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Abstract Our purpose in this paper is to study the geometry of n-dimensional complete
spacelike submanifolds immersed in the (n + p)-dimensional anti-de Sitter space H

n+p
q

of index q , with 1 ≤ q ≤ p. Under suitable constraints on the Ricci curvature and the
second fundamental form, we show that a complete maximal spacelike submanifold ofHn+p

q

must be totally geodesic. Furthermore, we establish sufficient conditions to guarantee that a
complete spacelike submanifold with nonzero parallel mean curvature vector in H

n+p
p must

be pseudo-umbilical, which means that its mean curvature vector is an umbilical direction.
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1 Introduction

Apart from their physical importance (see, for example, [25,34]), the interest in the study of
spacelike submanifolds immersed in a Lorentzian space is motivated by their nice Bernstein-
type properties. For instance, it was proved by Calabi [10] (for n ≤ 4) and by Cheng and
Yau [14] (for all n) that the only complete maximal spacelike hypersurfaces of the Lorentz-
Minkowski space L

n+1 are the spacelike hyperplanes. In [29], Nishikawa proved that a
complete maximal spacelike hypersurface (that is, with mean curvature identically zero) in
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the de Sitter space S
n+1
1 must be totally geodesic. In [18], Goddard conjectured that the

complete spacelike hypersurfaces of Sn+1
1 with constant mean curvature H must be totally

umbilical. Ramanathan [32] provedGoddard’s conjecture in S31 for 0 ≤ H ≤ 1.Moreover, for
H > 1, he showed that the conjecture is false, as can be seen from an example due to Dajczer
and Nomizu in [16]. Independently, Akutagawa [2] proved that Goddard’s conjecture is true
when either n = 2 and H2 ≤ 1 or n ≥ 3 and H2 <

4(n−1)
n2

. He also constructed complete

spacelike rotation surfaces in S
3
1 having constant mean curvature H > 1 and which are not

totally umbilical. Next, Montiel [26] showed that Goddard’s conjecture is true provided that
Mn is compact. Furthermore, he exhibited examples of complete spacelike hypersurfaces
in S

n+1
1 with constant mean curvature H satisfying H2 ≥ 4(n−1)

n2
and being non totally

umbilical, the so-called hyperbolic cylinders.
In higher codimension, Cheng [12] extended Akutagawa’s result for complete spacelike

submanifolds with parallel mean curvature vector (that is, the mean curvature vector field is
parallel as a section of the normal bundle) in the de Sitter space Sn+p

p of index p. Afterwards,
Aiyama [1] studied compact spacelike submanifolds in S

n+p
p with parallel mean curvature

vector and proved that if the normal connection of Mn is flat, then Mn is totally umbilical.
Furthermore, she proved that a compact spacelike submanifold in S

n+p
p with parallel mean

curvature vector and nonnegative sectional curvature must be totally umbilical. Meanwhile,
Alías and Romero [4] developed some integral formulas for compact spacelike submanifolds
in Sn+p

p which have a very clear geometric meaning and, as application, they obtained a Bern-
stein type result for complete maximal submanifolds in Sn+p

q , extending a previous result due
to Ishihara [19]. Moreover, they extended Ramanathan’s result [32] showing that the only
compact spacelike surfaces in S2+p

p with parallel mean curvature vector are the totally umbil-
ical ones and, in particular, they also reproved Cheng’s result [14] establishing that every
complete spacelike surface in S

2+p
p with parallel mean curvature vector such that H2 < 1 is

totally umbilical. Next, Li [22] showed that Montiel’s result [26] still holds for higher codi-
mensional spacelike submanifolds in Sn+p

p . More recently, Araújo and Barbosa [6], assuming
appropriated controls on the second fundamental form and on the scalar curvature, extended
the techniques developed in [23,33,35] and proved that a compact spacelike submanifold in
S
n+p
p with nonzero mean curvature and parallel mean curvature vector must be isometric to

a sphere.
When the ambient spacetime is the anti-de Sitter space H

n+1
1 , Choi et al. [15] used the

generalized maximum principle of Omori [30] and Yau [36] in order to obtain a Myers type
theorem [28] concerning complete maximal spacelike hypersurfaces. More precisely, they
showed that if the height function with respect to a timelike vector of such a hypersurface
obeys a certain boundedness, then it must be totally geodesic. Extending a technique due
to Yau [37], the first author jointly with Camargo [7] obtained another rigidity results to
completemaximal spacelike hypersurfaces inHn+1

