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Abstract In this paper, we present some Lyapunov-type inequalities for a nonlinear frac-
tional heat equation with nonlocal boundary conditions depending on a positive parameter.
As an application, we obtain a lower bound for the eigenvalues of corresponding equations.
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1 Introduction

Consider the boundary value problem with Dirichlet conditions

ey

x"®)+qx() =0, a<t<b,
x(a) = x(b) =0,

where ¢q : [a, b] — R is a continuous function. Lyapunov in [1] proved that if Problem (1)
has a nontrivial solution then
b 4
/ lg(s)|ds > h—a
p a
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In [2], Hartman and Wintner proved that if Problem (1) has a nontrivial solution then

b
/ b—s)s—a)gT(s)ds >b—a,

where ¢ (s) = max{q(s), 0}.
Inequalities of this type have appeared in the literature for other classes of boundary value
problems and we refer the reader to [3—7] and the references therein for more details.
Recently, some Lyapunov-type inequalities have been obtained by some authors for dif-
ferent fractional boundary value problems (see [8—12], for example).
In this paper, we are concerned with the problem of finding some Lyapunov-type inequal-
ities for the following fractional boundary value problem
—CDg‘u(t) =y(), a<t<b, @)
u'(@) =0, BDE ub) +u(n) =0,

where CDZ‘ denotes the Caputo fractional derivative of order o, | < o < 2, 8 > 0 and
a<n=<bh.

As an application of our results, we obtain a lower bound for the eigenvalues of the
cor-respondig problem.

The above mentioned fractional boundary value problem can be considered as the frac-
tional version of the nonlocal boundary value problem

—u"(t)y =y(), 0<r1<l,
u'(0) =0, Bu'(l)+u(n) =0,

with 0 < n < 1 which has been studied in the special case with = 0 in [13] and this
problem models a thermostat insulated at + = O with a controller dissipating heat at r = 1
depending on the temperature detected by a sensor at t = 1.

2 Background

In this section, we present the basic results about fractional calculus theory which be used
later. For more details, we refer the reader to [14,15].

Definition 1 Let f : [a, b)] —> R be a given function. For & > 0, the Riemann-Liouville
fractional integral of order « of f is defined by

1

t
_ oaa—1
rm)l(t 94 F(s) ds.

(g Ho) =

where I'(«) denotes the classical gamma function.

Definition 2 Let f : [a, /] —> R be a given function. For & > 0, the Caputo derivative of
fractional order o > 0 of f is given by

Cryo _ 1 /t _ n—a—1 r(n)
(Daf)(t)—ir(n_a) a(l‘ s) () ds,

where n = [«] + 1 and [«] denotes the integer part of «.
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Lemma 1 Suppose that f € C(a, b) N L' (a, b) with a fractional derivative of order a > 0
belonging to C(a, b) N L'(a, b). Then

IEEDEHO = fFO +eo+alt—a)+ert—a) + - +epr(t —a)" !,
fort € la,b], wherec; e R (i =0,1,...,n—1)andn = [a] + 1.
Lemma 2 Suposse f € L'(a,b) anda > 0, B > 0. Then

1. DI f (1) = £ (1)
2. 12U ) = A4S )

3 Main results

Our starting point in this section is the following lemma which gives us an expression for the
Green'’s function of the boundary value problem (2). The case for a = 0 and b = 1 appears
in [16, Lemma 2.4].

Lemma 3 Suppose y € Cla, b]. A function u € Cla, b] is a solution of Problem (2) if and

only if it satisfies the integral equation

b
u(t) = / G(t,s)y(s)ds,
a
where G(t, s) is the Green’s function given by
G(t,5) = B+ Hy(s) — H(s),
where forr € [a, bl, H, : [a, b] — R is the function defined as
(rfx)“*]

H,(s) = i T@

0, for a<r<s<bh.

for a <s <r <b,

Proof Using Lemma 2, we have

u(t) = —I%y(t) +co +c1(t —a) = — T )f (t — )% y(s)ds + co+c1(t — a),

for some constants cg, c; € R.
This gives us

t
u (f)——% (@ — D)t — )% 2y(s)ds + c1.

From the boundary condition u’(a) = 0, we get c; = 0.
This gives us

u(t)——m/ (t—s5)*" ly(v)ds—l—co

By using the fact that “D%~ !¢y = 0, and Lemma 2, we have

t
Dy u(t) = =D y(1) = =DETE T Ly (1) = — Ly (1) = —/ y(s)ds.
a
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This gives us

D ub) = —p /b ¥(s)ds.
a
Taking into account the boundary condition
B DG ub) +un) =0,
we have
b 1
= —ﬂ/a y(s)ds — —— @) / (n—95)*""y(s)ds +co

and, from this, it follows

cozﬁ/ y(s)ds+m/nm—s)“*‘y(s)ds.

Consequently,

u(t) = — e )/ (t —s5)*" 1y(s)dv+ﬂf y(s)ds+m/"(n—s)“‘1y<s)ds.

Therefore,

b b b
u(t) = B [ ¥(s)ds + / Hiy(s)y(s) ds — f Hy(s)y(s) ds

or, equivalently,

b
u(t) = / (B + Hy(s) — Hi(s)) y(s) ds.
This completes the proof. O

Remark 1 Notice that the Green’s function can be expressed as

n B (t _ S)otfl
B n (s) T'(a)

B+ Hy(s), fora<t<s<bh.

, fora<s<t<b,

G(t,s)=

In the following proposition, we present some properties about Green’s function

Proposition 1 The Green’s function satisfies:

' : _pp izt
(i) max{G(t,s) :t,s € [a,b]} =B + o
(i) min{G(1,s) : 1,5 € [a,b]) = — ®—m!

