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Abstract Let κ be an infinite cardinal. Let ν be a (countably additive Banach space-valued)
vector measure defined on a σ -algebra �. We prove that if ν is homogeneous and L1(ν) has
density character κ , then there is a vector measure ν̃ : � → �∞

< (κ) such that L1(ν) = L1(ν̃)

with equal norms. Here �∞
< (κ) denotes the subspace of �∞(κ) consisting of all (xα)α<κ ∈

�∞(κ) such that |{α < κ : |xα| > ε}| < κ for every ε > 0. In this way, we extend to
the non-separable setting a result of Curbera corresponding to the case κ = ω. Some other
results on non-separable L1 spaces of vector measures are given.

Keywords Vector measure · Non-separable Banach space · Space of integrable functions ·
Maharam type · Space of bounded functions with countable support

Mathematics Subject Classification 46B26 · 46E30 · 46G10

1 Introduction

Every order continuous Banach lattice with a weak unit is lattice isometric to the L1 space of
a vector measure, [9, Proposition 2.4] (cf. [6, Theorem 8]). Such Banach lattices are weakly
compactly generated [4, p. 193] (cf. [6, Theorem 2]) and admit an equivalent uniformly
Gâteaux smooth norm, [19] (cf. [26, Theorem 2.2]). For an arbitrary Banach space X , the
existence of such a norm is equivalent to being isomorphic to a subspace of aHilbert generated
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Banach space, and also to (BX∗ , w∗) being uniform Eberlein compact, [13, Theorem 2] (cf.
[16, Theorem 6.30]).

Typical examples of Banach lattices arising as L1 spaces of vectormeasures are all Banach
spaces with unconditional basis, the classical spaces L p(μ) (for 1 ≤ p < ∞ and a finite
measureμ) and Orlicz spaces over a finite measure satisfying the
2-condition. On the other
hand, C[0, 1] is a separable Banach lattice which is not isomorphic (as Banach space) to
the L1 space of any vector measure. In the non-separable setting, for an uncountable set �

and 1 < p < ∞, the space �p(�) is reflexive and embeds isomorphically into a Hilbert
generated space, [12, Theorem 1]. As a Banach lattice, �p(�) is order continuous, but fails to
have a weak unit and so it is not lattice isomorphic to the L1 space of any vector measure. In
fact, �p(�) is isomorphic to the L1 space of a vector measure if and only if p = 2, see [26,
Theorem 2.6]. Similarly, the Banach lattice c0(�) is order continuous and Hilbert generated,
but it is not isomorphic to the L1 space of any vector measure (see the Appendix).

Completely different vector measures can produce the same L1 space, see [15] for a
detailed discussion. The following result was proved in [7, Theorem 1] (cf. [21, Theorem 5]):

Theorem 1.1 (G.P. Curbera) Let ν be a vector measure defined on a σ -algebra � and taking
values in a Banach space. If ν is non-atomic and L1(ν) is separable, then there is a vector
measure ν̃ : � → c0 such that L1(ν) = L1(ν̃) with equal norms.

The non-atomicity assumption in the result above cannot be dropped in general, [7,
pp. 294–295]. At the conference “Integration, Vector Measures and Related Topics VI”
(Bedłewo, June 2014), Z. Lipecki asked whether a non-separable version of Theorem 1.1 can
be obtained by using c0(�) as target space for large enough �. Here we address this question
and provide some partial answers by using certain superspaces of c0(�). Ourmain results are:

Theorem 1.2 Let κ be an infinite cardinal. Let ν be a vector measure defined on a σ -
algebra � and taking values in a Banach space. If ν is homogeneous and L1(ν) has density
character κ , then there is a vector measure ν̃ : � → �∞

< (κ) such that L1(ν) = L1(ν̃) with
equal norms.

Theorem 1.3 Let ν be a vector measure defined on a σ -algebra � and taking values in a
Banach space. If ν is non-atomic and L1(ν) has density character ω1, then there is a vector
measure ν̃ : � → �∞

c (ω1) such that L1(ν) = L1(ν̃) with equivalent norms.

