ORIGINAL PAPER

Characterizations of complete spacelike submanifolds in the (n + p)-dimensional anti-de Sitter space of index q

Henrique F. de Lima¹ · Fábio R. dos Santos¹ · Marco Antonio L. Velásquez¹

Received: 29 October 2015 / Accepted: 23 August 2016 / Published online: 1 September 2016 © Springer-Verlag Italia 2016

Abstract Our purpose in this paper is to study the geometry of *n*-dimensional complete spacelike submanifolds immersed in the (n + p)-dimensional anti-de Sitter space \mathbb{H}_q^{n+p} of index *q*, with $1 \le q \le p$. Under suitable constraints on the Ricci curvature and the second fundamental form, we show that a complete maximal spacelike submanifold of \mathbb{H}_q^{n+p} must be totally geodesic. Furthermore, we establish sufficient conditions to guarantee that a complete spacelike submanifold with nonzero parallel mean curvature vector in \mathbb{H}_p^{n+p} must be pseudo-umbilical, which means that its mean curvature vector is an umbilical direction.

Keywords Anti-de Sitter space · Complete spacelike submanifolds · Totally geodesic submanifolds · Parallel mean curvature vector · Pseudo-umbilical submanifolds

Mathematics Subject Classification Primary 53C42; Secondary 53A10 · 53C20 · 53C50

1 Introduction

Apart from their physical importance (see, for example, [25, 34]), the interest in the study of spacelike submanifolds immersed in a Lorentzian space is motivated by their nice Bernstein-type properties. For instance, it was proved by Calabi [10] (for $n \le 4$) and by Cheng and Yau [14] (for all n) that the only complete maximal spacelike hypersurfaces of the Lorentz-Minkowski space \mathbb{L}^{n+1} are the spacelike hyperplanes. In [29], Nishikawa proved that a complete maximal spacelike hypersurface (that is, with mean curvature identically zero) in

Fábio R. dos Santos fabio@mat.ufcg.edu.br

Marco Antonio L. Velásquez marco.velasquez@pq.cnpq.br

Henrique F. de Lima henrique@mat.ufcg.edu.br

¹ Departamento de Matemática, Universidade Federal de Campina Grande, Campina Grande, Paraíba 58429-970, Brazil

the de Sitter space \mathbb{S}_1^{n+1} must be totally geodesic. In [18], Goddard conjectured that the complete spacelike hypersurfaces of \mathbb{S}_1^{n+1} with constant mean curvature H must be totally umbilical. Ramanathan [32] proved Goddard's conjecture in \mathbb{S}_1^3 for $0 \le H \le 1$. Moreover, for H > 1, he showed that the conjecture is false, as can be seen from an example due to Dajczer and Nomizu in [16]. Independently, Akutagawa [2] proved that Goddard's conjecture is true when either n = 2 and $H^2 \le 1$ or $n \ge 3$ and $H^2 < \frac{4(n-1)}{n^2}$. He also constructed complete spacelike rotation surfaces in \mathbb{S}_1^3 having constant mean curvature H > 1 and which are not totally umbilical. Next, Montiel [26] showed that Goddard's conjecture is true provided that M^n is compact. Furthermore, he exhibited examples of complete spacelike hypersurfaces in \mathbb{S}_1^{n+1} with constant mean curvature H satisfying $H^2 \ge \frac{4(n-1)}{n^2}$ and being non totally umbilical, the so-called hyperbolic cylinders.

In higher codimension, Cheng [12] extended Akutagawa's result for complete spacelike submanifolds with parallel mean curvature vector (that is, the mean curvature vector field is parallel as a section of the normal bundle) in the de Sitter space \mathbb{S}_p^{n+p} of index p. Afterwards, Aiyama [1] studied compact spacelike submanifolds in \mathbb{S}_p^{n+p} with parallel mean curvature vector and proved that if the normal connection of M^n is flat, then M^n is totally umbilical. Furthermore, she proved that a compact spacelike submanifold in \mathbb{S}_p^{n+p} with parallel mean curvature vector and nonnegative sectional curvature must be totally umbilical. Meanwhile, Alías and Romero [4] developed some integral formulas for compact spacelike submanifolds in \mathbb{S}_p^{n+p} which have a very clear geometric meaning and, as application, they obtained a Bernstein type result for complete maximal submanifolds in \mathbb{S}_q^{n+p} , extending a previous result due to Ishihara [19]. Moreover, they extended Ramanathan's result [32] showing that the only compact spacelike surfaces in \mathbb{S}_p^{2+p} with parallel mean curvature vector are the totally umbilical ones and, in particular, they also reproved Cheng's result [14] establishing that every complete spacelike surface in \mathbb{S}_p^{2+p} with parallel mean curvature vector such that $H^2 < 1$ is totally umbilical. Next, Li [22] showed that Montiel's result [26] still holds for higher codimensional spacelike submanifolds in \mathbb{S}_p^{n+p} . More recently, Araújo and Barbosa [6], assuming appropriated controls on the second fundamental form and on the scalar curvature, extended the techniques developed in [23, 33, 35] and proved that a compact spacelike submanifold in \mathbb{S}_p^{n+p} with nonzero mean curvature and parallel mean curvature vector must be isometric to a sphere.