S Ia)

Proof (i) Notice that for s € [a, b] fixed, we have

e 0, for a <t <y,
W(“) = (¢ — D)(r — 5)%2

, fora <t <s<bh.
I'a)
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From this, it follows that G (¢, s) is a decreasing function in 7, and this gives us

max{G(t,s) :t,s € [a,b]} = G(a,s)
_ aa—1
_ ﬁ+7(nr(2) , fora=<s=<nc<h,
B, fora <n<s <bh.

—1

On the other hand, if we put ¢(s) = p + U=

NC) for s € [a,n], since ¢'(s) =

_@=D@=9" ¢ a decreasing functi d infer that () :
@) , @ g function and we infer that max{p(s) : s €
_ _ (—a)*~!
la,nl} =¢l@) =B+ n]“‘(la) .
Therefore,
_ a—1 _ a—1
max{G(t,s) : t,s € [a, b]} =max:,3,,3+ %} =B+ %
and this proves (i).
(i) Since G(t, s) is a decreasing function in ¢, we have
min{G(t,s) : t,s € [a, b]} = G(b, s)
_ aoe—l1 b — a—1
;S—i—(n 5) —( 5) , for a <s <n<b,
— (@) [(a)
b —s)*1
ﬂ—w, fora<n<s<b

_ -1 . _ a2 .
Put ¥ (s) = p — LRE— for s € [0, b]. Since y/(s) = E=HED" > 0,711p is a
nondecreasing, and, consequently, min{y/(s) : s € [n,b]} =¥ (n) = B — (b}'(];) .

- (="t (=) ince o (s) =
On the other hand, put «(s) = B + o~ T for s € [a, n], since o'(s) =
_ a2 _ _ a2 _ _ _
_L 1)151(7a)s). 4+ @ .l)r(?a)é) = (l‘i‘(al)) [(b—s)* 2.— (n—$)*7%] <0, (because 1 <
o < 2), o is decreasing on [a, n] and, therefore, min{a(s) : s € [a,n]} = a(n) =
B — b—n*~!
T) *
These facts say us that
b — a—1
min{G(.s) t.s € abl) = p— LMD"
['(a)

and this completes the proof.

Remark 2 Notice that if BT () > (b — n)*~! then G(z, 5) > 0.
In the case B (a) < (b — n)?~! then, since
b—n*! (m—a)!

<G, ) = p+—F——\

p () ['(a)

we have that

m—a)*=' b—n!
FNe) °~ T

|G(t,s)|§max{,3+ —/3}, for t,s € [0, 1].

Our main result is the following Lyapunov-type inequality.
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Theorem 1 Suppose that the fractional boundary value problem

—CD%u(t) = q(t)u(t), a <t <b,
u'(@) =0, DI ub) + u(n) =0,

a—1
withl <a<2,8>0a<n<bandp > (b}?;) , where q : [a, b] — R is a continuous

function, has a nontrivial continuous solution then

b INC))
/a 9 = e —ay T

Proof Consider the Banach space Cla, b] = {x : [a,b] — R : x continuous} with the
standard norm || x| o = max{|x(¢)| : a <t < b}, for x € Cla, b].
By Lemma 3,

b
u(t) :/ G(t,s)q(s)u(s)ds, fora <t <bh,

where G (¢, s) is the Green’s function appearing in Lemma 3.

()
I

@ G(t,s) > 0 and, moreover max{G(t,s) : t,s €

Using Remark 2, since >

[a,b]} =B + (77;‘8;_1 , we infer, for any ¢ € [a, D],

b b r _ a—1
|u(r)|s/ Gt g ds < lulloo | ° (“)?Ez) D7 4@l ds,

and, this gives us

_ a—1 b
||u||oos||u||ooﬂr(“)+rgz) “) /G|q<s)|ds.

Since the solution u is nontrivial, we get

r _ a—1 b
1<F (“)152) N /|q(s)|ds

and this gives us the desired result. O

Theorem 1 gives us the following corollary.

Corollary 1 Suppose that the boundary value problem

—u"(t) = q(u(t), a <t <b,
u'(a) =0, pu'(b) +u(n) =0,

where > 0,a <n <band B > (b —n)and q : a, b] — R is a continuous function, has
a nontrivial continuous solution then

b 1
fa aO)lds = .

Proof Apply Theorem 1 for o = 2. O
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4 Application

In this section, we present some applications of the results obtained in Sect. 3 to eigenvalue
problem.
A € Ris said to be an eigenvalue of the fractional boundary value problem

—CD%(t) = au(t), a <t <b,

W'(a) =0, BEDEu(b) + un) =0, ©

where | < o <2,8 > 0anda < n < b if Problem (3) has at least a nontrivial continuous
solution x; . In this case, we say that x; is an eigenvector associated to the eigenvalue A.

(b—m*~!
I'(w)

Corollary 2 Under assumption 8 >
(3) then

and suppose that ) is an eigenvalue of Problem

e G
~Br@+ 0 —a* Hb—a)

Proof As X is an eigenvalue of Problem (3), this means that Problem (3) has a nontrivial
continuous solution x; and, by using Theorem 1, we have

b ()
/ [Alds > )
p BT (a) + (7 — a)*~!

Therefore,

| > ['(2)
T (BT@+ @ —a)*Hb-a)

which yields the desired result. O

Corollary 3 Suppose that A is an eigenvalue of the ordinary boundary value problem

{—u”(t) =Au(t), a<t<b, @

u'(a) =0, pu'(b) +u(n) =0,
where > 0,a <n <band B > (b — a), then

Al = ! :
B+ 0—a)b—a)

Proof Since A is an eigenvalue of Problem (4), this says that Problem (4) admits a nontrivial
continuous solution x;. Now, by using Corollary 1, we get

1

B )

This gives us the desired result. O
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