compact
spaces, then hd(X) = w(X).

Proof Observe first that the space X has countable tightness. Now, if hd(X) ≤ c, then
|X | ≤ d(X)ω ≤ hd(X)ω ≤ cω ≤ c. It follows from Proposition 13 that X is a descriptive
compact space. Therefore Proposition 15 tells us that hd(X) = w(X).

Suppose now that hd(X) > c. It is easy to see that c < d(X) ≤ hd(X) ≤ w(X) ≤ |X |.
On the other hand, the inequalities |X | ≤ d(X)ω ≤ hd(X)ω = hd(X) hold. Therefore
hd(X) = w(X). �

The following proposition is surely folklore.

Proposition 17 If f : X → Y is a perfect function and Y is weakly θ -refinable, then X is
weakly θ -refinable.

Proof Let U be an open cover of X . For any y ∈ Y , consider a finite subcover Uy ⊂ U of the
compact subspace f −1(y).Notice that X\ ⋃Uy is closed in X ; hence f (X\ ⋃Uy) is closed in
Y and y /∈ f (X\ ⋃Uy). It is clear thatW = {Y\ f (X\ ⋃Uy) : y ∈ Y } is an open cover of the
spaceY . Then there exists aσ -isolated refinementV = {Vn : n ∈ ω} ofW whereVn is discrete
for all n ∈ ω. It is easy to see that En = { f −1(W ) ∩ U : W ∈ Vn, U ∈ Uy for some y ∈ Y }
is a σ -isolated refinement of U . Therefore X is weakly θ -refinable. �
Proposition 18 If a compact space X is splittable over the class of descriptive compact
spaces, then it is hereditarily weakly θ -refinable.

Proof It follows from Proposition 17 and an argument similar to the one used in the proof
of Proposition 5. �

In [13, Theorem 3.3] it was showed that scattered compact spaces which split over the
class ofCorson compact spaces areEberlein compact. For descriptive compacta, the following
result holds:

Proposition 19 If X is a scattered compact space splittable over the class of descriptive
compact spaces, then X is a σ -discrete descriptive compact space.

Proof From the previous proposition, X is a hereditarilyweakly θ -refinable space. Since scat-
tered compact spaces are fragmentable, X is a hereditarily weakly θ -refinable fragmentable
space. By Theorem 1, X is a descriptive compact space. It follows from Theorem 3.4 of [14]
that X is σ -discrete. �
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If we remove scattered in Proposition 19, some particular properties are to be expected.

Proposition 20 If X is a compact space splittable over the class of descriptive compact
spaces, then the following hold:

(i) If A ⊂ X is countably compact, then it is compact.
(ii) If W ⊂ X is closed, then W is splittable over the class of descriptive compact spaces.
(iii) The tightness of X is countable.

Proof (i) There exist a compact descriptive space Y and a continuous function f : X → Y
such that f −1( f (A)) = A. The subspace f (A) is countably compact and hence it is
compact. Since the function

g = f | f −1( f (A)) : f −1( f (A)) → f (A)

is perfect, f −1( f (A)) is compact.
(ii) For any A ⊂ W there exist a descriptive compact space Y and a continuous onto function

f : X → Y such that f −1( f (A)) = A. Define g = f |W : W → f (W ) as g(x) = f (x)

for each x ∈ W . Since any closed subspace of a descriptive compact space is descriptive
compact, f (W ) is descriptive compact as well. It is easy to see that g is continuous and
g−1(g(A)) = A. Therefore W is splittable over the class of descriptive compact spaces.

(iii) It suffices to note that X is a compact space splittable over the class of compact spaces
of countable tightness (see [15, Corollary 4.3]) and apply [4, Theorem 15]. �

The following result generalizes Corollary 3.2 of [13].

Proposition 21 Suppose that P is a κ productive class. If X is splittable over the class P
and there exists a continuous function from X into a space Y in P such that the cardinality
of f −1(y) is ≤ 2κ for any y ∈ Y , then X condenses into a space of P .

Proof For any y ∈ Y there exists a family Fy = {Ay
α : α < κ} of subsets X which separates

the points of f −1(y). For any α < κ define the set Aα = ⋃{Ay
α : y ∈ Y }. The family

{ f −1(y) : y ∈ Y } ∪ {Aα : α < κ} separates the points of X ; indeed, given two distinct points
x, z ∈ X , we have

(a) If f (x) �= f (z), then f −1( f (x)) separates the points x and z because z /∈ f −1( f (x)).
(b) If f (x) = f (z), then x, z ∈ f −1( f (x)). It follows from x, z ∈ f −1( f (x)) that there

exists α < κ such that Ay
α ∩ {x, z} = {x}; hence Aα separates the points x and z.