Given an infinite cardinal κ , we denote by �∞
< (κ) the subspace of �∞(κ) consisting of all

(xα)α<κ ∈ �∞(κ) such that |{α < κ : |xα| > ε}| < κ for every ε > 0. In general, c0(κ) is a
subspace of �∞

< (κ). The space �∞
< (κ) was introduced by Pełczyński and Sudakov [24] and

has been studied in [3] in connection with injectivity properties of Banach spaces. For κ = ω

we have �∞
< (κ) = c0(ω) and, therefore, Theorem 1.1 is a particular case of Theorem 1.2. If

κ has uncountable cofinality, then �∞
< (κ) coincides with the set of all (xα)α<κ ∈ �∞(κ) such

that |{α < κ : xα �= 0}| < κ . In particular, we have �∞
< (ω1) = �∞

c (ω1), the Banach space of
all bounded real-valued functions onω1 having countable support. For information on spaces
of bounded functions on an uncountable set having countable support, see [3,17,18,23], [29,
Section 16-1] and the references therein.

This paper is organized as follows. In Sect. 2 we introduce the basic terminology and
present some preliminary results and examples of non-separable L1 spaces of vector mea-
sures. In Sect. 3 we prove our main Theorems 1.2 and 1.3. To this end we use some ideas
from the alternative proof of Theorem 1.1 given in [21], together with other ingredients like
Maharam’s theorem, which allows us to find a substitute for the Rademacher-type sequences
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used in both proofs of the separable case. We close the paper with an Appendix on linear
injections into L1 spaces of vector measures.

2 Preliminaries and examples

2.1 Terminology

Our standard references are [1,2,8]. All our Banach spaces are real. An operator is a linear
continuous map between Banach spaces. By a subspace of a Banach space we mean a closed
linear subspace. The closed unit ball of a Banach space Z is denoted by BZ and the dual of Z
is denoted by Z∗. By a vector measure we mean a countably additive Banach space-valued
measure defined on a σ -algebra. The density character of a topological space T , denoted
by dens(T ), is the minimal cardinality of a dense subset of T .

Throughout this paper (�,�) is a measurable space and X is a Banach space. The set
of all X -valued vector measures defined on � is denoted by ca(�, X). The symbol ca+(�)

stands for the subset of ca(�) := ca(�,R)made up of all non-negative finite measures. The
Maharam type of a non-atomic μ ∈ ca+(�) is defined as dens(L1(μ)) and coincides with
the density character of its measure algebra equipped with the Fréchet–Nikodým metric.

Let ν ∈ ca(�, X). Given A ∈ �, we denote by νA the restriction of ν to the σ -algebra
on A defined by�A := {A∩ B : B ∈ �}. The composition of ν with any x∗ ∈ X∗ is denoted
by x∗ν and belongs to ca(�). The semivariation of ν is the function ‖ν‖ : � → R defined
by ‖ν‖(A) = supx∗∈BX∗ |x∗ν|(A) for all A ∈ � (as usual, |x∗ν| stands for the variation
of x∗ν). Given ξ ∈ ca(�, Y ) (where Y is a Banach space), we write ν 
 ξ to denote
that ν is absolutely continuous with respect to ξ , meaning that lim‖ξ‖(A)→0 ‖ν(A)‖ = 0 or,
equivalently, that ν(A) = 0 whenever ‖ξ‖(A) = 0. We say that λ ∈ ca+(�) is a control
measure of ν if λ 
 ν and ν 
 λ. A Rybakov control measure of ν is a control measure
of the form λ = |x∗ν| for some x∗ ∈ BX∗ ; such control measures always exist, see e.g.
[8, p. 268, Theorem 2]. We say that ν is non-atomic if some/every control measure of ν is
non-atomic in the usual sense.

A �-measurable function f : � → R is said to be ν -integrable if the following two
conditions are satisfied: (i) f is |x∗ν|-integrable for all x∗ ∈ X∗, and (ii) for each A ∈ �,
there is a vector

∫
A f dν ∈ X such that x∗(

∫
A f dν) = ∫

A f d(x∗ν) for every x∗ ∈ X∗.
By identifying functions which coincide ‖ν‖-a.e. we obtain the Banach lattice L1(ν) of all
(equivalence classes of) ν-integrable functions, equipped with the ‖ν‖-a.e. order and the
norm

‖ f ‖L1(ν) := sup
x∗∈BX∗

∫

�

| f | d|x∗ν|, f ∈ L1(ν).

