ORIGINAL PAPER

On non-separable L^1 -spaces of a vector measure

José Rodríguez¹

Received: 19 December 2015 / Accepted: 19 October 2016 / Published online: 25 October 2016 © Springer-Verlag Italia 2016

Abstract Let κ be an infinite cardinal. Let ν be a (countably additive Banach space-valued) vector measure defined on a σ -algebra Σ . We prove that if ν is homogeneous and $L^1(\nu)$ has density character κ , then there is a vector measure $\tilde{\nu} : \Sigma \to \ell^{\infty}_{<}(\kappa)$ such that $L^1(\nu) = L^1(\tilde{\nu})$ with equal norms. Here $\ell^{\infty}_{<}(\kappa)$ denotes the subspace of $\ell^{\infty}(\kappa)$ consisting of all $(x_{\alpha})_{\alpha < \kappa} \in \ell^{\infty}(\kappa)$ such that $|\{\alpha < \kappa : |x_{\alpha}| > \varepsilon\}| < \kappa$ for every $\varepsilon > 0$. In this way, we extend to the non-separable setting a result of Curbera corresponding to the case $\kappa = \omega$. Some other results on non-separable L^1 spaces of vector measures are given.

Keywords Vector measure \cdot Non-separable Banach space \cdot Space of integrable functions \cdot Maharam type \cdot Space of bounded functions with countable support

Mathematics Subject Classification 46B26 · 46E30 · 46G10

1 Introduction

Every order continuous Banach lattice with a weak unit is lattice isometric to the L^1 space of a vector measure, [9, Proposition 2.4] (cf. [6, Theorem 8]). Such Banach lattices are weakly compactly generated [4, p. 193] (cf. [6, Theorem 2]) and admit an equivalent uniformly Gâteaux smooth norm, [19] (cf. [26, Theorem 2.2]). For an arbitrary Banach space X, the existence of such a norm is equivalent to being isomorphic to a subspace of a Hilbert generated

Research partially supported by *Ministerio de Economía y Competitividad - FEDER* (project MTM2014-54182-P). This work was also partially supported by the research project 19275/PI/14 funded by *Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia* within the framework of *PCTIRM 2011-2014*.

[☑] José Rodríguez joserr@um.es

¹ Dpto. de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, 30100 Espinardo, Murcia, Spain

Banach space, and also to (B_{X^*}, w^*) being uniform Eberlein compact, [13, Theorem 2] (cf. [16, Theorem 6.30]).

Typical examples of Banach lattices arising as L^1 spaces of vector measures are all Banach spaces with unconditional basis, the classical spaces $L^p(\mu)$ (for $1 \le p < \infty$ and a finite measure μ) and Orlicz spaces over a finite measure satisfying the Δ_2 -condition. On the other hand, C[0, 1] is a separable Banach lattice which is not isomorphic (as Banach space) to the L^1 space of any vector measure. In the non-separable setting, for an uncountable set Γ and $1 , the space <math>\ell^p(\Gamma)$ is reflexive and embeds isomorphically into a Hilbert generated space, [12, Theorem 1]. As a Banach lattice, $\ell^p(\Gamma)$ is order continuous, but fails to have a weak unit and so it is not lattice isomorphic to the L^1 space of any vector measure. In fact, $\ell^p(\Gamma)$ is isomorphic to the L^1 space of a vector measure if and only if p = 2, see [26, Theorem 2.6]. Similarly, the Banach lattice $c_0(\Gamma)$ is order continuous and Hilbert generated, but it is not isomorphic to the L^1 space of any vector measure.

Completely different vector measures can produce the same L^1 space, see [15] for a detailed discussion. The following result was proved in [7, Theorem 1] (cf. [21, Theorem 5]):

Theorem 1.1 (G.P. Curbera) Let v be a vector measure defined on a σ -algebra Σ and taking values in a Banach space. If v is non-atomic and $L^1(v)$ is separable, then there is a vector measure $\tilde{v} : \Sigma \to c_0$ such that $L^1(v) = L^1(\tilde{v})$ with equal norms.

The non-atomicity assumption in the result above cannot be dropped in general, [7, pp. 294–295]. At the conference "Integration, Vector Measures and Related Topics VI" (Bedłewo, June 2014), Z. Lipecki asked whether a non-separable version of Theorem 1.1 can be obtained by using $c_0(\Gamma)$ as target space for large enough Γ . Here we address this question and provide some partial answers by using certain superspaces of $c_0(\Gamma)$. Our main results are:

Theorem 1.2 Let κ be an infinite cardinal. Let ν be a vector measure defined on a σ -algebra Σ and taking values in a Banach space. If ν is homogeneous and $L^1(\nu)$ has density character κ , then there is a vector measure $\tilde{\nu} : \Sigma \to \ell^{\infty}_{<}(\kappa)$ such that $L^1(\nu) = L^1(\tilde{\nu})$ with equal norms.

Theorem 1.3 Let v be a vector measure defined on a σ -algebra Σ and taking values in a Banach space. If v is non-atomic and $L^1(v)$ has density character ω_1 , then there is a vector measure $\tilde{v} : \Sigma \to \ell_c^{\infty}(\omega_1)$ such that $L^1(v) = L^1(\tilde{v})$ with equivalent norms.

Given an infinite cardinal κ , we denote by $\ell_{<}^{\infty}(\kappa)$ the subspace of $\ell^{\infty}(\kappa)$ consisting of all $(x_{\alpha})_{\alpha < \kappa} \in \ell^{\infty}(\kappa)$ such that $|\{\alpha < \kappa : |x_{\alpha}| > \varepsilon\}| < \kappa$ for every $\varepsilon > 0$. In general, $c_0(\kappa)$ is a subspace of $\ell_{<}^{\infty}(\kappa)$. The space $\ell_{<}^{\infty}(\kappa)$ was introduced by Pełczyński and Sudakov [24] and has been studied in [3] in connection with injectivity properties of Banach spaces. For $\kappa = \omega$ we have $\ell_{<}^{\infty}(\kappa) = c_0(\omega)$ and, therefore, Theorem 1.1 is a particular case of Theorem 1.2. If κ has uncountable cofinality, then $\ell_{<}^{\infty}(\kappa)$ coincides with the set of all $(x_{\alpha})_{\alpha < \kappa} \in \ell^{\infty}(\kappa)$ such that $|\{\alpha < \kappa : x_{\alpha} \neq 0\}| < \kappa$. In particular, we have $\ell_{<}^{\infty}(\omega_1) = \ell_c^{\infty}(\omega_1)$, the Banach space of all bounded real-valued functions on ω_1 having countable support. For information on spaces of bounded functions on an uncountable set having countable support, see [3, 17, 18, 23], [29, Section 16-1] and the references therein.

