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Abstract In this paper, we present some Lyapunov-type inequalities for a nonlinear frac-
tional heat equation with nonlocal boundary conditions depending on a positive parameter.
As an application, we obtain a lower bound for the eigenvalues of corresponding equations.

Keywords Lyapunov’s inequality · Caputo fractional derivative · Green’s function ·
Eigenvalue

Mathematics Subject Classification 34A08 · 34A40 · 26D10

1 Introduction

Consider the boundary value problem with Dirichlet conditions{
x ′′(t) + q(t)x(t) = 0, a < t < b,

x(a) = x(b) = 0,
(1)

where q : [a, b] → R is a continuous function. Lyapunov in [1] proved that if Problem (1)
has a nontrivial solution then ∫ b

a
|q(s)| ds >

4

b − a
.
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In [2], Hartman and Wintner proved that if Problem (1) has a nontrivial solution then∫ b

a
(b − s)(s − a)q+(s) ds > b − a,

where q+(s) = max{q(s), 0}.
Inequalities of this type have appeared in the literature for other classes of boundary value

problems and we refer the reader to [3–7] and the references therein for more details.
Recently, some Lyapunov-type inequalities have been obtained by some authors for dif-

ferent fractional boundary value problems (see [8–12], for example).
In this paper, we are concerned with the problem of finding some Lyapunov-type inequal-

ities for the following fractional boundary value problem{
−CDα

a u(t) = y(t), a < t < b,

u′(a) = 0, β CDα−1
a u(b) + u(η) = 0,

(2)

where CDα
a denotes the Caputo fractional derivative of order α, 1 < α ≤ 2, β > 0 and

a ≤ η ≤ b.
As an application of our results, we obtain a lower bound for the eigenvalues of the

cor-respondig problem.
The above mentioned fractional boundary value problem can be considered as the frac-

tional version of the nonlocal boundary value problem{
−u′′(t) = y(t), 0 < t < 1,

u′(0) = 0, βu′(1) + u(η) = 0,

with 0 ≤ η ≤ 1 which has been studied in the special case with η = 0 in [13] and this
problem models a thermostat insulated at t = 0 with a controller dissipating heat at t = 1
depending on the temperature detected by a sensor at t = η.

2 Background

In this section, we present the basic results about fractional calculus theory which be used
later. For more details, we refer the reader to [14,15].

Definition 1 Let f : [a, b] −→ R be a given function. For α > 0, the Riemann-Liouville
fractional integral of order α of f is defined by

(Iα
a f )(t) = 1

�(α)

∫ t

a
(t − s)α−1 f (s) ds,

where �(α) denotes the classical gamma function.

Definition 2 Let f : [a, b] −→ R be a given function. For α > 0, the Caputo derivative of
fractional order α > 0 of f is given by

(CDα
a f )(t) = 1

�(n − α)

∫ t

a
(t − s)n−α−1 f (n)(s) ds,

where n = [α] + 1 and [α] denotes the integer part of α.
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Lemma 1 Suppose that f ∈ C(a, b) ∩ L1(a, b) with a fractional derivative of order α > 0
belonging to C(a, b) ∩ L1(a, b). Then

Iα
a (CDα

a f )(t) = f (t) + c0 + c1(t − a) + c2(t − a)2 + · · · + cn−1(t − a)n−1,

for t ∈ [a, b], where ci ∈ R (i = 0, 1, . . . , n − 1) and n = [α] + 1.

Lemma 2 Suposse f ∈ L1(a, b) and α > 0, β > 0. Then

1. CDα
a I

α
a f (t) = f (t)

2. Iα
a (I β

a ) f (t) = (Iα+β
a f )(t)

3 Main results

Our starting point in this section is the following lemma which gives us an expression for the
Green’s function of the boundary value problem (2). The case for a = 0 and b = 1 appears
in [16, Lemma 2.4].

Lemma 3 Suppose y ∈ C[a, b]. A function u ∈ C[a, b] is a solution of Problem (2) if and
only if it satisfies the integral equation

u(t) =
∫ b

a
G(t, s)y(s) ds,

where G(t, s) is the Green’s function given by

G(t, s) = β + Hη(s) − Ht (s),

where for r ∈ [a, b], Hr : [a, b] → R is the function defined as

Hr (s) =
{

(r−s)α−1

�(α)
, for a ≤ s ≤ r ≤ b,

0, for a ≤ r < s ≤ b.

Proof Using Lemma 2, we have

u(t) = −I α
a y(t) + c0 + c1(t − a) = − 1

�(α)

∫ t

a
(t − s)α−1y(s) ds + c0 + c1(t − a),

for some constants c0, c1 ∈ R.
This gives us

u′(t) = − 1

�(α)

∫ t

a
(α − 1)(t − s)α−2y(s) ds + c1.