Note that ‖ f ‖L1(ν) = ‖ν f ‖(�), where ν f ∈ ca(�, X) is defined by ν f (A) := ∫
A f dν for

all A ∈ �. The formula

‖| f ‖|ν := sup
A∈�

∥
∥
∥

∫

A
f dν

∥
∥
∥

defines a norm on L1(ν) which is equivalent to ‖ · ‖L1(ν), since

‖| f ‖|ν ≤ ‖ f ‖L1(ν) ≤ 2‖| f ‖|ν for all f ∈ L1(ν). (2.1)
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The basic properties of the space L1(ν) can be found, for instance, in [22, Chapter 3]. As a
Banach lattice, L1(ν) is order continuous and has a weak unit. We write sim� to denote the
set of all simple functions from� toR, that is, linear combinations of characteristic functions
1A where A ∈ �. Simple functions are ν-integrable and sim� is dense in L1(ν) (after the
‖ν‖-a.e. identification). It is easy to check that dens(L1(ν)) coincides with theMaharam type
of any control measure of ν whenever ν is non-atomic. We say that ν is homogeneous if it is
non-atomic and dens(L1(ν)) = dens(L1(νA)) for every A ∈ � with ‖ν‖(A) > 0.

2.2 Examples

Obviously, the classical space L1(μ) of a finite measure μ can be seen as the L1 space of
a vector measure. The following standard construction (see e.g. [22, Corollary 3.66]) shows
that the same holds for L p(μ) whenever 1 < p < ∞.

Example 2.1 Let μ ∈ ca+(�) and 1 ≤ p < ∞. Let ν ∈ ca(�, L p(μ)) be defined by
ν(A) := 1A for all A ∈ �. Then L1(ν) = L p(μ) with equal norms.

In Example 2.6 below we will show that, for any 1 < p < ∞ and any infinite cardinal κ ,
the L p space of the usual probability on the Cantor cube {−1, 1}κ can be realized as the L1

space of a suitable c0(κ)-valued vector measure.
To this end we need some lemmas which will also be applied in Sect. 3. The first one is

based on some ideas from [14, Theorem 2.1].

Lemma 2.2 Let ν ∈ ca(�, X) and let 
 be a w∗-dense subset of BX∗ . Then

‖ f ‖L1(ν) = sup
x∗∈


∫

�

| f | d|x∗ν|

for every f ∈ L1(ν).

Proof The statement is obvious for f = 0. Fix f ∈ L1(ν)\{0} and ε > 0. Let g ∈ sim�

such that ‖ f − g‖L1(ν) ≤ ε and g �= 0. Write g = ∑p
i=1 ai1Ai , where ai ∈ R\{0} and the

Ai ’s are pairwise disjoint elements of �. Choose x∗
1 ∈ BX∗ such that

‖g‖L1(ν) ≤
∫

�

|g| d|x∗
1ν| + ε. (2.2)

Since 
 is w∗-dense in BX∗ , there is x∗
0 ∈ 
 such that

|x∗
1ν|(Ai ) ≤ |x∗

0ν|(Ai ) + ε

|ai |p
for every i ∈ {1, . . . , p}.

Then
∫

�

|g| d|x∗
1ν| =

p∑

i=1

|ai ||x∗
1ν|(Ai ) ≤

p∑

i=1

|ai ||x∗
0ν|(Ai ) + ε =

∫

�

|g| d|x∗
0ν| + ε,

which combined with (2.2) yields

‖g‖L1(ν) ≤
∫

�

|g| d|x∗
0ν| + 2ε.

Bearing in mind that ‖ f − g‖L1(ν) ≤ ε, we get

‖ f ‖L1(ν) ≤ ‖g‖L1(ν) + ε ≤
∫

�

|g| d|x∗
0ν| + 3ε ≤

∫

�

| f | d|x∗
0ν| + 4ε.
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As ε > 0 is arbitrary, we have ‖ f ‖L1(ν) = supx∗∈


∫
�

| f | d|x∗ν|. ��
Lemma 2.3 Let � be a non-empty set and Z a subspace of �∞(�). For each γ ∈ �, denote
by e∗

γ ∈ B�∞(�)∗ the γ -th coordinate functional. Let ν ∈ ca(�, Z). Then

‖ f ‖L1(ν) = sup
γ∈�

∫

�

| f | d|e∗
γ ν|

for every f ∈ L1(ν).