This paper is organized as follows. In Sect. 2 we introduce the basic terminology and present some preliminary results and examples of non-separable L^1 spaces of vector measures. In Sect. 3 we prove our main Theorems 1.2 and 1.3. To this end we use some ideas from the alternative proof of Theorem 1.1 given in [21], together with other ingredients like Maharam's theorem, which allows us to find a substitute for the Rademacher-type sequences

used in both proofs of the separable case. We close the paper with an Appendix on linear injections into L^1 spaces of vector measures.

2 Preliminaries and examples

2.1 Terminology

Our standard references are [1,2,8]. All our Banach spaces are real. An *operator* is a linear continuous map between Banach spaces. By a *subspace* of a Banach space we mean a closed linear subspace. The closed unit ball of a Banach space Z is denoted by B_Z and the dual of Z is denoted by Z^* . By a *vector measure* we mean a countably additive Banach space-valued measure defined on a σ -algebra. The *density character* of a topological space T, denoted by dens(T), is the minimal cardinality of a dense subset of T.

Throughout this paper (Ω, Σ) is a measurable space and X is a Banach space. The set of all X-valued vector measures defined on Σ is denoted by $ca(\Sigma, X)$. The symbol $ca_+(\Sigma)$ stands for the subset of $ca(\Sigma) := ca(\Sigma, \mathbb{R})$ made up of all non-negative finite measures. The *Maharam type* of a non-atomic $\mu \in ca_+(\Sigma)$ is defined as dens $(L^1(\mu))$ and coincides with the density character of its measure algebra equipped with the Fréchet–Nikodým metric.

Let $v \in ca(\Sigma, X)$. Given $A \in \Sigma$, we denote by v_A the restriction of v to the σ -algebra on A defined by $\Sigma_A := \{A \cap B : B \in \Sigma\}$. The composition of v with any $x^* \in X^*$ is denoted by x^*v and belongs to $ca(\Sigma)$. The *semivariation* of v is the function $||v|| : \Sigma \to \mathbb{R}$ defined by $||v||(A) = \sup_{x^* \in B_{X^*}} |x^*v|(A)$ for all $A \in \Sigma$ (as usual, $|x^*v|$ stands for the *variation* of x^*v). Given $\xi \in ca(\Sigma, Y)$ (where Y is a Banach space), we write $v \ll \xi$ to denote that v is *absolutely continuous* with respect to ξ , meaning that $\lim_{\|\xi\|(A)\to 0} \|v(A)\| = 0$ or, equivalently, that v(A) = 0 whenever $\|\xi\|(A) = 0$. We say that $\lambda \in ca_+(\Sigma)$ is a *control measure* of v if $\lambda \ll v$ and $v \ll \lambda$. A *Rybakov control measure* of v is a control measure of the form $\lambda = |x^*v|$ for some $x^* \in B_{X^*}$; such control measures always exist, see e.g. [8, p. 268, Theorem 2]. We say that v is *non-atomic* if some/every control measure of v is non-atomic in the usual sense.

A Σ -measurable function $f : \Omega \to \mathbb{R}$ is said to be ν -integrable if the following two conditions are satisfied: (i) f is $|x^*\nu|$ -integrable for all $x^* \in X^*$, and (ii) for each $A \in \Sigma$, there is a vector $\int_A f d\nu \in X$ such that $x^*(\int_A f d\nu) = \int_A f d(x^*\nu)$ for every $x^* \in X^*$. By identifying functions which coincide $||\nu||$ -a.e. we obtain the Banach lattice $L^1(\nu)$ of all (equivalence classes of) ν -integrable functions, equipped with the $||\nu||$ -a.e. order and the norm

$$\|f\|_{L^{1}(\nu)} := \sup_{x^{*} \in B_{X^{*}}} \int_{\Omega} |f| \, d|x^{*}\nu|, \quad f \in L^{1}(\nu).$$

Note that $||f||_{L^1(\nu)} = ||\nu_f||(\Omega)$, where $\nu_f \in ca(\Sigma, X)$ is defined by $\nu_f(A) := \int_A f \, d\nu$ for all $A \in \Sigma$. The formula

$$\||f\||_{\nu} := \sup_{A \in \Sigma} \left\| \int_{A} f \, d\nu \right\|$$

defines a norm on $L^{1}(\nu)$ which is equivalent to $\|\cdot\|_{L^{1}(\nu)}$, since

$$|||f|||_{\nu} \le ||f||_{L^{1}(\nu)} \le 2|||f|||_{\nu} \quad \text{for all} \quad f \in L^{1}(\nu).$$

$$(2.1)$$

The basic properties of the space $L^1(v)$ can be found, for instance, in [22, Chapter 3]. As a Banach lattice, $L^1(v)$ is order continuous and has a weak unit. We write sim Σ to denote the set of all *simple functions* from Ω to \mathbb{R} , that is, linear combinations of characteristic functions 1_A where $A \in \Sigma$. Simple functions are v-integrable and sim Σ is dense in $L^1(v)$ (after the $\|v\|$ -a.e. identification). It is easy to check that dens $(L^1(v))$ coincides with the Maharam type of any control measure of v whenever v is non-atomic. We say that v is *homogeneous* if it is non-atomic and dens $(L^1(v)) = dens(L^1(v_A))$ for every $A \in \Sigma$ with $\|v\|(A) > 0$.

2.2 Examples

Obviously, the classical space $L^1(\mu)$ of a finite measure μ can be seen as the L^1 space of a vector measure. The following standard construction (see e.g. [22, Corollary 3.66]) shows that the same holds for $L^p(\mu)$ whenever 1 .

Example 2.1 Let $\mu \in ca_+(\Sigma)$ and $1 \leq p < \infty$. Let $\nu \in ca(\Sigma, L^p(\mu))$ be defined by $\nu(A) := 1_A$ for all $A \in \Sigma$. Then $L^1(\nu) = L^p(\mu)$ with equal norms.