1 , imposing suitable conditions on both the
norm of the second fundamental form and a certain height function naturally attached to the
hypersurface. Afterwards, working with a suitable warped product model for an open subset
ofHn+1

1 , the same authors jointlywithCaminha andParente [8] extended themain result of [7]
showing that if Mn is a complete spacelike hypersurface with constant mean curvature and
bounded scalar curvature inHn+1

1 , such that the gradient of its height functionwith respect to a
timelike vector has integrable norm, thenMn must be totally umbilical.More recently, the first
author jointly Aquino [5] obtained another characterizations theorems concerning complete
constant mean curvature spacelike hypersurfaces of H

n+1
1 , under suitable constraints on

the behavior of the Gauss mapping. In higher codimension, Ishihara [19] proved that a n-
dimensional complete maximal spacelike submanifold immersed in the anti-de Sitter space
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H
n+p
p of index p must have the squared norm of the second fundamental form bounded from

above by np. Moreover, the only ones that attain this estimate are the hyperbolic cylinders.
Later on, Cheng [13] obtained a refinement of Ishihara’s result [19] for the case of complete
maximal spacelike surfaces immersed in H

2+p
p .

Motivated by the works above described, our purpose in this paper is to study the geometry
of complete spacelike submanifolds immersed in the anti-de Sitter spaceHn+p

q of index q . In
this setting, we extend the technique due to Alías and Romero in [4] and, under appropriated
constraints on the Ricci curvature and second fundamental form, we show that a complete
maximal spacelike submanifold Mn of Hn+p

q must be totally geodesic (see Theorem 1 and
Corollaries 1 and 2). Furthermore, we establish sufficient conditions to guarantee that a
complete spacelike submanifold with nonzero parallel mean curvature vector H in H

n+p
p

must be pseudo-umbilical, which means that H is an umbilical direction (see Theorem 2 and
Corollary 3). Our approach is based on a generalized form of a maximum principle at the
infinity of Yau [37] (see Lemma 1 and Remark 1).

2 Preliminaries

Let Rn+p+1
q+1 be the (n + p + 1)-dimensional semi-Euclidean space endowed with metric

tensor 〈, 〉 of index q , with 1 ≤ q ≤ p, given by

〈v,w〉 =
n+p−q∑

i=1

viwi −
n+p+1∑

j=n+p−q+1

v jw j ,

and let Hn+p
q be the (n + p)-dimensional unitary anti-de Sitter space of index q , that is,

H
n+p
q = {x ∈ R

n+p+1
q+1 ; 〈x, x〉 = −1},

which has constant sectional curvature equal to −1.
Along this work, we will consider x : Mn → H

n+p
q ⊂ R

n+p+1
q+1 a spacelike submanifold

isometrically immersed inHn+p
q . We recall that a submanifold immersed is said to be space-

like if its induced metric is positive definite. In this setting, we will denote by ∇◦, ∇ and ∇
the Levi-Civita connections of Rn+p+1

q+1 , Hn+p
q and Mn , respectively, and ∇⊥ will stand for

the normal connection of Mn in H
n+p
q .

We will denote by α the second fundamental form of Mn in H
n+p
q and by Aξ the shape

operator associated to a fixed vector field ξ normal to Mn in H
n+p
q . We note that, for each

ξ ∈ X⊥(M), Aξ is a symmetric endomorphism of the tangent space TxM at x ∈ Mn .
Moreover, Aξ and α are related by

〈Aξ X, Y 〉 = 〈α(X, Y ), ξ 〉, (2.1)

for all tangent vector fields X, Y ∈ X(M).
We also recall that the Gauss and Weingarten formulas of Mn in H

n+p
q are given by

∇◦
XY = ∇XY + 〈X, Y 〉x = ∇XY + α(X, Y ) + 〈X, Y 〉x, (2.2)

and
∇◦
X ξ = ∇X ξ = −Aξ X + ∇⊥

X ξ, (2.3)

for all tangent vector fields X, Y ∈ X(M) and normal vector field ξ ∈ X⊥(M).
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As in [31], the curvature tensor R of the spacelike submanifold Mn is given by

