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Abstract The search of lineability consists on finding large vector spaces of mathemati-
cal objects with special properties. Such examples have arisen in the last years in a wide
range of settings such as in real and complex analysis, sequence spaces, linear dynamics,
norm-attaining functionals, zeros of polynomials in Banach spaces, Dirichlet series, and
non-convergent Fourier series, among others. In this paper we present the novelty of linking
this notion of lineability to the area of Probability Theory by providing positive (and nega-
tive) results within the framework of martingales, random variables, and certain stochastic
processes.
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1 Introduction

Since the beginning of the 21st century many authors have become interested in the study
of linearity within non linear settings or, in other words, the search for linear structures
of mathematical objects enjoying certain special or unexpected properties. Vector spaces
and linear algebras are elegant mathematical structures which, at first glance, seem to be
“forbidden” to families of “strange” objects. In other words, take a function with some
special or (as sometimes it is called) “pathological” property (for example, the classical
nowhere differentiable function, also known as Weierstrass’ monster). Coming up with a
concrete example of such a function might be difficult. In fact, it may seem so difficult that
if you succeed, you think that there cannot be too many functions of that kind. Probably
one cannot find infinite dimensional vector spaces or infinitely generated algebras of such
functions. This is, however, exactly what has been happening in the last years in many fields
of mathematics, from Linear chaos to real and complex analysis [2,6,15], passing through
set theory [17] and linear and multilinear Algebra, or even operator theory [9,11], topology,
measure theory [5,6,13], and abstract algebra.

Recall that, as it nowadays is common terminology, a subset M of a topological vector
space X is called lineable (respectively, spaceable) in X if there exists an infinite dimensional
linear space (respectively, infinite dimensional closed linear space) Y ⊂ M ∪ {0}. Moreover,
given an algebra A, a subset B ⊂ A is said to be algebrable if there is a subalgebra C of A
such that C ⊂ B ∪ {0} and the cardinality of any generator of C is infinite (see, e.g., [2,3,7]).

As we mentioned above, there have recently been many results regarding the linear struc-
ture of certain special subsets. One of the earliest results in this direction was provided by
Gurariy, who showed that the set of Weierstrass’ monsters is lineable [18]. Also, and more
recently, Enflo et al. [15] proved that, for every infinite dimensional closed subspace X of
C[0, 1], the set of functions in X having infinitely many zeros in [0, 1] is spaceable in X (see,
also, [12,16]). A vast literature on this topic have been built during the last decade, and we
refer the interested reader to the survey paper [7] or, for a much detailed and thorough study,
to the forthcoming monograph [3].

In this paper, we relate for the first time, the topic of lineabilitywith Probability Theory and
Stochastic Processes. However one needs to be careful when trying to find linear structures
within certain sets of objects in this setting. Indeed, the set of probability density functions
cannot contain any linear space since any non-trivial multiple of one already fails to be a
probability density function or, in a deeper level, if we had twomartingales {Xn}n , {Yn}n , with
their corresponding filtrations {Fn}n and {Gn}n , the sequence of random variables {Xn +Yn}n
is not, in general, a martingale unless we had a “universal” filtration that would comply with
both simultaneously. Nevertheless, we shall consider some classical (counter)examples in
probability theory and study up to what level it is possible to obtain lineability-related results.
In this paper we shall consider lineability and algebrability problems related to the following
concepts:

(i) Convergent martingales that are not L1 bounded,
(ii) pointwise convergence of random variables,
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(iii) stochastic processes being L2 bounded, converging in L2, and not converging for any
point off a null set, and

(iv) zero-mean sequences of mutually independent random variables with divergent sample
mean.

(v) unbounded random variables with finite expected value.

2 Preliminaries and notation

In this section, we recall some results that will be needed throughout the paper (for more
details see, e.g., [10]).

Let � be a non-empty space and let F be a σ -algebra over �. We say that the pair (�,F)

is a probabilizable (measurable) space. Given (�,F), a filtration of σ -algebras of F is an
increasing sequence of σ -algebras, such that Fn ⊂ F for every n ∈ N.