In Example 2.6 below we will show that, for any $1 and any infinite cardinal <math>\kappa$, the L^p space of the usual probability on the Cantor cube $\{-1, 1\}^{\kappa}$ can be realized as the L^1 space of a suitable $c_0(\kappa)$ -valued vector measure.

To this end we need some lemmas which will also be applied in Sect. 3. The first one is based on some ideas from [14, Theorem 2.1].

Lemma 2.2 Let $v \in ca(\Sigma, X)$ and let Δ be a w^* -dense subset of B_{X^*} . Then

$$||f||_{L^{1}(\nu)} = \sup_{x^{*} \in \Delta} \int_{\Omega} |f| d|x^{*}\nu|$$

for every $f \in L^1(\nu)$.

Proof The statement is obvious for f = 0. Fix $f \in L^1(\nu) \setminus \{0\}$ and $\varepsilon > 0$. Let $g \in \sin \Sigma$ such that $||f - g||_{L^1(\nu)} \le \varepsilon$ and $g \ne 0$. Write $g = \sum_{i=1}^p a_i \mathbf{1}_{A_i}$, where $a_i \in \mathbb{R} \setminus \{0\}$ and the A_i 's are pairwise disjoint elements of Σ . Choose $x_1^* \in B_{X^*}$ such that

$$\|g\|_{L^{1}(\nu)} \leq \int_{\Omega} |g| \, d|x_{1}^{*}\nu| + \varepsilon.$$
(2.2)

Since Δ is w^* -dense in B_{X^*} , there is $x_0^* \in \Delta$ such that

$$|x_1^*\nu|(A_i) \le |x_0^*\nu|(A_i) + \frac{\varepsilon}{|a_i|p} \quad \text{for every } i \in \{1, \dots, p\}.$$

Then

$$\int_{\Omega} |g| \, d|x_1^* \nu| = \sum_{i=1}^p |a_i| |x_1^* \nu|(A_i) \le \sum_{i=1}^p |a_i| |x_0^* \nu|(A_i) + \varepsilon = \int_{\Omega} |g| \, d|x_0^* \nu| + \varepsilon,$$

which combined with (2.2) yields

$$\|g\|_{L^1(\nu)} \leq \int_{\Omega} |g| d|x_0^* \nu| + 2\varepsilon.$$

Bearing in mind that $||f - g||_{L^1(\nu)} \le \varepsilon$, we get

$$\|f\|_{L^{1}(\nu)} \leq \|g\|_{L^{1}(\nu)} + \varepsilon \leq \int_{\Omega} |g| \, d|x_{0}^{*}\nu| + 3\varepsilon \leq \int_{\Omega} |f| \, d|x_{0}^{*}\nu| + 4\varepsilon.$$

As $\varepsilon > 0$ is arbitrary, we have $||f||_{L^1(\nu)} = \sup_{x^* \in \Delta} \int_{\Omega} |f| d|x^* \nu|$.

Lemma 2.3 Let Γ be a non-empty set and Z a subspace of $\ell^{\infty}(\Gamma)$. For each $\gamma \in \Gamma$, denote by $e_{\gamma}^* \in B_{\ell^{\infty}(\Gamma)^*}$ the γ -th coordinate functional. Let $\nu \in ca(\Sigma, Z)$. Then

$$\|f\|_{L^1(\nu)} = \sup_{\gamma \in \Gamma} \int_{\Omega} |f| \, d| e_{\gamma}^* \nu$$

for every $f \in L^1(\nu)$.

Proof We denote by $e_{\gamma}^*|_Z$ the restriction of e_{γ}^* to Z. The set $\{e_{\gamma}^*|_Z : \gamma \in \Gamma\} \subseteq B_{Z^*}$ is 1-norming and so, by the Hahn-Banach separation theorem, its absolutely convex hull $\Delta := \operatorname{aco}(\{e_{\gamma}^*|_Z : \gamma \in \Gamma\})$ is w^* -dense in B_{Z^*} . Lemma 2.2 now applies to get

$$\|f\|_{L^{1}(\nu)} = \sup_{e^{*} \in \Delta} \int_{\Omega} |f| \, d|e^{*}\nu| = \sup_{\gamma \in \Gamma} \int_{\Omega} |f| \, d|e^{*}_{\gamma}\nu|$$

for every $f \in L^1(\nu)$.

The following lemma can be found in [21, Lemma 6].

Lemma 2.4 Let $v \in ca(\Sigma, X)$ and $\tilde{v} \in ca(\Sigma, Y)$, where Y is a Banach space. If $||f||_{L^1(v)} = ||f||_{L^1(\tilde{v})}$ for every $f \in \sin \Sigma$, then $L^1(v) = L^1(\tilde{v})$ with equal norms.

To deal with the next examples we need to introduce some terminology. Let κ be an infinite cardinal. For any set $I \subseteq \kappa$ we denote by $\rho_I : \{-1, 1\}^{\kappa} \to \{-1, 1\}^{I}$ the canonical projection. We say that a function $f : \{-1, 1\}^{\kappa} \to \mathbb{R}$ depends on coordinates from I if there is a function $f' : \{-1, 1\}^{I} \to \mathbb{R}$ such that $f = f' \circ \rho_I$. We say that f depends on finitely many coordinates if there is a finite set $I \subseteq \kappa$ such that f depends on coordinates from I. Dependence on finitely many coordinates is equivalent to being a linear combination of characteristic functions of clopen subsets of $\{-1, 1\}^{\kappa}$. We denote by $S(\kappa)$ the set of all real-valued functions on $\{-1, 1\}^{\kappa}$ depending on finitely many coordinates. We write $\pi_{\alpha} : \{-1, 1\}^{\kappa} \to \{-1, 1\}$ to denote the α -th coordinate projection for each $\alpha < \kappa$.

Example 2.5 Let κ be an infinite cardinal, λ the usual probability on $\{-1, 1\}^{\kappa}$ and Σ its domain. Then

$$\nu(A) := \left(\int_A \pi_\alpha \, d\lambda \right)_{\alpha < \kappa} \in c_0(\kappa) \quad \text{for every } A \in \Sigma.$$

Moreover, $\nu \in ca(\Sigma, c_0(\kappa))$ and $L^1(\nu) = L^1(\lambda)$ with equal norms.