When the ambient spacetime is the anti-de Sitter space \mathbb{H}_1^{n+1} , Choi et al. [15] used the generalized maximum principle of Omori [30] and Yau [36] in order to obtain a Myers type theorem [28] concerning complete maximal spacelike hypersurfaces. More precisely, they showed that if the height function with respect to a timelike vector of such a hypersurface obeys a certain boundedness, then it must be totally geodesic. Extending a technique due to Yau [37], the first author jointly with Camargo [7] obtained another rigidity results to complete maximal spacelike hypersurfaces in \mathbb{H}_1^{n+1} , imposing suitable conditions on both the norm of the second fundamental form and a certain height function naturally attached to the hypersurface. Afterwards, working with a suitable warped product model for an open subset of \mathbb{H}_1^{n+1} , the same authors jointly with Caminha and Parente [8] extended the main result of [7] showing that if M^n is a complete spacelike hypersurface with constant mean curvature and bounded scalar curvature in \mathbb{H}_1^{n+1} , such that the gradient of its height function with respect to a timelike vector has integrable norm, then M^n must be totally umbilical. More recently, the first author jointly Aquino [5] obtained another characterizations theorems concerning complete constant mean curvature spacelike hypersurfaces of \mathbb{H}_1^{n+1} , under suitable constraints on the behavior of the Gauss mapping. In higher codimension, Ishihara [19] proved that a *n*dimensional complete maximal spacelike submanifold immersed in the anti-de Sitter space \mathbb{H}_p^{n+p} of index p must have the squared norm of the second fundamental form bounded from above by *np*. Moreover, the only ones that attain this estimate are the hyperbolic cylinders. Later on, Cheng [13] obtained a refinement of Ishihara's result [19] for the case of complete maximal spacelike surfaces immersed in \mathbb{H}_p^{2+p} .

Motivated by the works above described, our purpose in this paper is to study the geometry of complete spacelike submanifolds immersed in the anti-de Sitter space \mathbb{H}_{q}^{n+p} of index q. In this setting, we extend the technique due to Alías and Romero in [4] and, under appropriated constraints on the Ricci curvature and second fundamental form, we show that a complete maximal spacelike submanifold M^n of \mathbb{H}_q^{n+p} must be totally geodesic (see Theorem 1 and Corollaries 1 and 2). Furthermore, we establish sufficient conditions to guarantee that a complete spacelike submanifold with nonzero parallel mean curvature vector **H** in \mathbb{H}_{p}^{n+p} must be pseudo-umbilical, which means that H is an umbilical direction (see Theorem 2 and Corollary 3). Our approach is based on a generalized form of a maximum principle at the infinity of Yau [37] (see Lemma 1 and Remark 1).

2 Preliminaries

Let \mathbb{R}_{q+1}^{n+p+1} be the (n+p+1)-dimensional semi-Euclidean space endowed with metric tensor \langle, \rangle of index q, with $1 \le q \le p$, given by

$$\langle v, w \rangle = \sum_{i=1}^{n+p-q} v_i w_i - \sum_{j=n+p-q+1}^{n+p+1} v_j w_j,$$

and let \mathbb{H}_{q}^{n+p} be the (n+p)-dimensional unitary anti-de Sitter space of index q, that is,

$$\mathbb{H}_{q}^{n+p} = \{ x \in \mathbb{R}_{q+1}^{n+p+1} ; \langle x, x \rangle = -1 \},\$$

which has constant sectional curvature equal to -1. Along this work, we will consider $x: M^n \to \mathbb{H}_q^{n+p} \subset \mathbb{R}_{q+1}^{n+p+1}$ a spacelike submanifold isometrically immersed in \mathbb{H}_q^{n+p} . We recall that a submanifold immersed is said to be *spacelike* if its induced metric is positive definite. In this setting, we will denote by ∇° , $\overline{\nabla}$ and ∇ the Levi-Civita connections of \mathbb{R}^{n+p+1}_{q+1} , \mathbb{H}^{n+p}_{q} and M^{n} , respectively, and ∇^{\perp} will stand for the normal connection of M^n in \mathbb{H}_a^{n+p} .

We will denote by α the second fundamental form of M^n in \mathbb{H}_q^{n+p} and by A_{ξ} the shape operator associated to a fixed vector field ξ normal to M^n in \mathbb{H}_q^{n+p} . We note that, for each $\xi \in \mathfrak{X}^{\perp}(M), A_{\xi}$ is a symmetric endomorphism of the tangent space $T_{x}M$ at $x \in M^{n}$. Moreover, A_{ξ} and α are related by

$$\langle A_{\xi}X, Y \rangle = \langle \alpha(X, Y), \xi \rangle, \tag{2.1}$$

for all tangent vector fields $X, Y \in \mathfrak{X}(M)$.