R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z ,

where [, ] denotes the Lie bracket and X, Y, Z ∈ X(M).
A well known fact is that the curvature tensor R of Mn can be described in terms of its

second fundamental form α and the curvature tensor R of the ambient spacetime H
n+p
q by

the so-called Gauss equation, which is given by

〈R(X, Y )Z ,W 〉 = 〈Y, Z〉〈X,W 〉 − 〈X, Z〉〈Y,W 〉
+ 〈α(X,W ), α(Y, Z)〉 − 〈α(X, Z), α(Y,W )〉, (2.4)

for all tangent vector fields X, Y, Z ,W ∈ X(M). Moreover, Codazzi equation asserts that

(∇X Aξ )Y = (∇Y Aξ )X, (2.5)

for all X, Y ∈ X(M) and ξ ∈ X⊥(M).
We will define the mean curvature vector of Mn in H

n+p
q by

H = 1

n
tr(α).

We recall that Mn is called maximal when H ≡ 0 and we say that Mn has parallel mean
curvature vector when ∇⊥

X H ≡ 0, for every X ∈ X(M). In this last case, when q = p and
H = 0, we have that 〈H, H〉 is a negative constant along Mn . Moreover, Mn is called totally
geodesic when its second fundamental form α vanishes identically and it is called totally
umbilical when

α(X, Y ) = 〈X, Y 〉H, (2.6)

for all tangent vector fields X, Y ∈ X(M).
We close this section describing the main analytical tool which is used along the proofs of

our results in the next sections. In [37]Yau, generalizing a previous result due toGaffney [17],
established the following version of Stokes’ Theorem on an n-dimensional, complete non-
compact Riemannian manifold Mn : if ω ∈ �n−1(M) is an integrable (n − 1)-differential
form on Mn , then there exists a sequence Bi of domains on Mn such that Bi ⊂ Bi+1,
Mn = ⋃

i≥1 Bi and

lim
i→+∞

∫

Bi
dω = 0.

Suppose that Mn is oriented by the volume element dM . If ω = ιXdM is the contraction
of dM in the direction of a smooth vector field X on Mn , then Caminha obtained a suitable
consequence of Yau’s result, which can be regarded as an extension of Hopf’s maximum
principle for complete Riemannian manifolds (cf. Proposition 2.1 of [9]). In what follows,
L1(M) and div denote the space of Lebesgue integrable functions and the divergence on Mn ,
respectively.

Lemma 1 Let X be a smooth vector field on the n-dimensional complete noncompact ori-
ented Riemannianmanifold Mn, such that divX does not change sign on Mn. If |X | ∈ L1(M),
then divX = 0.

Remark 1 Lemma 1 can also be seen as a consequence of the version of Stokes’ Theorem
given by Karp in [20]. In fact, using Theorem in [20], condition |X | ∈ L1(M) can be
weakened to the following technical condition:



Characterizations of complete spacelike submanifolds… 925

lim inf
r→+∞

1

r

∫

B(2r)\B(r)
|X |dM = 0,

where B(r) denotes the geodesic ball of radius r center at some fixed origin o ∈ Mn . See
also Corollary 1 and Remark in [20] for some another geometric conditions guaranteing this
fact.

Remark 2 Reasoning in a similar way of that in the beginning of Section 4 of [5] (see also
Section 4 in [3]), it is not difficult to verify that there exist no n-dimensional compact (without
boundary) spacelike submanifolds immersed inHn+p

p .Motivated by this fact, along this paper
we will deal with complete spacelike submanifolds.

3 Complete maximal submanifolds immersed in H
n+ p
q

Let a ∈ R
n+p+1
q+1 be a fixed arbitrary vector and put

a = a� + aN − 〈a, x〉x, (3.1)

where a� ∈ X(M) and aN ∈ X⊥(M) denote, respectively, the tangential and normal com-
ponents of a with respect to Mn ↪→ H

n+p
q . By taking covariant derivative in (3.1) and using

(2.2) and (2.3), we get for all tangent vector field X ∈ X(M) that

∇Xa
� = AaN X + 〈a, x〉X (3.2)

and
∇⊥
X a

N = −α(a�, X). (3.3)

Hence, from (2.1) and (3.2) we obtain

div(a�) = tr(AaN ) + n〈a, x〉 = n〈a, H〉 + n〈a, x〉. (3.4)

Moreover, we also have that

tr(∇a� Aξ ) =
∑

i

〈∇a� Aξ ei , ei 〉 −
∑

i

〈∇a�ei , Aξ ei 〉

+ n〈∇⊥
a�H, ξ 〉 −

∑

i

a�〈Aξ ei , ei 〉.