From the boundary condition u′(a) = 0, we get c1 = 0.
This gives us

u(t) = − 1

�(α)

∫ t

a
(t − s)α−1y(s) ds + c0.

By using the fact that CDα−1
a c0 = 0, and Lemma 2, we have

CDα−1
a u(t) = −CDα−1

a Iα
a y(t) = −CDα−1

a Iα−1
a Ia y(t) = −Ia y(t) = −

∫ t

a
y(s) ds.
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This gives us

β CDα−1
a u(b) = −β

∫ b

a
y(s) ds.

Taking into account the boundary condition

β CDα−1
a u(b) + u(η) = 0,

we have

0 = −β

∫ b

a
y(s) ds − 1

�(α)

∫ η

a
(η − s)α−1y(s) ds + c0

and, from this, it follows

c0 = β

∫ b

a
y(s) ds + 1

�(α)

∫ η

a
(η − s)α−1y(s) ds.

Consequently,

u(t) = − 1

�(α)

∫ t

a
(t − s)α−1y(s) ds + β

∫ b

a
y(s) ds + 1

�(α)

∫ η

a
(η − s)α−1y(s) ds.

Therefore,

u(t) = β

∫ b

a
y(s) ds +

∫ b

a
Hη(s)y(s) ds −

∫ b

a
Ht (s)y(s) ds

or, equivalently,

u(t) =
∫ b

a

(
β + Hη(s) − Ht (s)

)
y(s) ds.

This completes the proof. ��
Remark 1 Notice that the Green’s function can be expressed as

G(t, s) =
⎧⎨
⎩β + Hη(s) − (t − s)α−1

�(α)
, for a ≤ s ≤ t ≤ b,

β + Hη(s), for a ≤ t ≤ s ≤ b.

In the following proposition, we present some properties about Green’s function

Proposition 1 The Green’s function satisfies:

(i) max{G(t, s) : t, s ∈ [a, b]} = β + (η − a)α−1

�(α)
.

(ii) min{G(t, s) : t, s ∈ [a, b]} = β − (b − η)α−1

�(α)
.

Proof (i) Notice that for s ∈ [a, b] fixed, we have

∂G

∂t
(t, s) =

⎧⎨
⎩
0, for a ≤ t ≤ s,

− (α − 1)(t − s)α−2

�(α)
, for a ≤ t ≤ s ≤ b.
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From this, it follows that G(t, s) is a decreasing function in t , and this gives us

max{G(t, s) : t, s ∈ [a, b]} = G(a, s)

=
⎧⎨
⎩β + (η − s)α−1

�(α)
, for a ≤ s ≤ η ≤ b,

β, for a ≤ η ≤ s ≤ b.

On the other hand, if we put ϕ(s) = β + (η−s)α−1

�(α)
for s ∈ [a, η], since ϕ′(s) =

− (α−1)(η−s)α−2

�(α)
< 0, ϕ is a decreasing function and we infer that max{ϕ(s) : s ∈

[a, η]} = ϕ(a) = β + (η−a)α−1

�(α)
.

Therefore,

max{G(t, s) : t, s ∈ [a, b]} = max

{
β, β + (η − a)α−1

�(α)

}
= β + (η − a)α−1

�(α)

and this proves (i).
(ii) Since G(t, s) is a decreasing function in t , we have

min{G(t, s) : t, s ∈ [a, b]} = G(b, s)

=

⎧⎪⎪⎨
⎪⎪⎩

β + (η − s)α−1

�(α)
− (b − s)α−1

�(α)
, for a ≤ s ≤ η ≤ b,

β − (b − s)α−1

�(α)
, for a ≤ η ≤ s ≤ b.

Put ψ(s) = β − (b−s)α−1

�(α)
for s ∈ [η, b]. Since ψ ′(s) = (α−1)(b−s)α−2

�(α)
≥ 0, ψ is a

nondecreasing, and, consequently, min{ψ(s) : s ∈ [η, b]} = ψ(η) = β − (b−η)α−1

�(α)
.

On the other hand, put α(s) = β + (η−s)α−1

�(α)
− (b−s)α−1

�(α)
for s ∈ [a, η], since α′(s) =

− (α−1)(η−s)α−2

�(α)
+ (α−1)(b−s)α−2

�(α)
= (α−1)

�(α)

[
(b − s)α−2 − (η − s)α−2

] ≤ 0, (because 1 <

α ≤ 2), α is decreasing on [a, η] and, therefore, min{α(s) : s ∈ [a, η]} = α(η) =
β − (b−η)α−1

�(α)
.