We also recall that the Gauss and Weingarten formulas of M^n in \mathbb{H}^{n+p}_q are given by

$$\nabla_X^{\circ} Y = \overline{\nabla}_X Y + \langle X, Y \rangle_X = \nabla_X Y + \alpha(X, Y) + \langle X, Y \rangle_X, \tag{2.2}$$

and

$$\nabla_X^{\circ}\xi = \overline{\nabla}_X\xi = -A_{\xi}X + \nabla_X^{\perp}\xi, \qquad (2.3)$$

for all tangent vector fields $X, Y \in \mathfrak{X}(M)$ and normal vector field $\xi \in \mathfrak{X}^{\perp}(M)$.

As in [31], the curvature tensor R of the spacelike submanifold M^n is given by

$$R(X, Y)Z = \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z,$$

where [,] denotes the Lie bracket and $X, Y, Z \in \mathfrak{X}(M)$.

A well known fact is that the curvature tensor R of M^n can be described in terms of its second fundamental form α and the curvature tensor \overline{R} of the ambient spacetime \mathbb{H}_q^{n+p} by the so-called Gauss equation, which is given by

$$\langle R(X, Y)Z, W \rangle = \langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle + \langle \alpha(X, W), \alpha(Y, Z) \rangle - \langle \alpha(X, Z), \alpha(Y, W) \rangle,$$
(2.4)

for all tangent vector fields $X, Y, Z, W \in \mathfrak{X}(M)$. Moreover, Codazzi equation asserts that

$$(\nabla_X A_{\xi})Y = (\nabla_Y A_{\xi})X, \tag{2.5}$$

for all $X, Y \in \mathfrak{X}(M)$ and $\xi \in \mathfrak{X}^{\perp}(M)$.

We will define the mean curvature vector of M^n in \mathbb{H}_q^{n+p} by

$$\mathbf{H} = \frac{1}{n} \mathrm{tr}(\alpha).$$

We recall that M^n is called *maximal* when $\mathbf{H} \equiv 0$ and we say that M^n has *parallel mean* curvature vector when $\nabla_X^{\perp} \mathbf{H} \equiv 0$, for every $X \in \mathfrak{X}(M)$. In this last case, when q = p and $\mathbf{H} \neq 0$, we have that $\langle \mathbf{H}, \mathbf{H} \rangle$ is a negative constant along M^n . Moreover, M^n is called *totally* geodesic when its second fundamental form α vanishes identically and it is called *totally* umbilical when

$$\alpha(X, Y) = \langle X, Y \rangle \mathbf{H}, \tag{2.6}$$

for all tangent vector fields $X, Y \in \mathfrak{X}(M)$.

We close this section describing the main analytical tool which is used along the proofs of our results in the next sections. In [37] Yau, generalizing a previous result due to Gaffney [17], established the following version of Stokes' Theorem on an *n*-dimensional, complete noncompact Riemannian manifold M^n : if $\omega \in \Omega^{n-1}(M)$ is an integrable (n-1)-differential form on M^n , then there exists a sequence B_i of domains on M^n such that $B_i \subset B_{i+1}$, $M^n = \bigcup_{i>1} B_i$ and

$$\lim_{i \to +\infty} \int_{B_i} d\omega = 0.$$

Suppose that M^n is oriented by the volume element dM. If $\omega = \iota_X dM$ is the contraction of dM in the direction of a smooth vector field X on M^n , then Caminha obtained a suitable consequence of Yau's result, which can be regarded as an extension of Hopf's maximum principle for complete Riemannian manifolds (cf. Proposition 2.1 of [9]). In what follows, $\mathcal{L}^1(M)$ and div denote the space of Lebesgue integrable functions and the divergence on M^n , respectively.

Lemma 1 Let X be a smooth vector field on the n-dimensional complete noncompact oriented Riemannian manifold M^n , such that divX does not change sign on M^n . If $|X| \in \mathcal{L}^1(M)$, then divX = 0.

Remark 1 Lemma 1 can also be seen as a consequence of the version of Stokes' Theorem given by Karp in [20]. In fact, using Theorem in [20], condition $|X| \in \mathcal{L}^1(M)$ can be weakened to the following technical condition:

$$\liminf_{r \to +\infty} \frac{1}{r} \int_{B(2r) \setminus B(r)} |X| dM = 0,$$

where B(r) denotes the geodesic ball of radius r center at some fixed origin $o \in M^n$. See also Corollary 1 and Remark in [20] for some another geometric conditions guaranteing this fact.

Remark 2 Reasoning in a similar way of that in the beginning of Section 4 of [5] (see also Section 4 in [3]), it is not difficult to verify that there exist no *n*-dimensional compact (without boundary) spacelike submanifolds immersed in \mathbb{H}_p^{n+p} . Motivated by this fact, along this paper we will deal with complete spacelike submanifolds.