Adding a function μ : F → [0, 1], we say that the triplet (�,F, P) is a probability
space. A random variable X on (�,F, P) is a real-valued function defined on �, such that
for every open subset B ⊂ R we have X−1(B) ∈ F . The expected value of the random
variable X , namely E(X), is computed as

E[X ] =
∫

�

XdP. (1)

A collection of random variables indexed by a totally ordered set, representing the evolu-
tion of some system of random variables is said to be a stochastic process.

We now introduce the notion of a conditional expectation of a random variable X.

Definition 1 Let (�,F, P) be a probability space, let X be a random variable on this prob-
ability space, and let H ⊆ F be a sub-σ -algebra of F . The conditional expectation of X ,
denoted as E[X | H], is any H-measurable function � → R which satisfies∫

H
E[X | H] dP =

∫
H
X dP for every H ∈ H. (2)

A sequence of random variables {Xn}n defined on (�,F, μ) is said to be aMarkov chain
if for every n ≥ 1, the variable Xn+1 only depends upon the state of Xn . Given a sequence of
random variables {Xn}n∈N and a filtration {Fn}n∈N of σ -algebras of F , we say that {Xn}n∈N
is a martingale if Xn is integrable and E[Xn+1|Fn] = Xn almost surely (a.s. from now one)
for all n ∈ N.

Finally, let us recall the following definition that will be necessary in order to introduce
the notion of a martingale indexed by a directed set (see, e.g., [14]).

Definition 2 (directed set) A directed set is a nonempty set D with a relation ∼R such that:

(i) a ∼R a for every a ∈ D.
(ii) If a, b, c ∈ D such that a ∼R b and b ∼R c, then a ∼R c.
(iii) If a, b ∈ D then there exists c ∈ D with a ∼R c and b ∼R c.

We point out that a ∼R b is (usually) denoted by a ≤ b.

Let D be a directed set and let {Xd : d ∈ D} be an indexed family of random variables.
Let {Fd : d ∈ D} be a family of σ -algebras such that for d1 ≤ d2, we have Fd1 ⊂ Fd2 . We
also say that {Xd} is a martingale indexed by a directed set D if for every d ∈ D we have
E[|Xd |] < ∞, Xd is Fd -measurable, and for every d1 ≤ d2 we have E[Xd2 |Fd1 ] = Xd1
almost surely.
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3 Lineability of special sequences of random variables

The motivation for our first result is the fact that many martingale convergence theorems
require the martingale to be L1-bounded (for instance, in the famous Doob’s martingale
convergence theorems or in Lévy’s zero–one law, [10]). However, this condition (although
sufficient) is not necessary. Indeed, there is a classical and well known example due to Ash
(see [4], or [21, Example 9.15] for a more modern reference), in which (briefly) the author
constructed a martingale via a Markov chain {Xn : n ∈ N}, properly defined on a probability
space (�,F, P), such that (Xn)n converges for every ω ∈ �, and with E[|Xn |] n→∞−→ ∞.

Here, and although (as we mentioned in the Introduction) one cannot consider lineability
within martingales, we shall show that one can construct an infinite dimensional vector
space every non-zero element of which, {Xn : n ∈ N}, is a sequence of convergent random
variables with E[|Xn |] n→∞−→ ∞. That is, the main tool in Ash’s example is, actually, “not as
uncommon” as one might expect. The proof is a little bit technical, although constructive.

Theorem 1 The set of convergent sequences of random variables {Xn : n ∈ N} with

E[|Xn |] n→∞−→ ∞ is lineable.

Proof First let us denote by S = {s j } j∈N the (increasing) sequence of odd prime numbers.