Proof The fact that ν takes values in $c_0(\kappa)$ follows from the density of $S(\kappa)$ in $L^1(\lambda)$, cf. the proof of [25, Lemma 2.1] for more details. Clearly, ν is finitely additive. From the inequality $\|\nu(A)\|_{c_0(\kappa)} \leq \lambda(A)$ for all $A \in \Sigma$ it follows that ν is countably additive. Lemma 2.3 ensures that $\|f\|_{L^1(\nu)} = \|f\|_{L^1(\lambda)}$ for every $f \in \sin \Sigma$, and then Lemma 2.4 applies to conclude that $L^1(\nu) = L^1(\lambda)$ with equal norms.

The proof of the following example uses an argument which was kindly provided by G. Plebanek.

Example 2.6 Let κ be an infinite cardinal, λ the usual probability on $\{-1, 1\}^{\kappa}$ and Σ its domain. Let $1 . Then there is <math>\nu \in ca(\Sigma, c_0(\kappa))$ such that $L^1(\nu) = L^p(\lambda)$ with equal norms.

Proof Write $K := \{-1, 1\}^{\kappa}$. Let $1 < q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$ and write $\langle f, g \rangle := \int_{K} fg \, d\lambda$ for every $f \in L^{p}(\lambda)$ and $g \in L^{q}(\lambda)$. Since $S(\kappa)$ is norm dense in $L^{q}(\lambda)$ and dens $(L^{q}(\lambda)) = \kappa$, there is a set $H \subseteq S(\kappa) \cap B_{L^{q}(\lambda)}$ of cardinality κ which is norm dense in $B_{L^{q}(\lambda)}$. Enumerate $H = \{h_{\alpha} : \alpha < \kappa\}$. Each h_{α} can be written as $h_{\alpha} = h'_{\alpha} \circ \rho_{I_{\alpha}}$, where $I_{\alpha} \subseteq \kappa$ is finite and $h'_{\alpha} : \{-1, 1\}^{I_{\alpha}} \to \mathbb{R}$ is a function. Since κ is infinite and the I_{α} 's are finite, we can construct (inductively) an injective map $\varphi : \kappa \to \kappa$ in such a way that $\varphi(\alpha) \notin I_{\alpha}$ for all $\alpha < \kappa$. Define $g_{\alpha} := h_{\alpha} \pi_{\varphi(\alpha)} \in B_{L^{q}(\lambda)}$ for every $\alpha < \kappa$.

CLAIM. If (α_n) is a sequence in κ with $\alpha_n \neq \alpha_m$ whenever $n \neq m$, then (g_{α_n}) is weakly null in $L^q(\lambda)$. Indeed, since $S(\kappa)$ is norm dense in $L^p(\lambda) = L^q(\lambda)^*$ and the sequence (g_{α_n}) is bounded, it suffices to check that $\langle f, g_{\alpha_n} \rangle \to 0$ as $n \to \infty$ for every $f \in S(\kappa)$. To this end, let us write $f = f' \circ \rho_I$ for some finite set $I \subseteq \kappa$ and some function $f' : \{-1, 1\}^I \to \mathbb{R}$. Note that each fh_{α_n} depends on coordinates from $I \cup I_{\alpha_n}$. Choose $n_0 \in \mathbb{N}$ large enough such that for every $n \ge n_0$ we have $\varphi(\alpha_n) \notin I$. Then for every $n \ge n_0$ we have $\varphi(\alpha_n) \notin I \cup I_{\alpha_n}$ and so fh_{α_n} and $\pi_{\varphi(\alpha_n)}$ are stochastically independent, that is, $\int_K fh_{\alpha_n}\pi_{\varphi(\alpha_n)} d\lambda = 0$. Then

$$\langle f, g_{\alpha_n} \rangle = \int_K f g_{\alpha_n} d\lambda = 0$$
 whenever $n \ge n_0$.

This proves the CLAIM.

From the previous claim it follows at once that for every $A \in \Sigma$ we have

$$\nu(A) := \left(\int_A g_\alpha \, d\lambda\right)_{\alpha < \kappa} \in c_0(\kappa)$$

Clearly, $\nu : \Sigma \to c_0(\kappa)$ is finitely additive and satisfies

$$\|\nu(A)\|_{c_0(\kappa)} = \sup_{\alpha < \kappa} \left| \int_A g_\alpha \, d\lambda \right| \le \sup_{\alpha < \kappa} \|\mathbf{1}_A\|_{L^p(\lambda)} \|g_\alpha\|_{L^q(\lambda)} \le \lambda(A)^{\frac{1}{p}} \quad \text{for all } A \in \Sigma,$$

hence $\nu \in ca(\Sigma, c_0(\kappa))$. By Lemma 2.3, the norm of any $f \in \sin \Sigma$ is

$$\|f\|_{L^{1}(\nu)} = \sup_{\alpha < \kappa} \int_{K} |fg_{\alpha}| d\lambda$$
$$= \sup_{\alpha < \kappa} \int_{K} |fh_{\alpha}| d\lambda = \sup_{\alpha < \kappa} \langle |f|, |h_{\alpha}| \rangle \stackrel{(*)}{=} \sup_{h \in B_{L^{q}(\lambda)}} \langle |f|, |h| \rangle = \|f\|_{L^{p}(\lambda)},$$

where equality (*) follows from the norm density of $\{h_{\alpha} : \alpha < \kappa\}$ in $B_{L^{q}(\lambda)}$. According to Example 2.1 and Lemma 2.4, we have $L^{1}(\nu) = L^{p}(\lambda)$ with equal norms.

3 Proofs of Theorems 1.2 and 1.3

In order to prove Theorems 1.2 and 1.3 we need some lemmas.

Lemma 3.1 Let κ be an infinite cardinal. If $\mu \in ca_+(\Sigma)$ is homogeneous of Maharam type κ , then there is a set $\{\mu_{\alpha} : \alpha < \kappa\} \subseteq ca(\Sigma)$ such that:

- (i) $|\mu_{\alpha}| = \mu$ for all $\alpha < \kappa$;
- (ii) $(\mu_{\alpha}(E))_{\alpha < \kappa} \in c_0(\kappa)$ for all $E \in \Sigma$.