3 Complete maximal submanifolds immersed in \mathbb{H}_{q}^{n+p}

Let $a \in \mathbb{R}_{q+1}^{n+p+1}$ be a fixed arbitrary vector and put

$$a = a^{\top} + a^N - \langle a, x \rangle x, \qquad (3.1)$$

where $a^{\top} \in \mathfrak{X}(M)$ and $a^N \in \mathfrak{X}^{\perp}(M)$ denote, respectively, the tangential and normal components of *a* with respect to $M^n \hookrightarrow \mathbb{H}_q^{n+p}$. By taking covariant derivative in (3.1) and using (2.2) and (2.3), we get for all tangent vector field $X \in \mathfrak{X}(M)$ that

$$\nabla_X a^\top = A_{a^N} X + \langle a, x \rangle X \tag{3.2}$$

and

$$\nabla_X^{\perp} a^N = -\alpha(a^{\top}, X). \tag{3.3}$$

Hence, from (2.1) and (3.2) we obtain

$$\operatorname{div}(a^{\top}) = \operatorname{tr}(A_{a^{N}}) + n\langle a, x \rangle = n\langle a, \mathbf{H} \rangle + n\langle a, x \rangle.$$
(3.4)

Moreover, we also have that

$$\begin{aligned} \operatorname{tr}(\nabla_{a^{\top}} A_{\xi}) &= \sum_{i} \langle \nabla_{a^{\top}} A_{\xi} e_{i}, e_{i} \rangle - \sum_{i} \langle \nabla_{a^{\top}} e_{i}, A_{\xi} e_{i} \rangle \\ &+ n \langle \nabla_{a^{\top}}^{\perp} \mathbf{H}, \xi \rangle - \sum_{i} a^{\top} \langle A_{\xi} e_{i}, e_{i} \rangle. \end{aligned}$$

So, considering a local orthonormal frame $\{e_1, \ldots, e_n\}$ on M^n such that $A_{\xi}e_i = \lambda_i^{\xi}e_i$, with a straightforward computation we can verify that

$$\operatorname{tr}(\nabla_{a^{\top}} A_{\xi}) = n \langle \nabla_{a^{\top}}^{\perp} \mathbf{H}, \xi \rangle.$$
(3.5)

From Codazzi Eq. (2.5) jointly with (3.2) and (3.5) we obtain, for all $\xi \in \mathfrak{X}^{\perp}(M)$,

$$\operatorname{div}(A_{\xi}a^{\top}) = n \langle \nabla_{a^{\top}}^{\perp} \mathbf{H}, \xi \rangle + \operatorname{tr}(A_{a^{N}} \circ A_{\xi}) + \langle a, x \rangle \operatorname{tr}(A_{\xi}) + \sum_{i} \langle \alpha(a^{\top}, e_{i}), \nabla_{e_{i}}^{\perp} \xi \rangle.$$
(3.6)

On the other hand, taking the trace in Gauss Eq. (2.4), we have

$$\operatorname{Ric}(X,Y) = -(n-1)\langle X,Y\rangle + n\langle \alpha(X,Y),\mathbf{H}\rangle - \sum_{i} \langle \alpha(X,e_{i}),\alpha(Y,e_{i})\rangle, \quad (3.7)$$

where Ric denotes the Ricci curvature of M^n . Considering $X = Y = a^{\top}$ in (3.7), we obtain

$$\operatorname{Ric}(a^{\top}, a^{\top}) = -(n-1)|a^{\top}|^{2} + n\langle \alpha(a^{\top}, a^{\top}), \mathbf{H} \rangle -\sum_{i} \langle \alpha(a^{\top}, e_{i}), \alpha(a^{\top}, e_{i}) \rangle.$$
(3.8)

Furthermore, from (3.3) and (3.6) we get

$$\operatorname{div}(A_{a^{N}}a^{\top}) = n \langle \nabla_{a^{\top}}^{\perp} \mathbf{H}, a^{N} \rangle + \operatorname{tr}(A_{a^{N}}^{2}) + \langle a, x \rangle \operatorname{tr}(A_{a^{N}}) - \sum_{i} \langle \alpha(a^{\top}, e_{i}), \alpha(a^{\top}, e_{i}) \rangle.$$
(3.9)

Hence, from (3.8) and (3.9) we conclude that

$$\operatorname{div}(A_{a^{N}}a^{\top}) = n \langle \nabla_{a^{\top}}^{\perp} \mathbf{H}, a^{N} \rangle + \operatorname{tr}(A_{a^{N}}^{2}) + \langle a, x \rangle \operatorname{tr}(A_{a^{N}}) + \operatorname{Ric}(a^{\top}, a^{\top}) + (n-1) |a^{\top}|^{2} - n \langle \alpha(a^{\top}, a^{\top}), \mathbf{H} \rangle.$$
(3.10)

Based on the previous computations, we obtain the following Bernstein type result concerning maximal submanifolds immersed in \mathbb{H}_{a}^{n+p}

Theorem 1 Let M^n be a complete maximal spacelike submanifold immersed in \mathbb{H}_q^{n+p} , with $1 \leq q \leq p$. Suppose that $Ric \geq -(n-1)$ on M^n . If there exist p vectors $a_1, \ldots, a_p \in \mathbb{R}_{q+1}^{n+p+1}$ such that a_1^N, \ldots, a_p^N are linearly independent, with $A_{a_i^N}$ bounded on M^n and $|a_i^\top| \in \mathcal{L}^1(M)$ for each $1 \leq i \leq p$, then M^n is totally geodesic.