Next, for every s ∈ S we consider the Markov chain defined as follows. Let X (s)
1 = 0. Also,

if X (s)
n = 0 let

X (s)
n+1 =

⎧⎨
⎩
sn+1 · (n + 1)s with probability 1/sn+1,

−sn+1 · (n + 1)s with probability 1/sn+1,

0 with probability 1 − 2/sn+1,

(3)

and, if X (s)
n �= 0, we let X (s)

n+1 = X (s)
n . Notice that, if X (s)

n �= 0, then X (s)
j = X (s)

n for

every j ≥ n. Let us consider A = {ω : X (s)
n (ω) �= 0 for some n ∈ N}. If ω ∈ A, then

X (s)
j (ω) = X (s)

n (ω) for every j ≥ n. In contrast, if ω ∈ �\A then X (s)
n+1 is defined following

equation (3). Moreover, note that for every n ∈ N,

E
[
X (s)
n+1|X (s)

n = 0
]

= (
sn+1 · (n + 1)s

) · 1

sn+1 − (
sn+1 · (n + 1)s

) · 1

sn+1

+ 0 ·
(
1 − 2

sn+1

)
= 0, (4)

E
[
X (s)
n+1|X (s)

n = sn+1 · (n + 1)s
]

= sn+1 · (n + 1)s, and (5)

E
[
X (s)
n+1|X (s)

n = −sn+1 · (n + 1)s
]

= −sn+1 · (n + 1)s . (6)

Therefore, for every s ∈ S, the Markov chain {X (s)
n : n ∈ N} is a martingale respect on

the natural filtration, that is, Fn = σ(X1, . . . , Xn)
1 for all n. Furthermore, given s ∈ S,

and assuming all of the above random variables are properly defined on a probability space
(�,F, P), we have that either X (s)

n (ω) = 0 for every n ∈ N or even in the case that there is
some m ∈ N such that X (s)

n �= 0 for all n ≥ m, we can conclude that {X (s)
n }n is a convergent

sequence on (�,F, P).

1 By Fn = σ(X1, . . . , Xn) we mean the smallest σ -algebra in which {Xi : i ≤ n} are measurable.
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Before carrying on with the main construction, let us recall that it can be assumed, without
loss of generality, that the set {X (s)

n : s ∈ S} is linearly independent, just taking, for instance,
disjoint supports in the construction of the random variables.

Our aim now is to show that any non-zero element in the linear span of {X (s)
n : s ∈ S}

is convergent and not L1-bounded. The convergence is straightforward from the fact that
{X (s)

n }n converges for every ω ∈ � and any element in the linear span of {X (s)
n : s ∈ S} is a

finite linear combination of these random variables in the sequence {X (s)
n }n .

We still need a couple of estimates in order to achieve our goal. For every I ∈ F , let us
define IA as the characteristic function on the set A. Let s ∈ S and k ∈ N, we have that

X (s)
k = X (s)

2 · I{X (s)
2 �=0} + X (s)

3 · I{X (s)
2 =0,X (s)

3 �=0} + X (s)
4 · I{X (s)

2 =X (s)
3 =0,X (s)

4 �=0}
+ · · · + X (s)

k · I{X (s)
1 =···=X (s)

k−1=0,X (s)
k �=0} + 0 · I{X (s)

1 =···=X (s)
k =0},

(7)

from which we obtain that

E
[
|X (s)

k |
]

= 2a2 p2 + (1 − 2p2) · 2a3 p3 + (1 − 2p2)(1 − 2p3) · 2a4 p4
+ · · · + (1 − 2p2)(1 − 2p3) · · · · · (1 − 2pk−1) · 2ak pk,

(8)

where, for the sake of simplicity, we have denoted an := snns and pn := 1/sn . Applying
the definition of X (s)

n , making some simple calculations, and keeping in mind that for every
j ∈ {1, . . . , k − 1}, we have 0 < 1 − 2p j < 1, and

1 > (1− 2p2) ≥ (1− 2p2)(1− 2p3) ≥ · · · ≥ (1− 2p2)(1− 2p3) · · · · · (1− 2pk−1). (9)

As a consequence, we obtain the following lower bound for E
[
|X (s)

k |
]
:

E
[
|X (s)

k |
]

≥ 2

⎡
⎣k−1∏

j=1

(
1 − 2p j

)
⎤
⎦ ·

⎡
⎣ k∑

j=2

a j p j

⎤
⎦ = 2

⎡
⎣k−1∏

j=1

(
1 − 2

s j

)⎤
⎦ ·

⎡
⎣ k∑

j=2

j s

⎤
⎦ . (10)

In the previous expression, let us recall that the amount
∏∞

j=1

(
1 − 2

s j

)
is known, in Number

Theory, as the q-Pochhammer symbol (also known as q-shifted factorial, see [8]) (2; s)∞,
which verifies