Proof We denote by e∗
γ |Z the restriction of e∗

γ to Z . The set {e∗
γ |Z : γ ∈ �} ⊆ BZ∗

is 1-norming and so, by the Hahn-Banach separation theorem, its absolutely convex hull

 := aco({e∗

γ |Z : γ ∈ �}) is w∗-dense in BZ∗ . Lemma 2.2 now applies to get

‖ f ‖L1(ν) = sup
e∗∈


∫

�

| f | d|e∗ν| = sup
γ∈�

∫

�

| f | d|e∗
γ ν|

for every f ∈ L1(ν). ��
The following lemma can be found in [21, Lemma 6].

Lemma 2.4 Let ν ∈ ca(�, X) and ν̃ ∈ ca(�, Y ), where Y is a Banach space. If ‖ f ‖L1(ν) =
‖ f ‖L1(ν̃) for every f ∈ sim�, then L1(ν) = L1(ν̃) with equal norms.

To deal with the next examples we need to introduce some terminology. Let κ be an infinite
cardinal. For any set I ⊆ κ we denote by ρI : {−1, 1}κ → {−1, 1}I the canonical projection.
We say that a function f : {−1, 1}κ → R depends on coordinates from I if there is a function
f ′ : {−1, 1}I → R such that f = f ′ ◦ρI .We say that f depends on finitely many coordinates
if there is a finite set I ⊆ κ such that f depends on coordinates from I . Dependence on finitely
many coordinates is equivalent to being a linear combination of characteristic functions of
clopen subsets of {−1, 1}κ .We denote by S(κ) the set of all real-valued functions on {−1, 1}κ
depending on finitely many coordinates. We write πα : {−1, 1}κ → {−1, 1} to denote the
α-th coordinate projection for each α < κ .

Example 2.5 Let κ be an infinite cardinal, λ the usual probability on {−1, 1}κ and � its
domain. Then

ν(A) :=
( ∫

A
πα dλ

)

α<κ
∈ c0(κ) for every A ∈ �.

Moreover, ν ∈ ca(�, c0(κ)) and L1(ν) = L1(λ) with equal norms.

Proof The fact that ν takes values in c0(κ) follows from the density of S(κ) in L1(λ), cf. the
proof of [25, Lemma 2.1] for more details. Clearly, ν is finitely additive. From the inequality
‖ν(A)‖c0(κ) ≤ λ(A) for all A ∈ � it follows that ν is countably additive. Lemma 2.3 ensures
that ‖ f ‖L1(ν) = ‖ f ‖L1(λ) for every f ∈ sim�, and then Lemma 2.4 applies to conclude that
L1(ν) = L1(λ) with equal norms. ��

The proof of the following example uses an argument which was kindly provided by
G. Plebanek.

Example 2.6 Let κ be an infinite cardinal, λ the usual probability on {−1, 1}κ and � its
domain. Let 1 < p < ∞. Then there is ν ∈ ca(�, c0(κ)) such that L1(ν) = L p(λ) with
equal norms.
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Proof Write K := {−1, 1}κ . Let 1 < q < ∞ be such that 1
p + 1

q = 1 and write 〈 f, g〉 :=
∫

K f g dλ for every f ∈ L p(λ) and g ∈ Lq(λ). Since S(κ) is norm dense in Lq(λ) and
dens(Lq(λ)) = κ , there is a set H ⊆ S(κ) ∩ BLq (λ) of cardinality κ which is norm dense
in BLq (λ). Enumerate H = {hα : α < κ}. Each hα can be written as hα = h′

α ◦ ρIα , where
Iα ⊆ κ is finite and h′

α : {−1, 1}Iα → R is a function. Since κ is infinite and the Iα’s
are finite, we can construct (inductively) an injective map ϕ : κ → κ in such a way that
ϕ(α) /∈ Iα for all α < κ . Define gα := hαπϕ(α) ∈ BLq (λ) for every α < κ .