Proof Let us consider $a = a_i$ for some $i \in \{1, ..., p\}$. Provided that $\mathbf{H} = 0$, from (2.1) we see that Eq. (3.10) can be rewritten as follows

$$\operatorname{div}(A_{a^{N}}a^{\top}) = \operatorname{tr}(A_{a^{N}}^{2}) + \operatorname{Ric}(a^{\top}, a^{\top}) + (n-1)|a^{\top}|^{2}.$$
 (3.11)

Thus, since $\operatorname{Ric}(a^{\top}, a^{\top}) \ge -(n-1)|a^{\top}|^2$, from (3.11) we obtain that

$$\operatorname{div}(A_{a^N}a^\top) \ge 0. \tag{3.12}$$

Moreover, whereas A_{a^N} is bounded on M^n , $|A_{a^N}| \le C_1$, for some constant $C_1 > 0$. Thus, as we are assuming that $|a^\top| \in \mathcal{L}^1(M)$, we have

$$|A_{a^{N}}a^{\top}| \le |A_{a^{N}}||a^{\top}| \le C_{1}|a^{\top}| \in \mathcal{L}^{1}(M).$$
(3.13)

Hence, taking into account (3.12) and (3.13), we can apply Lemma 1 to guarantee that $\operatorname{div}(A_{a^N}a^{\top}) = 0$. Consequently, returning to Eq. (3.11), we conclude that $A_{a^N} \equiv 0$. Therefore, since $\alpha(X, Y) = \sum_{i=1}^{p} \langle A_{a_i^N} X, Y \rangle a_i^N$, we have that M^n must be totally geodesic. \Box

Remark 3 Despite our assumption on the a_i^N in Theorem 1 to be a technical hypothesis, it is motivated by the fact that it occurs in a natural way in the context of spacelike hypersurfaces (see Corollary 2). In this sense, it is a mild hypothesis.

In the case that p = q, being M^n a maximal submanifold of \mathbb{H}_p^{n+p} , a classical result due to Ishihara [19] assures us that $|A|^2 \leq np$ (see also Cheng [13] for the case n = 2). Moreover, each maximal submanifold in \mathbb{H}_p^{n+p} meets the condition Ric $\geq -(n-1)$. Thus, as a consequence of Theorem 1 we obtain

Corollary 1 Let M^n be a complete maximal spacelike submanifold immersed in \mathbb{H}_p^{n+p} . If there exist p vectors $a_1, \ldots, a_p \in \mathbb{R}_{p+1}^{n+p+1}$ such that a_1^N, \ldots, a_p^N are linearly independent, with $|a_i^\top| \in \mathcal{L}^1(M)$ for each $1 \le i \le p$, then M^n is totally geodesic.

Taking into account that the warped product model $-(-\frac{\pi}{2}, \frac{\pi}{2}) \times_{\cos t} \mathbb{H}^n$, which is considered in [7] in order to prove their results, models just only an open subset of \mathbb{H}_1^{n+1} (cf. Example 4.3 of [27]), from Corollary 1 we obtain the following improvement of Theorem 1.2 of [7]

Corollary 2 Let M^n be a complete maximal spacelike hypersurface immersed in \mathbb{H}_1^{n+1} . If there exists a vector $a \in \mathbb{R}_2^{n+2}$ such that a^N does not vanish on M^n and $|a^\top| \in \mathcal{L}^1(M)$, then M^n is a totally geodesic hyperbolic space.

4 Submanifolds with parallel mean curvature vector in \mathbb{H}_p^{n+p}

In this section, we study the rigidity of a complete spacelike submanifold M^n of \mathbb{H}_p^{n+p} with nonzero parallel mean curvature vector **H**. For this, fixed a nonzero vector $a \in \mathbb{R}_{p+1}^{n+p+1}$, we observe that Eq. (3.4) gives us

$$\operatorname{div}\left(\langle a, \mathbf{H} \rangle a^{\top}\right) = \frac{1}{n} \operatorname{tr}(A_{a^{N}})^{2} + \langle a, x \rangle \operatorname{tr}(A_{a^{N}}) - \langle \alpha(a^{\top}, a^{\top}), \mathbf{H} \rangle + \langle a, \nabla_{a^{\top}}^{\perp} \mathbf{H} \rangle.$$
(4.1)