Proof We can suppose without loss of generality that $\mu(\Omega) = 1$. By Maharam's theorem (see e.g. [20, p. 122, Theorem 8]), the measure algebra of μ is isomorphic to the measure algebra of the usual probability on $\{-1, 1\}^{\kappa}$. We can now find a set $\{g_{\alpha} : \alpha < \kappa\} \subseteq L^{\infty}(\mu)$

with $|g_{\alpha}| = 1$ for all $\alpha < \kappa$ such that, for every $E \in \Sigma$, we have $(\int_{E} g_{\alpha} d\mu)_{\alpha < \kappa} \in c_{0}(\kappa)$ (see Example 2.5). It is clear that the measures $\mu_{\alpha} \in ca(\Sigma)$ defined by $\mu_{\alpha}(E) := \int_{E} g_{\alpha} d\mu$ satisfy the required properties.

Lemma 3.2 Let κ be an infinite cardinal. Let $\lambda \in ca_+(\Sigma)$ be homogeneous of Maharam type κ . Let $\{\lambda_{\alpha}\}_{\alpha < \kappa}$ be a family in $ca_+(\Sigma)$ such that

$$\lambda \ll \lambda_{\alpha} \text{ for all } \alpha < \kappa \text{ and } \lim_{\lambda(A) \to 0} \sup_{\alpha < \kappa} \lambda_{\alpha}(A) = 0.$$

Then there is a family $\{\mu_{\alpha}\}_{\alpha < \kappa}$ *in* $ca(\Sigma)$ *such that:*

(i) $|\mu_{\alpha}| = \lambda_{\alpha}$ for all $\alpha < \kappa$;

(ii) $(\mu_{\alpha}(E))_{\alpha < \kappa} \in \ell^{\infty}_{<}(\kappa)$ for all $E \in \Sigma$.

Proof Each λ_{α} is homogeneous of Maharam type κ , so for each $\alpha < \kappa$ we can apply Lemma 3.1 to obtain a set { $\mu_{\alpha,\beta} : \beta < \kappa$ } $\subseteq ca(\Sigma)$ such that:

- $|\mu_{\alpha,\beta}| = \lambda_{\alpha}$ for all $\beta < \kappa$;
- $(\mu_{\alpha,\beta}(E))_{\beta<\kappa} \in c_0(\kappa)$ for all $E \in \Sigma$.

Fix a family $\{A_{\gamma}\}_{\gamma < \kappa}$ in Σ such that $\inf_{\gamma < \kappa} \lambda(E \triangle A_{\gamma}) = 0$ for all $E \in \Sigma$. We now distinguish two cases:

CASE 1: $\kappa = \omega$. By allowing infinitely many repetitions, we can assume further that for every $m < \omega$ and every $E \in \Sigma$ we have $\inf_{n>m} \lambda(E \triangle A_n) = 0$. For each $n < \omega$, the set

$$B(n) := \bigcup_{m \le n} \left\{ k < \omega : |\mu_{n,k}(A_m)| > \frac{1}{n+1} \right\}$$

is finite and we choose $\beta(n) \in \omega \setminus B(n)$. Define $\mu_n := \mu_{n,\beta(n)} \in ca(\Sigma)$ for every $n < \omega$, so that $\{\mu_n\}_{n < \omega}$ satisfies (i). We next check that (ii) holds. To this end, fix $E \in \Sigma$ and $\varepsilon > 0$. Take $\delta > 0$ such that $\sup_{n < \omega} \lambda_n(A) \le \varepsilon$ whenever $\lambda(A) \le \delta$. Choose $m < \omega$ such that $\frac{1}{m+1} \le \varepsilon$ and $\lambda(E \triangle A_m) \le \delta$. For each $n < \omega$ we have

$$|\mu_n(E) - \mu_n(A_m)| \le |\mu_n|(E \triangle A_m) = \lambda_n(E \triangle A_m) \le \varepsilon.$$
(3.1)

Bearing in mind that $|\mu_n(A_m)| = |\mu_{n,\beta(n)}(A_m)| \le \frac{1}{n+1} \le \varepsilon$ whenever $n \ge m$, from (3.1) we conclude that $|\mu_n(E)| \le 2\varepsilon$ for every $n \ge m$. As $\varepsilon > 0$ is arbitrary, this proves that $(\mu_n(E))_{n \le \omega} \in c_0(\omega)$. The proof of Case 1 is finished.

CASE 2: κ is uncountable. For each $\alpha < \kappa$, the set

$$B(\alpha) := \bigcup_{\gamma \le \alpha} \left\{ \beta < \kappa : \, \mu_{\alpha,\beta}(A_{\gamma}) \neq 0 \right\}$$

has cardinality $|B(\alpha)| < \kappa$, because κ is uncountable and $\{\beta < \kappa : \mu_{\alpha,\beta}(A_{\gamma}) \neq 0\}$ is countable for every $\gamma < \kappa$. Then for every $\alpha < \kappa$ we can choose $\beta(\alpha) \in \kappa \setminus B(\alpha)$ and we define $\mu_{\alpha} := \mu_{\alpha,\beta(\alpha)} \in ca(\Sigma)$. An argument similar to that of Case 1 shows that the family $\{\mu_{\alpha}\}_{\alpha < \kappa}$ satisfies the required properties.

Lemma 3.3 Let κ be an infinite cardinal. Let $\nu \in ca(\Sigma, X)$ with $dens(L^1(\nu)) = \kappa$. Then there is $C \subseteq B_{X^*}$ with $|C| \leq \kappa$ such that:

- (i) $v \ll |x^*v|$ for all $x^* \in C$;
- (ii) $||f||_{L^1(\nu)} = \sup_{x^* \in C} \int_{\Omega} |f| d |x^* \nu|$ for all $f \in L^1(\nu)$.