Claim. If (αn) is a sequence in κ with αn �= αm whenever n �= m, then (gαn ) is weakly null
in Lq(λ). Indeed, since S(κ) is norm dense in L p(λ) = Lq(λ)∗ and the sequence (gαn ) is
bounded, it suffices to check that 〈 f, gαn 〉 → 0 as n → ∞ for every f ∈ S(κ). To this end,
let us write f = f ′ ◦ ρI for some finite set I ⊆ κ and some function f ′ : {−1, 1}I → R.
Note that each f hαn depends on coordinates from I ∪ Iαn . Choose n0 ∈ N large enough such
that for every n ≥ n0 we have ϕ(αn) /∈ I . Then for every n ≥ n0 we have ϕ(αn) /∈ I ∪ Iαn

and so f hαn and πϕ(αn) are stochastically independent, that is,
∫

K f hαn πϕ(αn) dλ = 0. Then

〈 f, gαn 〉 =
∫

K
f gαn dλ = 0 whenever n ≥ n0.

This proves the Claim.
From the previous claim it follows at once that for every A ∈ � we have

ν(A) :=
( ∫

A
gα dλ

)

α<κ
∈ c0(κ).

Clearly, ν : � → c0(κ) is finitely additive and satisfies

‖ν(A)‖c0(κ) = sup
α<κ

∣
∣
∣

∫

A
gα dλ

∣
∣
∣ ≤ sup

α<κ
‖1A‖L p(λ)‖gα‖Lq (λ) ≤ λ(A)

1
p for all A ∈ �,

hence ν ∈ ca(�, c0(κ)). By Lemma 2.3, the norm of any f ∈ sim� is

‖ f ‖L1(ν) = sup
α<κ

∫

K
| f gα| dλ

= sup
α<κ

∫

K
| f hα| dλ = sup

α<κ

〈| f |, |hα|〉 (∗)= sup
h∈BLq (λ)

〈| f |, |h|〉 = ‖ f ‖L p(λ),

where equality (∗) follows from the norm density of {hα : α < κ} in BLq (λ). According to
Example 2.1 and Lemma 2.4, we have L1(ν) = L p(λ) with equal norms. ��

3 Proofs of Theorems 1.2 and 1.3

In order to prove Theorems 1.2 and 1.3 we need some lemmas.

Lemma 3.1 Let κ be an infinite cardinal. If μ ∈ ca+(�) is homogeneous of Maharam
type κ , then there is a set {μα : α < κ} ⊆ ca(�) such that:

(i) |μα| = μ for all α < κ;
(ii) (μα(E))α<κ ∈ c0(κ) for all E ∈ �.

Proof We can suppose without loss of generality that μ(�) = 1. By Maharam’s theorem
(see e.g. [20, p. 122, Theorem 8]), the measure algebra of μ is isomorphic to the measure
algebra of the usual probability on {−1, 1}κ . We can now find a set {gα : α < κ} ⊆ L∞(μ)
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with |gα| = 1 for all α < κ such that, for every E ∈ �, we have (
∫

E gα dμ)α<κ ∈ c0(κ)

(see Example 2.5). It is clear that the measures μα ∈ ca(�) defined by μα(E) := ∫
E gα dμ

satisfy the required properties. ��
Lemma 3.2 Let κ be an infinite cardinal. Let λ ∈ ca+(�) be homogeneous of Maharam
type κ . Let {λα}α<κ be a family in ca+(�) such that

λ 
 λα for all α < κ and lim
λ(A)→0

sup
α<κ

λα(A) = 0.

Then there is a family {μα}α<κ in ca(�) such that:

(i) |μα| = λα for all α < κ;
(ii) (μα(E))α<κ ∈ �∞

< (κ) for all E ∈ �.

Proof Each λα is homogeneous of Maharam type κ , so for each α < κ we can apply
Lemma 3.1 to obtain a set {μα,β : β < κ} ⊆ ca(�) such that:

• |μα,β | = λα for all β < κ;
• (μα,β(E))β<κ ∈ c0(κ) for all E ∈ �.

Fix a family {Aγ }γ<κ in� such that infγ<κ λ(E�Aγ ) = 0 for all E ∈ �.Wenowdistinguish
two cases:

Case 1: κ = ω. By allowing infinitely many repetitions, we can assume further that for
every m < ω and every E ∈ � we have infn≥m λ(E�An) = 0. For each n < ω, the set

B(n) :=
⋃

m≤n

{
k < ω : |μn,k(Am)| >

1

n + 1

}

is finite and we choose β(n) ∈ ω\B(n). Define μn := μn,β(n) ∈ ca(�) for every n < ω, so
that {μn}n<ω satisfies (i). We next check that (ii) holds. To this end, fix E ∈ � and ε > 0.
Take δ > 0 such that supn<ω λn(A) ≤ ε whenever λ(A) ≤ δ. Choose m < ω such that
1

m+1 ≤ ε and λ(E�Am) ≤ δ. For each n < ω we have

|μn(E) − μn(Am)| ≤ |μn |(E�Am) = λn(E�Am) ≤ ε. (3.1)