These facts say us that

min{G(t, s) : t, s ∈ [a, b]} = β − (b − η)α−1

�(α)

and this completes the proof.
��

Remark 2 Notice that if β�(α) ≥ (b − η)α−1 then G(t, s) ≥ 0.
In the case β�(α) < (b − η)α−1 then, since

β − (b − η)α−1

�(α)
≤ G(t, s) ≤ β + (η − a)α−1

�(α)
,

we have that

|G(t, s)| ≤ max

{
β + (η − a)α−1

�(α)
,
(b − η)α−1

�(α)
− β

}
, for t, s ∈ [0, 1].

Our main result is the following Lyapunov-type inequality.



22 I. J. Cabrera et al.

Theorem 1 Suppose that the fractional boundary value problem{
−CDα

a u(t) = q(t)u(t), a < t < b,

u′(a) = 0, β CDα−1
a u(b) + u(η) = 0,

with 1 < α ≤ 2, β > 0, a ≤ η ≤ b and β ≥ (b−η)α−1

�(α)
, where q : [a, b] → R is a continuous

function, has a nontrivial continuous solution then∫ b

a
|q(s)| ds ≥ �(α)

β�(α) + (η − a)α−1 .

Proof Consider the Banach space C[a, b] = {x : [a, b] → R : x continuous} with the
standard norm ‖x‖∞ = max{|x(t)| : a ≤ t ≤ b}, for x ∈ C[a, b].

By Lemma 3,

u(t) =
∫ b

a
G(t, s)q(s)u(s) ds, for a ≤ t ≤ b,

where G(t, s) is the Green’s function appearing in Lemma 3.

Using Remark 2, since β ≥ (b−η)α−1

�(α)
, G(t, s) ≥ 0 and, moreover max{G(t, s) : t, s ∈

[a, b]} = β + (η−a)α−1

�(α)
, we infer, for any t ∈ [a, b],

|u(t)| ≤
∫ b

a
G(t, s)|q(s)||u(s)| ds ≤ ‖u‖∞

∫ b

a

β�(α) + (η − a)α−1

�(α)
|q(s)| ds,

and, this gives us

‖u‖∞ ≤ ‖u‖∞
β�(α) + (η − a)α−1

�(α)

∫ b

a
|q(s)| ds.

Since the solution u is nontrivial, we get

1 ≤ β�(α) + (η − a)α−1

�(α)

∫ b

a
|q(s)| ds

and this gives us the desired result. ��

Theorem 1 gives us the following corollary.

Corollary 1 Suppose that the boundary value problem{
−u′′(t) = q(t)u(t), a < t < b,

u′(a) = 0, βu′(b) + u(η) = 0,

where β > 0, a ≤ η ≤ b and β ≥ (b − η) and q : [a, b] → R is a continuous function, has
a nontrivial continuous solution then∫ b

a
|q(s)| ds ≥ 1

β + (η − a)
.

Proof Apply Theorem 1 for α = 2. ��
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4 Application

In this section, we present some applications of the results obtained in Sect. 3 to eigenvalue
problem.

λ ∈ R is said to be an eigenvalue of the fractional boundary value problem{
−CDα

a u(t) = λu(t), a < t < b,

u′(a) = 0, β CDα−1
a u(b) + u(η) = 0,

(3)

where 1 < α ≤ 2, β > 0 and a ≤ η ≤ b if Problem (3) has at least a nontrivial continuous
solution xλ. In this case, we say that xλ is an eigenvector associated to the eigenvalue λ.

Corollary 2 Under assumptionβ ≥ (b−η)α−1

�(α)
and suppose thatλ is an eigenvalue of Problem

(3) then

|λ| ≥ �(α)

(β�(α) + (η − a)α−1)(b − a)
.

Proof As λ is an eigenvalue of Problem (3), this means that Problem (3) has a nontrivial
continuous solution xλ and, by using Theorem 1, we have

∫ b

a
|λ| ds ≥ �(α)

β�(α) + (η − a)α−1 .

Therefore,

|λ| ≥ �(α)

(β�(α) + (η − a)α−1)(b − a)
,

which yields the desired result. ��

Corollary 3 Suppose that λ is an eigenvalue of the ordinary boundary value problem{
−u′′(t) = λu(t), a < t < b,

u′(a) = 0, βu′(b) + u(η) = 0,
(4)

where β > 0, a ≤ η ≤ b and β ≥ (b − a), then

|λ| ≥ 1

(β + (η − a))(b − a)
.

Proof Since λ is an eigenvalue of Problem (4), this says that Problem (4) admits a nontrivial
continuous solution xλ. Now, by using Corollary 1, we get

|λ|(b − a) ≥ 1

β + (η − a)
.

This gives us the desired result. ��
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