Proof Fix a norm dense set $\mathcal{F} \subseteq L^1(\nu)$ with $|\mathcal{F}| = \kappa$. By the Rybakov–Walsh theorem (see e.g. [8, pp. 268–269]), the set $\Delta := \{x^* \in B_{X^*} : \nu \ll |x^*\nu|\}$ is norm dense (hence w^* -dense) in B_{X^*} . Then for every $f \in L^1(\nu)$ there is a countable set $\Delta_f \subseteq \Delta$ such that

$$||f||_{L^{1}(\nu)} = \sup_{x^{*} \in \Delta_{f}} \int_{\Omega} |f| d|x^{*}\nu|$$

(apply Lemma 2.2). It is easy to check that $C := \bigcup_{f \in \mathcal{F}} \Delta_f$ fulfills the required properties.

We arrive at the proofs of our main results:

Proof of Theorem 1.2 The Banach space in which ν takes values is denoted by X. By Lemma 3.3 there is a collection $\{x_{\alpha}^*\}_{\alpha < \kappa}$ in B_{X^*} such that $\nu \ll |x_{\alpha}^*\nu|$ for all $\alpha < \kappa$ and

$$\|f\|_{L^{1}(\nu)} = \sup_{\alpha < \kappa} \int_{\Omega} |f| \, d|x_{\alpha}^{*}\nu| \quad \text{for all} \quad f \in L^{1}(\nu).$$
(3.2)

Lemma 3.2 can now be applied to $\lambda_{\alpha} := |x_{\alpha}^* \nu|$ and $\lambda := |x_0^* \nu|$ to find a family $\{\mu_{\alpha}\}_{\alpha < \kappa}$ in $ca(\Sigma)$ such that $|\mu_{\alpha}| = |x_{\alpha}^* \nu|$ for all $\alpha < \kappa$ and

$$\tilde{\nu}(E) := (\mu_{\alpha}(E))_{\alpha < \kappa} \in \ell^{\infty}_{<}(\kappa) \text{ for all } E \in \Sigma.$$

The function $\tilde{\nu}: \Sigma \to \ell^{\infty}_{<}(\kappa)$ is finitely additive. Moreover, since

$$\|\tilde{\nu}(E)\|_{\ell^{\infty}_{<}(\kappa)} = \sup_{\alpha < \kappa} |\mu_{\alpha}(E)| \le \sup_{\alpha < \kappa} |x^{*}_{\alpha}\nu|(E) \le \|\nu\|(E) \text{ for all } E \in \Sigma,$$

we have $\lim_{\lambda(E)\to 0} \|\tilde{\nu}(E)\|_{\ell^{\infty}_{<}(\kappa)} = 0$. It follows that $\tilde{\nu} \in ca(\Sigma, \ell^{\infty}_{<}(\kappa))$.

In order to prove that $L^1(\tilde{\nu}) = L^1(\tilde{\nu})$ with equal norms, it suffices to check that $||f||_{L^1(\tilde{\nu})} = ||f||_{L^1(\tilde{\nu})}$ for every $f \in \sin \Sigma$ (Lemma 2.4). Write $e^*_{\alpha} \in B_{\ell^{\infty}_{<}(\kappa)^*}$ to denote the α -th coordinate projection for every $\alpha < \kappa$. Lemma 2.3 applies to compute the norm of any $f \in \sin \Sigma$ as

$$\|f\|_{L^{1}(\tilde{\nu})} = \sup_{\alpha < \kappa} \int_{\Omega} |f| \, d|e_{\alpha}^{*} \tilde{\nu}| = \sup_{\alpha < \kappa} \int_{\Omega} |f| \, d|x_{\alpha}^{*} \nu| \stackrel{(3.2)}{=} \|f\|_{L^{1}(\nu)}.$$

The proof is complete.

Proof of Theorem 1.3 Let μ be a Rybakov control measure of ν . Then μ is non-atomic and has Maharam type ω_1 . Therefore, there exist disjoint $A, B \in \Sigma$ with $\Omega = A \cup B$ such that $L^1(\mu_A)$ is separable and μ_B is homogeneous and has Maharam type ω_1 (see e.g. [20, p. 122, Theorem 7]). So, $L^1(\nu_A)$ is separable, ν_B is homogeneous and dens $(L^1(\nu_B)) = \omega_1$. By Theorems 1.1 and 1.2 applied to ν_A and ν_B , respectively, there exist $\xi \in ca(\Sigma_A, c_0)$ and $\psi \in ca(\Sigma_B, \ell_c^{\infty}(\omega_1))$ such that

$$L^{1}(\nu_{A}) = L^{1}(\xi)$$
 and $L^{1}(\nu_{B}) = L^{1}(\psi)$

with equal norms. Write $Z := c_0 \oplus_1 \ell_c^{\infty}(\omega_1)$ and define $\varphi \in ca(\Sigma, Z)$ by

$$\varphi(E) := (\xi(E \cap A), \psi(E \cap B)) \text{ for all } E \in \Sigma.$$

Fix $f \in \sin \Sigma$ and denote by $f|_A$ (resp. $f|_B$) its restriction to A (resp. B). Then

$$\int_{E} f \, d\varphi = \left(\int_{E \cap A} f|_{A} \, d\xi, \int_{E \cap B} f|_{B} \, d\psi \right) \quad \text{for all } E \in \Sigma$$

and so

$$\sup_{E\in\Sigma} \left\| \int_{E} f \, d\varphi \right\|_{Z} = \sup_{E\in\Sigma} \left\| \int_{E\cap A} f|_{A} \, d\xi \right\|_{c_{0}} + \sup_{E\in\Sigma} \left\| \int_{E\cap B} f|_{B} \, d\psi \right\|_{\ell^{\infty}_{c}(\omega_{1})}.$$
 (3.3)

On one hand, we have

$$\begin{split} \|f\|_{L^{1}(\varphi)} &\stackrel{(2.1)}{\leq} 2 \sup_{E \in \Sigma} \left\| \int_{E} f \, d\varphi \right\|_{Z} \\ &\stackrel{(3.3)}{=} 2 \sup_{E \in \Sigma} \left\| \int_{E \cap A} f|_{A} \, d\xi \right\|_{c_{0}} + 2 \sup_{E \in \Sigma} \left\| \int_{E \cap B} f|_{B} \, d\psi \right\|_{\ell^{\infty}_{c}(\omega_{1})} \\ &\stackrel{(2.1)}{\leq} 2 \|f|_{A} \|_{L^{1}(\xi)} + 2 \|f|_{B} \|_{L^{1}(\psi)} \\ &= 2 \|f|_{A} \|_{L^{1}(\nu_{A})} + 2 \|f|_{B} \|_{L^{1}(\nu_{B})} \\ &\leq 4 \|f\|_{L^{1}(\nu)}. \end{split}$$