Now, for any α < κ there exist Yα ∈ P and a continuous function fα : X → Yα such that
f −1
α ( fα(Aα)) = Aα . Consider the continuous function h = f × ∏

α<κ { fα} : X → Z =
Y × ∏

α<κ Yα . It is evident that Z ∈ P . If x, z are distinct points of X , then h(x) �= h(z)
because the family { f −1(y) : y ∈ Y } ∪ {Aα : α < κ} separates the points of X . Therefore X
condenses into Z . �

Given a cardinal number κ , a space X is called κ-metrizable if it is the union of at most κ
metrizable subspaces. For descriptive compact spaces, the following proposition strengthens
[13, Theorem 3.8].

Proposition 22 Let X be a countably compact space splittable over the class of descriptive
compact spaces. If there exists a continuous function g from X into a descriptive compact
space Y such that f −1(y) is c-metrizable for any y ∈ Y , then X is a descriptive compact
space.
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Proof Take y ∈ Y and suppose that f −1(y) = ⋃{Ay
α : α < c}, where Ay

α is metrizable for
any α < c. Assume, without loss of generality, that Ay

α1 ∩ Ay
α2 = ∅ for distinct α1, α2 < c.

For any α < c define the set Bα = ⋃{Ay
α : y ∈ Y }. It is clear that Bα1 ∩ Bα2 = ∅ for

distinct α1, α2 < c. It follows from Proposition 3 that there exist a descriptive compact space
Z and a continuous function g : X → Z such that g−1(g(Bα)) = Bα for any α < c. The
function f : X → Y × Z defined as f (x) = (g(x), h(x)) is continuous and f (X) ⊂ Y × Z
is descriptive compact. For any y ∈ f (X), the subspace f −1(y) is compact because it is a
metrizable countably compact space. Thus, | f −1(y)| ≤ c. The previous proposition tells us
that there exits a condensation ϕ : X → Q, where Q is a descriptive compact space. Take
now a closed subset E of X . Since X is countably compact, E is countably compact as well.
It follows From Proposition 20 that ϕ(E) ⊂ Q is compact so that h(E) is closed in Q.
Hence ϕ is a closed injective continuous function which implies that it is a homeomorphism.
Therefore X is a descriptive compact space. �
Corollary 6 Let X be a c–metrizable countably compact space. If X is splittable over the
class of descriptive compact spaces, then X is descriptive compact.

Proof Consider the (unique) function f from X into the descriptive compact space {0} and
apply Proposition 22. �

It was showed in [13, Theorem 3.11] that it is consistent with Z FC that splittability of
a compact space over the class of Eberlein (Corson, Gul’ko) compact spaces is an Eberlein
(Corson, Gul’ko) compact space. We extend this result to descriptive compacta. Recall that
the axiom of constructibility asserts that V = L where V and L denote the von Neumann
universe and the constructible universe, respectively. We will also consider the statement
AC P� introduced in [7]: given a cardinal μ, let s0(μ) = μ; if α is an ordinal and we have
sα(μ), then sα+1(μ) = (sα(μ))+. If α is a limit ordinal and we have sβ(μ) for any β < α,
then sα(μ) = sup

{
sβ(μ) : β < α

}
. Let us consider the following statement:

(ACP) for every cardinal μ ≥ c, there is a cardinal α < c such that μω ≤ sα(μ).
The assumption AC P&(ω1 < c) is denoted by AC P�. It is well known that both AC P�

and V = L are consistent with ZFC.

Proposition 23 [7, Corollaries 8.9 and 9.7] Assume that AC P� or V = L holds. For any
Hausdorff space X there exists disjoint sets X1, X2 ⊂ X such that X = X1 ∪ X2 and any
compact K ⊂ Xi is scattered for each i ∈ {1, 2}.
Proposition 24 Assume that AC P� or V = L holds. If X is a compact space splittable over
the class of descriptive compact spaces, then X is descriptive compact.

Proof Proposition 23 implies that there exist disjoint sets X1, X2 ⊂ X such that X = X1∪X2

and each compact space K ⊂ Xi is scattered for any i ∈ {1, 2}. Then there exist a descriptive
compact space Y and an onto continuous function f : X → Y such that f −1( f (Xi )) = Xi

for any i ∈ {1, 2}. Notice that, for each y ∈ Y , the space f −1(y) ⊂ X is compact and
either f −1(y) ⊂ X1 or f −1(y) ⊂ X2. Hence f −1(y) is a scattered compact space splittable
over the class of descriptive compact spaces. It follows from Proposition 19 that f −1(y) is
σ -metrizable. Thus, Proposition 22 implies that X is a descriptive compact space. �
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