Bearing in mind that |μn(Am)| = |μn,β(n)(Am)| ≤ 1
n+1 ≤ ε whenever n ≥ m, from (3.1)

we conclude that |μn(E)| ≤ 2ε for every n ≥ m. As ε > 0 is arbitrary, this proves that
(μn(E))n<ω ∈ c0(ω). The proof of Case 1 is finished.

Case 2: κ is uncountable. For each α < κ , the set

B(α) :=
⋃

γ≤α

{
β < κ : μα,β(Aγ ) �= 0

}

has cardinality |B(α)| < κ , because κ is uncountable and {β < κ : μα,β(Aγ ) �= 0} is
countable for every γ < κ . Then for every α < κ we can choose β(α) ∈ κ\B(α) and we
define μα := μα,β(α) ∈ ca(�). An argument similar to that of Case 1 shows that the family
{μα}α<κ satisfies the required properties. ��
Lemma 3.3 Let κ be an infinite cardinal. Let ν ∈ ca(�, X) with dens(L1(ν)) = κ . Then
there is C ⊆ BX∗ with |C | ≤ κ such that:

(i) ν 
 |x∗ν| for all x∗ ∈ C;
(ii) ‖ f ‖L1(ν) = supx∗∈C

∫
�

| f | d|x∗ν| for all f ∈ L1(ν).
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Proof Fix a norm dense set F ⊆ L1(ν) with |F | = κ . By the Rybakov–Walsh theorem (see
e.g. [8, pp. 268–269]), the set
 := {x∗ ∈ BX∗ : ν 
 |x∗ν|} is norm dense (hencew∗-dense)
in BX∗ . Then for every f ∈ L1(ν) there is a countable set 
 f ⊆ 
 such that

‖ f ‖L1(ν) = sup
x∗∈
 f

∫

�

| f | d|x∗ν|

(apply Lemma 2.2). It is easy to check that C := ⋃
f ∈F 
 f fulfills the required properties.

��
We arrive at the proofs of our main results:

Proof of Theorem 1.2 The Banach space in which ν takes values is denoted by X . By
Lemma 3.3 there is a collection {x∗

α}α<κ in BX∗ such that ν 
 |x∗
αν| for all α < κ and

‖ f ‖L1(ν) = sup
α<κ

∫

�

| f | d|x∗
αν| for all f ∈ L1(ν). (3.2)

Lemma 3.2 can now be applied to λα := |x∗
αν| and λ := |x∗

0ν| to find a family {μα}α<κ

in ca(�) such that |μα| = |x∗
αν| for all α < κ and

ν̃(E) := (μα(E))α<κ ∈ �∞
< (κ) for all E ∈ �.

The function ν̃ : � → �∞
< (κ) is finitely additive. Moreover, since

‖ν̃(E)‖�∞
< (κ) = sup

α<κ
|μα(E)| ≤ sup

α<κ
|x∗

αν|(E) ≤ ‖ν‖(E) for all E ∈ �,

we have limλ(E)→0 ‖ν̃(E)‖�∞
< (κ) = 0. It follows that ν̃ ∈ ca(�, �∞

< (κ)).
In order to prove that L1(ν) = L1(ν̃)with equal norms, it suffices to check that ‖ f ‖L1(ν) =

‖ f ‖L1(ν̃) for every f ∈ sim� (Lemma 2.4).Write e∗
α ∈ B�∞

< (κ)∗ to denote theα-th coordinate
projection for every α < κ . Lemma 2.3 applies to compute the norm of any f ∈ sim� as

‖ f ‖L1(ν̃) = sup
α<κ

∫

�

| f | d|e∗
αν̃| = sup

α<κ

∫

�

| f | d|x∗
αν| (3.2)= ‖ f ‖L1(ν).