On the other hand, we also have

$$\begin{split} \|f\|_{L^{1}(\nu)} &= \|f1_{A} + f1_{B}\|_{L^{1}(\nu)} \\ &\leq \|f|_{A}\|_{L^{1}(\nu_{A})} + \|f|_{B}\|_{L^{1}(\nu_{B})} \\ &= \|f|_{A}\|_{L^{1}(\xi)} + \|f|_{B}\|_{L^{1}(\psi)} \\ &\stackrel{(2.1)}{\leq} 2\sup_{E\in\Sigma} \left\|\int_{E\cap A} f|_{A} d\xi\right\|_{c_{0}} + 2\sup_{E\in\Sigma} \left\|\int_{E\cap B} f|_{B} d\psi\right\|_{\ell^{\infty}_{c}(\omega_{1})} \\ &\stackrel{(3.3)}{=} 2\sup_{E\in\Sigma} \left\|\int_{E} f d\varphi\right\|_{Z} \\ &\stackrel{(2.1)}{\leq} 2\|f\|_{L^{1}(\varphi)}. \end{split}$$

It follows that

$$\frac{1}{4} \|f\|_{L^{1}(\varphi)} \le \|f\|_{L^{1}(\nu)} \le 2\|f\|_{L^{1}(\varphi)} \text{ for every } f \in \sin\Sigma.$$

The proof of Lemma 2.4 given in [21, Lemma 6] can now be adapted straightforwardly to prove that $L^{1}(\nu) = L^{1}(\varphi)$ with equivalent norms.

Since c_0 embeds isomorphically into $\ell_c^{\infty}(\omega_1)$ and $\ell_c^{\infty}(\omega_1)$ is isomorphic to its square, the space $Z = c_0 \oplus_1 \ell_c^{\infty}(\omega_1)$ embeds isomorphically into $\ell_c^{\infty}(\omega_1)$. Take any isomorphic embedding $j : Z \to \ell_c^{\infty}(\omega_1)$ and define $\tilde{\nu} := j \circ \varphi \in ca(\Sigma, \ell_c^{\infty}(\omega_1))$. It is easy to check that $L^1(\tilde{\nu}) = L^1(\varphi)$ with equivalent norms. Then $L^1(\nu) = L^1(\tilde{\nu})$ with equivalent norms and the proof is complete.

Acknowledgement The author would like to thank A. Avilés and G. Plebanek for valuable suggestions. Research partially supported by *Ministerio de Economía y Competitividad*—*FEDER* (Project MTM2014-54182-P). This work was also partially supported by the research Project 19275/PI/14 funded by *Fundación Séneca*—*Agencia de Ciencia y Tecnología de la Región de Murcia* within the framework of *PCTIRM 2011*–2014.

Appendix: Linear injections into L^1 of a vector measure

As we mentioned in the introduction, given an uncountable set Γ , the space $\ell^p(\Gamma)$ is not isomorphic to the L^1 space of a vector measure for any $p \neq 2$, see [26, Theorem 2.6].

However, we should note that any order continuous Banach lattice, like $\ell^p(\Gamma)$, is lattice isometric to the L^1 space of a "vector measure" defined on a δ -*ring* (a structure which is weaker than σ -algebra), see [5, pp. 22–23].

On the other hand, for an uncountable set Γ , the space $\ell^p(\Gamma)$ embeds isomorphically into the L^1 space of a finite measure if and only if 1 , see [10, Theorem 2.1]. For therange <math>2 the situation is different:

Proposition 3.4 Let Γ be a non-empty set and let Z be either $c_0(\Gamma)$ or $\ell^p(\Gamma)$ for some $2 . If there is an injective operator from Z into <math>L^1(\nu)$ for some $\nu \in ca(\Sigma, X)$, then Γ is countable.

Proof Let $S : Z \to L^1(v)$ be an injective operator. Let μ be a Rybakov control measure of v and $i : L^1(v) \to L^1(\mu)$ the inclusion operator, which is injective. Then $T := i \circ S :$ $Z \to L^1(\mu)$ is injective as well. Since $Z^* = \ell^q(\Gamma)$ for some $1 \le q < 2$, the adjoint operator $T^* : L^{\infty}(\mu) \to Z^*$ is compact, by a result of Rosenthal (see [27, p. 211, Remark 2]). By Schauder's theorem, T is compact and so T(Z) is separable. Therefore, there is a countable set $\Delta \subseteq L^{\infty}(\mu)$ separating the points of T(Z). Since T is injective, the countable set $T^*(\Delta) \subseteq Z^*$ separates the points of Z, hence (Z^*, w^*) is separable. This clearly implies that Γ is countable.

In particular, for any uncountable set Γ the space $c_0(\Gamma)$ does not embed isomorphically into the L^1 space of a vector measure. This assertion can be extended to all infinite-dimensional C(K) spaces except c_0 itself, see Corollary 3.6 below.

A Banach space Z is said to be *weakly countably determined* (WCD) if there is a sequence (K_n) of w^* -compact subsets of Z^{**} such that, for every $z \in Z$ and $z^{**} \in Z^{**} \setminus Z$, there is $n \in \mathbb{N}$ such that $z \in K_n$ and $z^{**} \notin K_n$. The class of WCD Banach spaces includes all weakly compactly generated spaces and their subspaces. For complete information on WCD spaces, we refer the reader to [11, Chapter 7].

A Banach space Z is said to have the *Dunford–Pettis property* if every weakly compact operator T from Z to a Banach space is Dunford–Pettis (i.e. T(C) is norm compact whenever $C \subseteq Z$ is weakly compact).

Proposition 3.5 Let Z be a WCD Banach space with the Dunford–Pettis property such that Z^* contains no subspace isomorphic to c_0 . If there is an injective operator from Z into $L^1(v)$ for some $v \in ca(\Sigma, X)$, then Z is separable.