Thus, from (3.10) jointly with (4.1) we obtain

$$\operatorname{div}\left[(A_{a^{N}} - \langle a, \mathbf{H} \rangle I) a^{\top} \right] = (n-1) \langle \nabla_{a^{\top}}^{\perp} \mathbf{H}, a^{N} \rangle + \operatorname{tr}(A_{a^{N}}^{2}) - \frac{1}{n} \operatorname{tr}(A_{a^{N}})^{2} + T(a^{\top}, a^{\top}),$$
(4.2)

where *I* denotes the identity operator in the algebra of smooth vector fields on M^n and, following the terminology established in [4], *T* stands for a covariant tensor on M^n which is given by

$$T(X, X) = \operatorname{Ric}(X, X) + (n-1) |X|^{2} - (n-1) \langle \alpha(X, X), \mathbf{H} \rangle.$$
(4.3)

According to [4,11], a spacelike submanifold M^n of \mathbb{H}_p^{n+p} with nonzero mean curvature vector **H** is said *pseudo-umbilical* if **H** is an umbilical direction. From (2.6) we see that a totally umbilical spacelike submanifold is always pseudo-umbilical. Conversely, we get

Proposition 1 Let M^n be a complete pseudo-umbilical spacelike submanifold with nonzero parallel mean curvature vector \mathbf{H} in \mathbb{H}_p^{n+p} . If there exist p vectors $a_1, \ldots, a_p \in \mathbb{R}_{p+1}^{n+p+1}$ such that a_1^N, \ldots, a_p^N are linearly independent, with $\langle a_i, \mathbf{H} \rangle$ and $A_{a_i^N}$ bounded on M^n and $|a_i^\top| \in \mathcal{L}^1(M)$ for each $1 \leq i \leq p$, then M^n is totally umbilical.

Proof Let us consider $a = a_i$ for some $i \in \{1, ..., p\}$. We have that

$$\left| (A_{a^N} - \langle a, \mathbf{H} \rangle I) a^\top \right| \le \left(|A_{a^N}| + |\langle a, \mathbf{H} \rangle| \right) |a^\top| \le C_2 |a^\top| \in \mathcal{L}^1(M).$$
(4.4)

Since we are assuming that M^n is pseudo-umbilical of \mathbb{H}_p^{n+p} , Lemma 4.1 of [4] assures that

$$\operatorname{Ric}(X, X) \ge -(n-1)|X|^2 + (n-1)\langle \alpha(X, X), \mathbf{H} \rangle, \tag{4.5}$$

for all $X \in \mathfrak{X}(M)$. Thus, from (4.3) and (4.5) we get that $T(a^{\top}, a^{\top}) \ge 0$. Moreover, we observe that the function $u = \operatorname{tr}(A_{a^N}^2) - \frac{1}{n}\operatorname{tr}(A_{a^N})^2$ is always nonnegative with u = 0 if, and only if, a^N is a umbilical direction. From (4.2), we obtain

$$\operatorname{div}\left[(A_{a^N} - \langle a, \mathbf{H} \rangle I) a^\top \right] \ge 0.$$
(4.6)

Thus, from (4.4) and (4.6), Lemma 1 assure us

$$\operatorname{tr}(A_{a^N}^2) - \frac{1}{n} \operatorname{tr}(A_{a^N})^2 + T(a^{\top}, a^{\top}) = 0.$$

Then, $\operatorname{tr}(A_{a^N}^2) - \frac{1}{n}\operatorname{tr}(A_{a^N})^2 = 0$ and, hence, a^N is a umbilical direction of M^n . Therefore, since we are supposing the existence of such vectors $a_1, \ldots, a_p \in \mathbb{R}_{p+1}^{n+p+1}$ whose normal projections a_1^N, \ldots, a_p^N with respect to M^n are linearly independent, we conclude that (2.6) holds, that is, M^n must be totally umbilical.

Proceeding, we establish sufficient conditions to guarantee that a spacelike submanifold immersed in \mathbb{H}_p^{n+p} with nonzero parallel mean curvature vector must be pseudo-umbilical.

Theorem 2 Let M^n be a complete spacelike submanifold immersed in \mathbb{H}_p^{n+p} with nonzero parallel mean curvature vector \mathbf{H} and bounded normalized scalar curvature R. If there exists a nonzero vector $a \in \mathbb{R}_{p+1}^{n+p+1}$ such that a^N is timelike, i.e., $\langle a^N, a^N \rangle < 0$, collinear to \mathbf{H} and $|a^{\top}| \in \mathcal{L}^1(M)$, then M^n is pseudo-umbilical.

Proof Initially, taking a local orthonormal frame $\{e_1, \ldots, e_n\}$ on M^n , from (3.7) we get that the squared norm of second form fundamental α of M^n satisfies

$$|\alpha|^{2} = \sum_{i,j} |\alpha(e_{i}, e_{j})|^{2} = n^{2} \langle \mathbf{H}, \mathbf{H} \rangle + n(n-1)(R+1).$$
(4.7)

Now, let us consider a nonzero vector $a \in \mathbb{R}_{p+1}^{n+p+1}$ such that a^N is timelike, collinear to **H** and with $|a^\top| \in \mathcal{L}^1(M)$. Since M^n has bounded normalized scalar curvature and nonzero parallel mean curvature vector **H**, from (4.7) we conclude that $|\alpha|^2$ is bounded on M^n . So, taking $\xi = \mathbf{H}$ in (3.6) we get

$$\operatorname{div}(A_{\mathbf{H}}a^{\top}) = \operatorname{tr}(A_{a^{N}} \circ A_{\mathbf{H}}) + \langle a, x \rangle \operatorname{tr}(A_{\mathbf{H}}), \tag{4.8}$$

where $A_{\mathbf{H}}$ denotes the Weingarten operator associated to \mathbf{H} .