0 < (2; s)∞ < 1

if s > 2 (which complies with our hypotheses). We, thus, have

E[|X (s)
k |] ≥ 2

⎡
⎣k−1∏

j=1

(
1 − 2

s j

)⎤
⎦ ·

⎛
⎝ k∑

j=2

j s

⎞
⎠ k→∞−→ 2 · (2; s)∞ · lim

k→∞

k∑
j=2

j s = ∞,

and
{
X (s)
k

}
k
is not L1-bounded. However, our aim is to show that any non-zero element in

the linear span of {X (s)
n : s ∈ S} is not L1-bounded and, in order to obtain this, we shall need

another estimate for E
[
|X (s)

k |
]
. Recall that, since (2; s)∞ ∈ (0, 1), we also have

E
[
|X (s)

k |
]

≤ Rs+1(k) := 2
k∑
j=2

j s (11)
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and it can be easily checked that the expression Rs+1(k) is a polynomial of degree s+1 with

lim
k→∞ Rs+1(k) = +∞. (12)

Now, let Xk ∈ span
{
X (s)
k : s ∈ S

}
, then:

Xk = α1X
(s1)
k + α2X

(s2)
k + · · · + αm X (sm )

k , (13)

where s1 < s2 < · · · < sm are elements from S, {αn}n ⊂ R, and (without loss of generality)
αm �= 0. Let us now show that Xk is not L1-bounded. Indeed, using the linearity of E[·], the
reverse triangle inequality, and Eqs. (10) and (11), we have:

E [|Xk |] = E
[
|α1X

(s1)
k + α2X

(s2)
k + · · · + αm X (sm )

k |
]

≥ |αm | · E
[
|X (sm )

k

]
− |α1| · E

[
|X (s1)

k

]
− · · · − |αm−1| · E[|X (sm−1)

k ]

≥ |αm | · (2; sm)∞ · Rsm+1(k) − 2|α1|
k∑
j=2

j s1 − · · · − 2|αm−1|
k∑
j=2

j sm−1

= |αm | · (2; sm)∞ · Rsm+1(k) − 2
m−1∑
i=1

⎛
⎝ k∑

j=2

j si

⎞
⎠ k→∞−→ ∞,

(14)

since the expression 2|αm | · (2; sm)∞ · Rsm+1(k) is a polynomial of degree sm + 1 with

lim
k→∞ Rsm+1(k) = +∞, (15)

the expression
m−1∑
i=1

⎛
⎝ k∑

j=2

j si

⎞
⎠ (16)

is a polynomial of degree sm−1 + 1, and sm−1 < sm . Therefore, Xk is not L1-bounded, and
the result is proved. �
Remark 1 We recall that the previous result could certainly be stated in terms of martingales
assuming, of course, that the martingales adapted to the same filtration form a vector space
(the proof would follow the same ideas as in that of Theorem 1).

Now, let us continue focusing on obtaining lineability-related results of certain subsets of
random variables enjoying “unexpected” properties. For instance, in [21, Example 9.2], the
authors provide (given any b > 0) a sequence of integrable random variables {Xn}n∈N and an
integrable random variable X such that Xn converges to X pointwise and, yet, E[Xn] = −b
and E[X ] = b (the important point here is that one has, under the previous hypotheses,
E[Xn] �= E[X ] for every n ∈ N). This construction can be generalized in order to construct
a positive cone (see, e.g., [1]) of such elements since, in general, linearity of elements enjoying
such properties might get lost.

Let {Xn}n∈N and {Yn}n∈N be sequences of integrable random variables converging, point-
wise, to the integrable random variables X, Y (respectively). Let b, c > 0, and Xn, X, Yn, Y
random variables such that E[Xn] = −b, E[X ] = b, E[Yn] = −c, E[Y ] = c . Now, let
α, β ∈ R be such that αb + βc = 0, then E[αXn + βYb] = 0 = E[αX + βY ], which does
not fall into the class of examples we are working with. Thus, the above property is “not a
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lineable one”. However, one could try to find a positive cone of such objects, as it was done
in [1] when certain sets failed to be lineable (calling these sets coneable). More precisely, a
subset M of a topological vector space X is called positively coneable in X if there exists an
infinite dimensional set M such that αM ⊂ M for every α > 0.