The proof is complete. ��
Proof of Theorem 1.3 Let μ be a Rybakov control measure of ν. Then μ is non-atomic and
has Maharam type ω1. Therefore, there exist disjoint A, B ∈ � with � = A ∪ B such
that L1(μA) is separable and μB is homogeneous and has Maharam type ω1 (see e.g. [20,
p. 122, Theorem 7]). So, L1(νA) is separable, νB is homogeneous and dens(L1(νB)) = ω1.
By Theorems 1.1 and 1.2 applied to νA and νB , respectively, there exist ξ ∈ ca(�A, c0) and
ψ ∈ ca(�B , �∞

c (ω1)) such that

L1(νA) = L1(ξ) and L1(νB) = L1(ψ)

with equal norms. Write Z := c0 ⊕1 �∞
c (ω1) and define ϕ ∈ ca(�, Z) by

ϕ(E) := (ξ(E ∩ A), ψ(E ∩ B)) for all E ∈ �.

Fix f ∈ sim� and denote by f |A (resp. f |B ) its restriction to A (resp. B). Then
∫

E
f dϕ =

(∫

E∩A
f |A dξ,

∫

E∩B
f |B dψ

)

for all E ∈ �
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and so

sup
E∈�

∥
∥
∥

∫

E
f dϕ

∥
∥
∥

Z
= sup

E∈�

∥
∥
∥

∫

E∩A
f |A dξ

∥
∥
∥

c0
+ sup

E∈�

∥
∥
∥

∫

E∩B
f |B dψ

∥
∥
∥

�∞
c (ω1)

. (3.3)

On one hand, we have

‖ f ‖L1(ϕ)

(2.1)≤ 2 sup
E∈�

∥
∥
∥

∫

E
f dϕ

∥
∥
∥

Z

(3.3)= 2 sup
E∈�

∥
∥
∥

∫

E∩A
f |A dξ

∥
∥
∥

c0
+ 2 sup

E∈�

∥
∥
∥

∫

E∩B
f |B dψ

∥
∥
∥

�∞
c (ω1)

(2.1)≤ 2‖ f |A‖L1(ξ) + 2‖ f |B‖L1(ψ)

= 2‖ f |A‖L1(νA) + 2‖ f |B‖L1(νB )

≤ 4‖ f ‖L1(ν).

On the other hand, we also have

‖ f ‖L1(ν) = ‖ f 1A + f 1B‖L1(ν)

≤ ‖ f |A‖L1(νA) + ‖ f |B‖L1(νB )

= ‖ f |A‖L1(ξ) + ‖ f |B‖L1(ψ)

(2.1)≤ 2 sup
E∈�

∥
∥
∥

∫

E∩A
f |A dξ

∥
∥
∥

c0
+ 2 sup

E∈�

∥
∥
∥

∫

E∩B
f |B dψ

∥
∥
∥

�∞
c (ω1)

(3.3)= 2 sup
E∈�

∥
∥
∥

∫

E
f dϕ

∥
∥
∥

Z

(2.1)≤ 2‖ f ‖L1(ϕ).

It follows that

1

4
‖ f ‖L1(ϕ) ≤ ‖ f ‖L1(ν) ≤ 2‖ f ‖L1(ϕ) for every f ∈ sim�.

The proof of Lemma 2.4 given in [21, Lemma 6] can now be adapted straightforwardly to
prove that L1(ν) = L1(ϕ) with equivalent norms.

Since c0 embeds isomorphically into �∞
c (ω1) and �∞

c (ω1) is isomorphic to its square,
the space Z = c0 ⊕1 �∞

c (ω1) embeds isomorphically into �∞
c (ω1). Take any isomorphic

embedding j : Z → �∞
c (ω1) and define ν̃ := j ◦ ϕ ∈ ca(�, �∞

c (ω1)). It is easy to check
that L1(ν̃) = L1(ϕ) with equivalent norms. Then L1(ν) = L1(ν̃) with equivalent norms and
the proof is complete. ��
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Appendix: Linear injections into L1 of a vector measure

As we mentioned in the introduction, given an uncountable set �, the space �p(�) is not
isomorphic to the L1 space of a vector measure for any p �= 2, see [26, Theorem 2.6].
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However, we should note that any order continuous Banach lattice, like �p(�), is lattice
isometric to the L1 space of a “vector measure” defined on a δ -ring (a structure which is
weaker than σ -algebra), see [5, pp. 22–23].