On the other hand, from (3.4) we have

$$\langle a, x \rangle = \frac{1}{n} \operatorname{div}(a^{\top}) - \langle a, \mathbf{H} \rangle.$$
 (4.9)

Consequently, from (4.8) and (4.9)

$$\operatorname{div}(A_{\mathbf{H}}a^{\top}) = \operatorname{tr}(A_{a^{N}} \circ A_{\mathbf{H}}) + \operatorname{tr}(A_{\mathbf{H}})\frac{1}{n}\operatorname{div}(a^{\top}) - \frac{1}{n}\operatorname{tr}(A_{a^{N}})\operatorname{tr}(A_{\mathbf{H}}).$$
(4.10)

Since

$$\operatorname{div}\left(\operatorname{tr}(A_{\mathbf{H}})a^{\top}\right) = \operatorname{tr}(A_{\mathbf{H}})\operatorname{div}(a^{\top}), \qquad (4.11)$$

from (4.10) and (4.11) we obtain

$$\operatorname{div} V = \operatorname{tr}(A_{a^N} \circ A_{\mathbf{H}}) - \frac{1}{n} \operatorname{tr}(A_{a^N}) \operatorname{tr}(A_{\mathbf{H}}), \qquad (4.12)$$

where V is a tangent vector field on M^n given by

$$V = \left(A_{\mathbf{H}} - \frac{1}{n} \operatorname{tr}(A_{\mathbf{H}})I\right) a^{\top}.$$

We note that, since we are supposing a^N timelike and collinear to **H**, there exists on M^n a smooth function λ having strict sign such that $a^N = \lambda \mathbf{H}$. Thus, from (2.3) and (4.12) we get

div
$$V = \lambda \left(\operatorname{tr}(A_{\mathbf{H}}^2) - \frac{1}{n} \operatorname{tr}(A_{\mathbf{H}})^2 \right).$$
 (4.13)

Consequently, from (4.13) we conclude that div V does not change sign on M^n . Moreover, we also have that

$$|V| \le (|A_{\mathbf{H}}| + |\langle \mathbf{H}, \mathbf{H} \rangle|) |a^{\top}| \in \mathcal{L}^{1}(M).$$

Hence, we can apply once more Lemma 1 to assure that div V = 0 on M^n .

Therefore, returning to (4.13) we obtain that

$$\lambda \left(\operatorname{tr}(A_{\mathbf{H}}^2) - \frac{1}{n} \operatorname{tr}(A_{\mathbf{H}})^2 \right) = 0$$

which implies that H is an umbilical direction.

We observe that, in the case p = 1, the notion of pseudo-umbilical coincides with that of totally umbilical. Moreover, we note that the hypothesis that a^N is timelike amounts to the support function $f_a = \langle a, v \rangle$ having strict sign on the spacelike hypersurface $M^n \hookrightarrow \mathbb{H}_1^{n+1}$, where v stands for the Gauss mapping of M^n . Consequently, taking into account the classification of the totally umbilical hypersurfaces of \mathbb{H}_1^{n+1} (see, for instance, Example 1 of [24]) and that Theorem 1 of [21] assures us that a complete constant mean curvature spacelike hypersurface of \mathbb{H}_1^{n+1} must have bounded second fundamental form (or, equivalently, bounded normalized scalar curvature), from Theorem 2 we obtain the following

Corollary 3 Let M^n be a complete spacelike hypersurface immersed in \mathbb{H}_1^{n+1} with nonzero constant mean curvature. If there exists a nonzero vector $a \in \mathbb{R}_2^{n+2}$ such that the support function f_a has strict sign on M^n and $|a^\top| \in \mathcal{L}^1(M)$, then M^n is a totally umbilical hyperbolic space.

Acknowledgements The first author is partially supported by CNPq, Brazil, Grant 303977/2015-9. The second author was partially supported by PNPD/UFCG/CAPES, Brazil. The third author is partially supported by CNPq, Brazil, grant 308757/2015-7. The authors would like to thank the referee for giving some valuable suggestions and comments which improved the paper.