Theorem 2 Let us consider the probability space ([0, 1],B([0, 1]), λ), where λ denotes the
Lebesgue measure. The set of sequences of integrable random variables {Xn}n converging to
an integrable random variable X such that limn→∞ E[Xn] �= E[X ] is positively coneable.
Proof For every m ∈ N, let us take B(m),C (m) > 0 and let us define the following random
variables for every ω ∈ [0, 1]

X (m)(ω) = am
am − 1

· B(m) · I[1/am ,1](ω) for every w ∈ ω ∈ [0, 1] and (17)

X (m)
n (ω) =

{
B(m) + C (m) if n ≤ am,

n · C (m) · I[1/am−1/n,1/am ](ω) + X (m)(ω) if n > am,
(18)

where {am}m∈N ⊂ N is defined, recursively, as follows:

a1 = 2 and am+1 = (am + 1) · am for m > 1. (19)

This permits us to state that the set of sequences {X (m)
n : m ∈ N} are linearly independent

when seen as regular functions inR[0,1] (due to the choice of the am’s in order to avoidmajor
overlappings). The sequence X (m)

n converges to X (m) pointwisely when n tends to infinity. It
can be easily seen that {X (m)

n }n is a sequence of integrable random variables for everym ∈ N

and that X (m) is an integrable random variable, too.
Furthermore, for every n,m ∈ N we have

E[X (m)] =
∫

[0,1]
am

am − 1
· B(m) · I[1/am ,1](ω)dω = B(m), (20)

and

E[X (m)
n ] =

∫
[0,1]

X (m)(ω) + n · C (m) · I[1/am−1/n,1/am ](ω)dω = B(m) + C (m). (21)

We then consider the positive cone given by Cn = {αX (m)
n : m ∈ N, α > 0} where any

element Yn ∈ Cn can be written as Yn = ∑k
i=1 αi X

(mi )
n , where αi > 0 and mi ∈ N for every

i ∈ {1, . . . , k}. By linearity of E[·] we have

E[Yn] = E

[
k∑

i=1

αi X
(mi )
n

]
=

k∑
i=1

αi E
[
X (mi )
n

]
=

k∑
i=1

αi (B
(mi ) + C (mi )), (22)

and given Y = ∑k
i=1 αi X (mi ), one obtains

E[Y ] =
k∑

i=1

αi E
[
X (mi )

]
=

k∑
i=1

αi B
(mi ), (23)

which gives that, although by linearity, Yn converges pointwise to Y with E[Yn] �= E[Y ]
(actually, and more precisely, E[Yn] > E[Y ]) for every n ∈ N. �

The following result shows the algebrability of the set of unbounded random variables
with a finite expected value. The example used for the construction is inspired in [21, Example
5.2].
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Theorem 3 Let us consider the probability space (R+,B(R+), λ), where λ denotes the
Lebesgue measure. The set of unbounded random variables f : R → R that have a finite
expected value is algebrable.

Proof Let us consider the function

T (x) :=
{
1 − x if 0 ≤ x ≤ 1,

0 otherwise.
(24)

For each n ∈ N, we define:

fn(x) := nT (n3(x − n)) (25)

Each function fn is null except in the interval Jn :=
[
n, n + 1

n3

]
. Moreover,

∫
Jn

fn(x)dx = 1

2n2
. (26)

and then, the random variable defined as

X (x) :=
∞∑
n=1

fn(x) (27)

has an expected value E[X ] = π2

12 .
Let us consider aCantor set on the unit interval obtained asC = ∪∞

n=1 In , where I0 = [0, 1]
and In is obtained from In−1 removing the inner third of each of its subintervals. Let us define
Ln := Jn ∩ (n + In). Then, we have∫

Ln

fn(x)dx = 1

2n2

(
2

3

)n

for every n ∈ N. (28)

Let {αl}l∈	 be a non-numerable set of irrational numbers on (0, 1)which are notQ linearly
dependent, then for every α ∈ {αl}l∈	 we define the functions:

X (α)
n (x) =

{
fn(x − α) if x ∈ α + Ln,

0 elsewhere.
(29)

and then, we consider the random variable

Xα(x) :=
∞∑
n=1

Xα
n (x)dx . (30)

Consider the algebra generated by these functions A({Xα}α∈	). It is clear that for every
α ∈ {αl}l∈	 the random variable Xα has a finite expected value and it is an unbounded
random variable. Besides, this algebra is uncountably generated.