Proof The proof is similar to that of Proposition 3.4. Fix an injective operator $S : Z \to L^1(\nu)$. Let μ be a Rybakov control measure of ν , let $i : L^1(\nu) \to L^1(\mu)$ be the inclusion operator and define $T := i \circ S : Z \to L^1(\mu)$. Observe that the adjoint $T^* : L^{\infty}(\mu) \to Z^*$ is weakly compact, because $L^{\infty}(\mu)$ is a C(K) space and Z^* contains no subspace isomorphic to c_0 (see e.g. [1, Theorem 5.5.3]). By Gantmacher's theorem, T is weakly compact and so the Dunford– Pettis property of Z ensures that T is a Dunford–Pettis operator. Since every Dunford–Pettis operator from a WCD Banach space has separable range (see [28, Theorem 7.1]), T(Z) is separable. The rest of the proof follows the argument of Proposition 3.4, bearing in mind that a WCD Banach space is separable if (and only if) it has w^* -separable dual (see [28, Theorem 6.1] or [30, Corollary 2]).

For any compact Hausdorff topological space K, the Banach space C(K) has the Dunford–Pettis property (see e.g. [1, Theorem 5.4.5]) and its dual $C(K)^*$ contains no subspace isomorphic to c_0 (combine [1, Theorem 5.5.3] and [2, Theorem 4.68]). These facts and Proposition 3.5 yield the following:

Corollary 3.6 Let K be an infinite compact Hausdorff topological space. If C(K) is isomorphic to a subspace of $L^1(v)$ for some $v \in ca(\Sigma, X)$, then C(K) is isomorphic to c_0 .

Proof Such C(K) space is WCD, because every subspace of a weakly compactly generated Banach space (like $L^1(v)$) is WCD. Proposition 3.5 applies to deduce that C(K) is separable, i.e. K is metrizable. On the other hand, since every subspace of an order continuous Banach lattice (like $L^1(v)$) has the so-called Pełczyński's property (u) (see e.g. [2, Theorems 4.54 and 4.56]), so does C(K). It follows that C(K) is isomorphic to c_0 (see e.g. [1, Theorem 4.5.2]).

References

- 1. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)
- Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006) (reprint of the 1985 original)
- Avilés, A., Cabello Sánchez, F., Castillo, J.M.F., González, M., Moreno, Y.: Separably Injective Banach spaces, Lecture Notes in Mathematics, vol. 2132. Springer, Berlin (2016)
- Buhvalov, A.V., Veksler, A.I., Lozanovskiĭ, G.J.: Banach lattices—some Banach aspects of the theory. Uspekhi Mat. Nauk 34(2), 137–183 (1979)
- 5. Curbera, G.P.: The space of integrable functions with respect to a vector measure. Ph.D. Thesis, Universidad de Sevilla (1992)
- 6. Curbera, G.P.: Operators into L^1 of a vector measure and applications to Banach lattices. Math. Ann. **293**(2), 317–330 (1992)
- 7. Curbera, G.P.: When L^1 of a vector measure is an AL-space. Pac. J. Math. **162**(2), 287–303 (1994)
- Diestel, J., Uhl, Jr., J.J.: Vector Measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence (1977)
- Dodds, P.G., de Pagter, B., Ricker, W.: Reflexivity and order properties of scalar-type spectral operators in locally convex spaces. Trans. Am. Math. Soc. 293(1), 355–380 (1986)
- 10. Enflo, P., Rosenthal, H.P.: Some results concerning $L^p(\mu)$ -spaces. J. Funct. Anal. 14, 325–348 (1973)
- Fabian, M.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)
- 12. Fabian, M., Godefroy, G., Hájek, P., Zizler, V.: Hilbert-generated spaces. J. Funct. Anal. 200(2), 301–323 (2003)
- Fabian, M., Godefroy, G., Zizler, V.: The structure of uniformly Gateaux smooth Banach spaces. Isr. J. Math. 124, 243–252 (2001)
- Fernández, A., Mayoral, F., Naranjo, F., Rodríguez, J.: Norming sets and integration with respect to vector measures. Indag. Math. (N.S.) 19(2), 203–215 (2008)
- Fernández, A., Mayoral, F., Naranjo, F., Sánchez-Pérez, E.A.: Lattice isomorphisms between spaces of integrable functions with respect to vector measures. J. Oper. Theory 65(2), 451–470 (2011)
- Hájek, P., Montesinos Santalucía, V., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26. Springer, New York (2008)
- Jayne, J.E., Namioka, I., Rogers, C.A.: Fragmentability and σ-fragmentability. Fund. Math. 143(3), 207– 220 (1993)
- Johnson, W.B., Kania, T., Schechtman, G.: Closed ideals of operators on and complemented subspaces of Banach spaces of functions with countable support. Proc. Am. Math. Soc. 144(10), 4471–4485 (2016)
- Kutzarova, D.N., Troyanski, S.L.: On equivalent lattice norms which are uniformly convex or uniformly differentiable in every direction in Banach lattices with a weak unit. Serdica 9(3), 249–262 (1983)
- Lacey, H.E.: The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, vol. 208. Springer, New York (1974)
- 21. Lipecki, Z.: Semivariations of a vector measure. Acta Sci. Math. (Szeged) 76(3-4), 411-425 (2010)
- Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators, Operator Theory: Advances and Applications, vol. 180. Birkhäuser, Basel (2008)
- 23. Partington, J.R.: Equivalent norms on spaces of bounded functions. Isr. J. Math. 35(3), 205–209 (1980)
- Pełczyński, A., Sudakov, V.N.: Remark on non-complemented subspaces of the space m(S). Colloq. Math. 9, 85–88 (1962)
- Rodríguez, J.: On weak compactness in Lebesgue–Bochner spaces. Proc. Am. Math. Soc. 144(1), 103–108 (2016)

- Rodríguez, J.: Factorization of vector measures and their integration operators. Colloq. Math. 144(1), 114–126 (2016)
- 27. Rosenthal, H.P.: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^{p}(\mu)$ to $L^{r}(\nu)$. J. Funct. Anal. **4**, 176–214 (1969)
- 28. Talagrand, M.: Espaces de Banach faiblement \mathcal{K} -analytiques. Ann. Math. (2) 110(3), 407–438 (1979)
- 29. Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. **51**(307), ix+224 (1984)
- Vašák, L.: On one generalization of weakly compactly generated Banach spaces. Stud. Math. 70(1), 11–19 (1981)