So, considering a local orthonormal frame {e1, . . . , en} on Mn such that Aξ ei = λ
ξ
i ei , with

a straightforward computation we can verify that

tr(∇a� Aξ ) = n〈∇⊥
a�H, ξ 〉. (3.5)

From Codazzi Eq. (2.5) jointly with (3.2) and (3.5) we obtain, for all ξ ∈ X⊥(M),

div(Aξa
�) = n〈∇⊥

a�H, ξ 〉 + tr(AaN ◦ Aξ ) + 〈a, x〉tr(Aξ )

+
∑

i

〈α(a�, ei ),∇⊥
ei ξ 〉. (3.6)

On the other hand, taking the trace in Gauss Eq. (2.4), we have

Ric(X, Y ) = −(n − 1)〈X, Y 〉 + n〈α(X, Y ), H〉 −
∑

i

〈α(X, ei ), α(Y, ei )〉, (3.7)
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where Ric denotes the Ricci curvature of Mn . Considering X = Y = a� in (3.7), we obtain

Ric(a�, a�) = −(n − 1)
∣∣a�∣∣2 + n〈α(a�, a�), H〉

−
∑

i

〈α(a�, ei ), α(a�, ei )〉. (3.8)

Furthermore, from (3.3) and (3.6) we get

div(AaN a
�) = n〈∇⊥

a�H, aN 〉 + tr(A2
aN ) + 〈a, x〉tr(AaN )

−
∑

i

〈α(a�, ei ), α(a�, ei )〉. (3.9)

Hence, from (3.8) and (3.9) we conclude that

div(AaN a
�) = n〈∇⊥

a�H, aN 〉 + tr(A2
aN ) + 〈a, x〉tr(AaN )

+Ric(a�, a�) + (n − 1)
∣∣a�∣∣2 − n〈α(a�, a�), H〉. (3.10)

Based on the previous computations, we obtain the following Bernstein type result con-
cerning maximal submanifolds immersed in H

n+p
q

Theorem 1 Let Mn be a complete maximal spacelike submanifold immersed in H
n+p
q , with

1 ≤ q ≤ p. Suppose that Ric ≥ −(n − 1) on Mn. If there exist p vectors a1, . . . , ap ∈
R
n+p+1
q+1 such that aN1 , . . . , aNp are linearly independent, with AaNi

bounded on Mn and

|a�
i | ∈ L1(M) for each 1 ≤ i ≤ p, then Mn is totally geodesic.

Proof Let us consider a = ai for some i ∈ {1, . . . , p}. Provided that H = 0, from (2.1) we
see that Eq. (3.10) can be rewritten as follows

div(AaN a
�) = tr(A2

aN ) + Ric(a�, a�) + (n − 1)
∣∣a�∣∣2. (3.11)

Thus, since Ric(a�, a�) ≥ −(n − 1)
∣∣a�∣∣2, from (3.11) we obtain that

div(AaN a
�) ≥ 0. (3.12)

Moreover, whereas AaN is bounded on Mn , |AaN | ≤ C1, for some constantC1 > 0. Thus,
as we are assuming that |a�| ∈ L1(M), we have

|AaN a
�| ≤ |AaN ||a�| ≤ C1|a�| ∈ L1(M). (3.13)

Hence, taking into account (3.12) and (3.13), we can apply Lemma 1 to guarantee that
div(AaN a

�) = 0. Consequently, returning to Eq. (3.11), we conclude that AaN ≡ 0. There-
fore, since α(X, Y ) = ∑p

i=1〈AaNi
X, Y 〉aNi , we have that Mn must be totally geodesic. ��

Remark 3 Despite our assumption on the aNi in Theorem 1 to be a technical hypothesis, it is
motivated by the fact that it occurs in a natural way in the context of spacelike hypersurfaces
(see Corollary 2). In this sense, it is a mild hypothesis.