References

- Aiyama, R.: Compact spacelike m-submanifolds in a pseudo-Riemannian sphere S^{m+p}_p(c). Tokyo J. Math. 18, 81–90 (1995)
- Akutagawa, K.: On spacelike hypersurfaces with constant mean curvature in the de Sitter space. Math. Z. 196, 13–19 (1987)
- Alías, L.J.: A congruence theorem for compact spacelike surfaces in de Sitter space. Tokyo J. Math. 24, 107–112 (2001)
- Alías, L.J., Romero, A.: Integral formulas for compact spacelike n-submanifolds in de Sitter spaces applications to the parallel mean curvature vector case. Manuscripta Math. 87, 405–416 (1995)

- Aquino, C.P., de Lima, H.F.: On the umbilicity of complete constant mean curvature spacelike hypersurfaces. Math. Ann. 360, 555–569 (2014)
- Araújo, K.O., Barbosa, E.R.: Pinching theorems for compact spacelike submanifolds in semi-Riemannian space forms. Diff. Geom. Appl. 31, 672–681 (2013)
- Camargo, F., de Lima, H.F.: New characterizations of totally geodesic hypersurfaces in anti-de Sitter space ℍ₁ⁿ⁺¹. J. Geom. Phys. 60, 1326–1332 (2010)
- Camargo, F., Caminha, A., de Lima, H.F., Parente, U.L.: Generalized maximum principles and the rigidity of complete spacelike hypersurfaces. Math. Proc. Camb. Phil. Soc. 153, 541–556 (2012)
- Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. 42, 277–300 (2011)
- Calabi, E.: Examples of Bernstein problems for some nonlinear equations. Math. Proc. Camb. Phil. Soc. 82, 489–495 (1977)
- Chen, B.Y.: On the mean curvature of submanifolds of Euclidean space. Bull. Am. Math. Soc. 77, 741–743 (1971)
- Cheng, Q.M.: Complete space-like submanifolds with parallel mean curvature vector. Math. Z. 206, 333–339 (1991)
- 13. Cheng, Q.M.: Space-like surfaces in an anti-de Sitter space. Colloq. Math. 66, 201-208 (1993)
- Cheng, S.Y., Yau, S.T.: Maximal Spacelike Hypersurfaces in the Lorentz-Minkowski Space. Ann. Math. 104, 407–419 (1976)
- Choi, S.M., Ki, U.-H., Kim, H.-J.: Complete maximal spacelike hypersurfaces in an anti-de Sitter space. Bull. Korean Math. Soc. 31, 85–92 (1994)
- Dajczer, M., Nomizu, K.: On the flat surfaces in S³₁ and H³₁. Manifolds and Lie Groups Birkauser, Boston (1981)
- 17. Gaffney, M.: A special Stokes' Theorem for complete Riemannian manifolds. Ann. Math. **60**, 140–145 (1954)
- Goddard, A.J.: Some remarks on the existence of spacelike hypersurfaces of constant mean curvature. Math. Proc. Camb. Phil. Soc. 82, 489–495 (1977)
- Ishihara, T.: Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Mich. Math. J. 35, 345–352 (1988)
- 20. Karp, L.: On stokes' theorem for noncompact manifolds. Proc. Am. Math. Soc. 82, 487–490 (1981)
- Ki, U.-H., Kim, H.-J., Nakagawa, H.: On space-like hypersurfaces with constant mean curvature of a Lorentz space form. Tokyo J. Math. 14, 205–216 (1991)
- 22. Li, H.: Complete Spacelike Submanifolds in de Sitter Space with Parallel Mean Curvature Vector Satisfying $H^2 = 4(n-1)/n^2$. Ann. Global Anal. Geom. **15**, 335–345 (1997)
- Lin, J.M., Xia, C.Y.: Global pinching theorems for even dimensional minimal submanifolds in a unit sphere. Math. Z. 201, 381–389 (1989)
- Lucas, P., Ramírez-Ospina, H.F.: Hypersurfaces in pseudo-Euclidean spaces satisfying a linear condition on the linearized operator of a higher order mean curvature. Diff. Geom. Appl. 31, 175–189 (2013)
- Marsdan, J., Tipler, F.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Bull. Am. Phys. Soc. 23, 84 (1978)
- Montiel, S.: An integral inequality for compact spacelike hypersurfaces in the de Sitter space and applications to the case of constant mean curvature. Indiana Univ. Math. J. 37, 909–917 (1988)
- Montiel, S.: Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes. Math. Ann. 314, 529–553 (1999)
- Myers, S.B.: Curvature closed hypersurfaces and nonexistence of closed minimal hypersurfaces. Trans. Am. Math. Soc. 71, 211–217 (1951)
- 29. Nishikawa, S.: On spacelike hypersurfaces in a Lorentzian manifold. Nagoya Math. J. 95, 117–124 (1984)
- 30. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. **19**, 205–214 (1967)
- 31. O'Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, London (1983)
- Ramanathan, J.: Complete spacelike hypersurfaces of constant mean curvature in de Sitter space. Indiana Univ. Math. J. 36, 349–359 (1987)
- Shen, C.L.: A global pinching theorem for minimal hypersurfaces in a sphere. Proc. Am. Math. Soc. 105, 192–198 (1989)
- 34. Stumbles, S.: Hypersurfaces of constant mean extrinsic curvature. Ann. Phys. 133, 28–56 (1980)
- Xu, H.W.: L_{n/2}-pinching theorems for submanifolds with parallel mean curvature in a sphere. J. Math. Soc. Jpn. 46, 503–515 (1994)
- Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)
- Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25, 659–670 (1976)