Given an arbitrary function

X (x) :=
m0∑
m=1

λm Xαm (x), with αm ∈ 	,λm ∈ K for all m ∈ N. (31)

On the one hand, these random variables are unbounded, too. Indeed, let αmin := min{αm :
1 ≤ m ≤ m0} and we get X (n + αmin) = n. Additionally, this random variable has a finite
expected value as well. �
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Remark 2 Let us recall that, in the previous result, the unboundedness holds outside every
interval of finite length, which adds an extra pathology to the considered property.

For the final part of this paper, let us recall the work [20] (see, also, [21, Example 9.17]),
in which Walsh provided an example of a martingale (indexed by a directed set) that is L2

bounded and converging in L2 and that, also, does not converge for any point off a null set.
Our aim here shall be to generalize this example in order to build an infinite dimensional
linear space such that every non zero element of which is a martingale enjoying the previous
property. Before starting its proof, we need to recall the following lemma (due to Muñoz,
Palmberg, Puglisi, and the second author), which is a particular case of [19, Theorem 3.5]. In
what follows (
p, ‖ · ‖p) denotes the Banach space of real valued sequences with the usual
p-norm.

Lemma 1 The set 
2\
1 is lineable.
Theorem 4 The set of stochastic processes that are L2 bounded, converging in L2 and that,
also, do not converge for any point of a null set, is lineable.

Proof ByLemma1, letV be any (countably generated) linear space contained in (
2\
1)∪{0}
and let

{
{h(m)

n }n : m ∈ N

}
be a basis for V . For instance, and in order to be more clear in the

coming construction, we can take (see [19, Theorem 3.5])

V = span

{
h(m)
n :=

{
1

nm

}
n∈N

: m ∈ Q ∩
(
1

2
, 1

)}
. (32)

For every m ∈ Q∩ ( 1
2 , 1

)
, let {X (m)

n }n be an linearly independent (and infinite) set, every
element of which is a sequence of mutually independent random variables such that provided
m ∈ Q ∩ ( 1

2 , 1
)

P
(
X (m)
n = −1

)
= P

(
X (m)
n = 1

)
= 1/2. (33)

for every n ∈ N.
By construction, one has that

∑
n∈N h(m)

n X (m)
n converges almost surely for every m ∈

Q ∩ ( 1
2 , 1

)
.

Let D be the family of all finite subsets of N, partially ordered by set inclusion, which is
a directed set. For every d ∈ D,m ∈ Q ∩ ( 1

2 , 1
)
we define:

M (m)
d =

∑
n∈d

h(m)
n X (m)

n . (34)

Therefore, for every m ∈ Q∩ ( 12 , 1
)
, and with respect to its own filtration, it can be easily

checked that {M (m)
d : d ∈ D} is a martingale and it converges in probability. By construction,

we also have that the set {(M (m)
d )d∈D : m ∈ N} is linearly independent and, by linearity, any

non-zero element in W := span{(M (m)
d )d∈D : m ∈ N} also converges in probability.

However, we will see {(M (m)
d )d∈D : m ∈ N} as, simply, stochastic processes (dropping the

filtration).Moreover, any element inW is, also, L2-bounded, since (for everym ∈ Q∩( 12 , 1
)
)

we have

E
[
(M (m)

d )2
]

=
∞∑
n=1

(
h(m)
n

)2
< ∞,
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since the set
{
{h(m)

k }k∈N : m ∈ N

}
is contained in 
2\
1. However, notice that (for every

m ∈ Q∩( 12 , 1
)
),M (m)

d (ω) converges only if it converges regardless of the order of summation
(that is, absolutely), but

∞∑
n=1

∣∣∣h(m)
n X (m)

n

∣∣∣ =
∞∑
n=1

∣∣∣h(m)
n

∣∣∣ =
∞∑
n=1

1/nm = ∞.