In the case that p = q , being Mn a maximal submanifold of Hn+p
p , a classical result

due to Ishihara [19] assures us that |A|2 ≤ np (see also Cheng [13] for the case n = 2).
Moreover, each maximal submanifold in H

n+p
p meets the condition Ric ≥ −(n − 1). Thus,

as a consequence of Theorem 1 we obtain
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Corollary 1 Let Mn be a complete maximal spacelike submanifold immersed in H
n+p
p . If

there exist p vectors a1, . . . , ap ∈ R
n+p+1
p+1 such that aN1 , . . . , aNp are linearly independent,

with |a�
i | ∈ L1(M) for each 1 ≤ i ≤ p, then Mn is totally geodesic.

Taking into account that the warped product model −(−π
2 , π

2 ) ×cos t H
n , which is

considered in [7] in order to prove their results, models just only an open subset of Hn+1
1 (cf.

Example 4.3 of [27]), from Corollary 1 we obtain the following improvement of Theorem
1.2 of [7]

Corollary 2 Let Mn be a complete maximal spacelike hypersurface immersed in H
n+1
1 . If

there exists a vector a ∈ R
n+2
2 such that aN does not vanish on Mn and |a�| ∈ L1(M), then

Mn is a totally geodesic hyperbolic space.

4 Submanifolds with parallel mean curvature vector in H
n+ p
p

In this section, we study the rigidity of a complete spacelike submanifold Mn of Hn+p
p with

nonzero parallel mean curvature vector H. For this, fixed a nonzero vector a ∈ R
n+p+1
p+1 , we

observe that Eq. (3.4) gives us

div
(
〈a, H〉a�)

= 1

n
tr(AaN )2 + 〈a, x〉tr(AaN )

−〈α(a�, a�), H〉 + 〈a,∇⊥
a�H〉. (4.1)

Thus, from (3.10) jointly with (4.1) we obtain

div
[
(AaN − 〈a, H〉I )a�]

= (n − 1)〈∇⊥
a�H, aN 〉 + tr(A2

aN )

−1

n
tr(AaN )2 + T (a�, a�), (4.2)

where I denotes the identity operator in the algebra of smooth vector fields on Mn and,
following the terminology established in [4], T stands for a covariant tensor on Mn which is
given by

T (X, X) = Ric(X, X) + (n − 1)
∣∣X

∣∣2 − (n − 1)〈α(X, X), H〉. (4.3)

According to [4,11], a spacelike submanifold Mn of Hn+p
p with nonzero mean curvature

vector H is said pseudo-umbilical if H is an umbilical direction. From (2.6) we see that a
totally umbilical spacelike submanifold is always pseudo-umbilical. Conversely, we get

Proposition 1 Let Mn be a complete pseudo-umbilical spacelike submanifold with nonzero
parallel mean curvature vector H in H

n+p
p . If there exist p vectors a1, . . . , ap ∈ R

n+p+1
p+1

such that aN1 , . . . , aNp are linearly independent, with 〈ai , H〉 and AaNi
bounded on Mn and

|a�
i | ∈ L1(M) for each 1 ≤ i ≤ p, then Mn is totally umbilical.

Proof Let us consider a = ai for some i ∈ {1, . . . , p}. We have that
∣∣(AaN − 〈a, H〉I )a�∣∣ ≤ (|AaN | + |〈a, H〉|) |a�| ≤ C2|a�| ∈ L1(M). (4.4)

Since we are assuming that Mn is pseudo-umbilical of Hn+p
p , Lemma 4.1 of [4] assures

that
Ric(X, X) ≥ −(n − 1)|X |2 + (n − 1)〈α(X, X), H〉, (4.5)
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for all X ∈ X(M). Thus, from (4.3) and (4.5) we get that T (a�, a�) ≥ 0. Moreover, we

observe that the function u = tr(A2
aN

) − 1

n
tr(AaN )2 is always nonnegative with u = 0 if,

and only if, aN is a umbilical direction. From (4.2), we obtain

div
[
(AaN − 〈a, H〉I )a�]

≥ 0. (4.6)

Thus, from (4.4) and (4.6), Lemma 1 assure us

tr(A2
aN ) − 1

n
tr(AaN )2 + T (a�, a�) = 0.