On the other hand, for an uncountable set �, the space �p(�) embeds isomorphically into
the L1 space of a finite measure if and only if 1 < p ≤ 2, see [10, Theorem 2.1]. For the
range 2 < p < ∞ the situation is different:

Proposition 3.4 Let � be a non-empty set and let Z be either c0(�) or �p(�) for some
2 < p < ∞. If there is an injective operator from Z into L1(ν) for some ν ∈ ca(�, X), then
� is countable.

Proof Let S : Z → L1(ν) be an injective operator. Let μ be a Rybakov control measure
of ν and i : L1(ν) → L1(μ) the inclusion operator, which is injective. Then T := i ◦ S :
Z → L1(μ) is injective as well. Since Z∗ = �q(�) for some 1 ≤ q < 2, the adjoint operator
T ∗ : L∞(μ) → Z∗ is compact, by a result of Rosenthal (see [27, p. 211, Remark 2]). By
Schauder’s theorem, T is compact and so T (Z) is separable. Therefore, there is a countable
set 
 ⊆ L∞(μ) separating the points of T (Z). Since T is injective, the countable set
T ∗(
) ⊆ Z∗ separates the points of Z , hence (Z∗, w∗) is separable. This clearly implies
that � is countable. ��

In particular, for any uncountable set� the space c0(�)does not embed isomorphically into
the L1 space of a vector measure. This assertion can be extended to all infinite-dimensional
C(K ) spaces except c0 itself, see Corollary 3.6 below.

A Banach space Z is said to be weakly countably determined (WCD) if there is a sequence
(Kn) of w∗-compact subsets of Z∗∗ such that, for every z ∈ Z and z∗∗ ∈ Z∗∗\Z , there is
n ∈ N such that z ∈ Kn and z∗∗ /∈ Kn . The class of WCD Banach spaces includes all weakly
compactly generated spaces and their subspaces. For complete information on WCD spaces,
we refer the reader to [11, Chapter 7].

A Banach space Z is said to have the Dunford–Pettis property if every weakly compact
operator T from Z to a Banach space is Dunford–Pettis (i.e. T (C) is norm compact whenever
C ⊆ Z is weakly compact).

Proposition 3.5 Let Z be a WCD Banach space with the Dunford–Pettis property such that
Z∗ contains no subspace isomorphic to c0. If there is an injective operator from Z into L1(ν)

for some ν ∈ ca(�, X), then Z is separable.

Proof Theproof is similar to that of Proposition 3.4. Fix an injective operator S : Z → L1(ν).
Let μ be a Rybakov control measure of ν, let i : L1(ν) → L1(μ) be the inclusion operator
and define T := i ◦ S : Z → L1(μ). Observe that the adjoint T ∗ : L∞(μ) → Z∗ is weakly
compact, because L∞(μ) is aC(K ) space and Z∗ contains no subspace isomorphic to c0 (see
e.g. [1, Theorem5.5.3]). ByGantmacher’s theorem, T isweakly compact and so theDunford–
Pettis property of Z ensures that T is a Dunford–Pettis operator. Since every Dunford–Pettis
operator from a WCD Banach space has separable range (see [28, Theorem 7.1]), T (Z) is
separable. The rest of the proof follows the argument of Proposition 3.4, bearing in mind
that a WCD Banach space is separable if (and only if) it has w∗-separable dual (see [28,
Theorem 6.1] or [30, Corollary 2]). ��

For any compactHausdorff topological space K , theBanach spaceC(K ) has theDunford–
Pettis property (see e.g. [1, Theorem 5.4.5]) and its dual C(K )∗ contains no subspace
isomorphic to c0 (combine [1, Theorem 5.5.3] and [2, Theorem 4.68]). These facts and
Proposition 3.5 yield the following:
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Corollary 3.6 Let K be an infinite compact Hausdorff topological space. If C(K ) is iso-
morphic to a subspace of L1(ν) for some ν ∈ ca(�, X), then C(K ) is isomorphic to c0.

Proof Such C(K ) space is WCD, because every subspace of a weakly compactly generated
Banach space (like L1(ν)) is WCD. Proposition 3.5 applies to deduce that C(K ) is sepa-
rable, i.e. K is metrizable. On the other hand, since every subspace of an order continuous
Banach lattice (like L1(ν)) has the so-called Pełczyński’s property (u) (see e.g. [2, Theo-
rems 4.54 and 4.56]), so does C(K ). It follows that C(K ) is isomorphic to c0 (see e.g. [1,
Theorem 4.5.2]). ��
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