Then, tr(A2
aN

) − 1

n
tr(AaN )2 = 0 and, hence, aN is a umbilical direction of Mn . Therefore,

since we are supposing the existence of such vectors a1, . . . , ap ∈ R
n+p+1
p+1 whose normal

projections aN1 , . . . , aNp with respect to Mn are linearly independent, we conclude that (2.6)
holds, that is, Mn must be totally umbilical. ��

Proceeding, we establish sufficient conditions to guarantee that a spacelike submanifold
immersed in H

n+p
p with nonzero parallel mean curvature vector must be pseudo-umbilical.

Theorem 2 Let Mn be a complete spacelike submanifold immersed in H
n+p
p with nonzero

parallel mean curvature vector H and bounded normalized scalar curvature R. If there exists
a nonzero vector a ∈ R

n+p+1
p+1 such that aN is timelike, i.e., 〈aN , aN 〉 < 0, collinear to H

and |a�| ∈ L1(M), then Mn is pseudo-umbilical.

Proof Initially, taking a local orthonormal frame {e1, . . . , en} on Mn , from (3.7) we get that
the squared norm of second form fundamental α of Mn satisfies

|α|2 =
∑

i, j

|α(ei , e j )|2 = n2〈H, H〉 + n(n − 1)(R + 1). (4.7)

Now, let us consider a nonzero vector a ∈ R
n+p+1
p+1 such that aN is timelike, collinear to

H and with |a�| ∈ L1(M). Since Mn has bounded normalized scalar curvature and nonzero
parallel mean curvature vector H, from (4.7) we conclude that |α|2 is bounded on Mn . So,
taking ξ = H in (3.6) we get

div(AHa
�) = tr(AaN ◦ AH) + 〈a, x〉tr(AH), (4.8)

where AH denotes the Weingarten operator associated to H.
On the other hand, from (3.4) we have

〈a, x〉 = 1

n
div(a�) − 〈a, H〉. (4.9)

Consequently, from (4.8) and (4.9)

div(AHa
�) = tr(AaN ◦ AH) + tr(AH)

1

n
div(a�) − 1

n
tr(AaN )tr(AH). (4.10)

Since
div

(
tr(AH)a�)

= tr(AH)div(a�), (4.11)

from (4.10) and (4.11) we obtain

div V = tr(AaN ◦ AH) − 1

n
tr(AaN )tr(AH), (4.12)
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where V is a tangent vector field on Mn given by

V =
(
AH − 1

n
tr(AH)I

)
a�.

We note that, since we are supposing aN timelike and collinear to H, there exists on Mn

a smooth function λ having strict sign such that aN = λH. Thus, from (2.3) and (4.12) we
get

div V = λ

(
tr(A2

H) − 1

n
tr(AH)2

)
. (4.13)

Consequently, from (4.13) we conclude that div V does not change sign on Mn . Moreover,
we also have that

|V | ≤ (|AH| + |〈H, H〉|) |a�| ∈ L1(M).

Hence, we can apply once more Lemma 1 to assure that div V = 0 on Mn .
Therefore, returning to (4.13) we obtain that

λ

(
tr(A2

H) − 1

n
tr(AH)2

)
= 0,

which implies that H is an umbilical direction. ��
We observe that, in the case p = 1, the notion of pseudo-umbilical coincides with that of

totally umbilical. Moreover, we note that the hypothesis that aN is timelike amounts to the
support function fa = 〈a, ν〉 having strict sign on the spacelike hypersurface Mn ↪→ H

n+1
1 ,

where ν stands for the Gauss mapping of Mn . Consequently, taking into account the classifi-
cation of the totally umbilical hypersurfaces ofHn+1

1 (see, for instance, Example 1 of [24]) and
that Theorem 1 of [21] assures us that a complete constant mean curvature spacelike hyper-
surface of Hn+1

1 must have bounded second fundamental form (or, equivalently, bounded
normalized scalar curvature), from Theorem 2 we obtain the following

Corollary 3 Let Mn be a complete spacelike hypersurface immersed in H
n+1
1 with nonzero

constant mean curvature. If there exists a nonzero vector a ∈ R
n+2
2 such that the support

function fa has strict sign on Mn and |a�| ∈ L1(M), then Mn is a totally umbilical hyperbolic
space.
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