It only remains to show that, for any m1,m2, . . . ,mq ∈ ( 1
2 , 1

)
and α1, . . . , αq ∈ R,

lim
s→∞

s∑
n=1

∣∣∣α1h
(m1)
n X (m1)

n + α2h
(m2)
n X (m2)

n + · · · + αqh
(mq )
n X

(mq )
n

∣∣∣ = ∞.

Indeed, if we apply the reverse triangle inequality to the above expression assuming, without
loss of generality, that m1 < m2 < · · · < mq , and α1 �= 0, we obtain

s∑
n=1

∣∣∣α1h
(m1)
n X (m1)

n + α2h
(m2)
n X (m2)

n + · · · + αqh
(mq )
n X

(mq )
n

∣∣∣

≥
s∑

n=1

(
|α1| 1

nm1
− |α2| 1

nm2
− · · · − |αq | 1

nmq

)

and this last sum is divergent to +∞, by construction and by the above definition of V . �
Now, we wold like to consider a new interesting property of random variables. In [21],

the authors show that there exists a sequence {Xn : n ∈ N} of mutually independent ran-
dom variables, having zero mean, and such that

∣∣ 1
n

∑n
i=1 Xi

∣∣ diverges to ∞ almost surely.
However, this example can be extended in order to obtain lineability, as our following result
states.

Theorem 5 Given a common probability space (�,F, P), the set of sequences {Xn : n ∈ N}
of mutually independent random variables having zero mean and such that

∣∣ 1
n

∑n
i=1 Xi

∣∣
diverges to ∞ (almost surely) is lineable.

Proof Given s ∈ N, s ≥ 2, let {X (s)
n : n ∈ N} be a set of linearly independent sequences,

each of which is formed by mutually independent random variables, and such that

P
(
X (s)
n = −ns

)
= 1 − 1

n2s
and

P
(
X (s)
n = n3s − ns

)
= 1

n2s
.

It is easy to check that, by construction,

E[X (s)
n ] = 0 and (35)

X (s)
n

n
−→ −∞ almost surely (36)

for every s, n ∈ N with s ≥ 2. From Eq. (36) it follows that (for every s ≥ 2, s ∈ N)

1

n

n∑
i=1

X (s)
i −→ −∞ a.s. (37)



Lineability within probability theory settings 683

Indeed, take s ≥ 2, s ∈ N, and let �1 = {ω ∈ � : X (s)
n (ω) = −ns} and �2 = �\�1. Now,

if ω ∈ �1, we have X (s)
k (ω) = −ks , obtaining that, as n → ∞, Eq. (37) holds.

Let now V = span{X (s)
n : s ≥ 2, s ∈ N} and let Yn ∈ V . Thus, Yn can be written as

Yn =
N∑
i=1

αi X
(si )
n ,

for some N ∈ N, si ∈ N, 2 ≤ s1 < s2 < · · · < sN , and αi ∈ R for every i ∈ {1, 2, . . . , N }
with αN �= 0. By the linearity of E[·], and Eq. (35), we have that

E[Yn] =
N∑
i=1

αi E[X (si )
n ] =

N∑
i=1

αi0 = 0.

Also, notice that∣∣∣∣∣
1

n

n∑
k=1

Yk

∣∣∣∣∣ =
∣∣∣∣∣
α1

n
·

n∑
k=1

X (s1)
k + · · · + αN

n
·

n∑
k=1

X (sN )
k

∣∣∣∣∣
≥ |αN |

n

∣∣∣∣∣
n∑

k=1

X (sN )
k

∣∣∣∣∣−
|αN−1|

n

∣∣∣∣∣
n∑

k=1

X (sN−1)

k

∣∣∣∣∣− · · · − |α1|
n

∣∣∣∣∣
n∑

k=1

X (s1)
k

∣∣∣∣∣ .

From the previous inequality, the fact that sN > sN−1 > · · · > s1 ≥ 2, and Eqs. (36) and
(37) it can be seen that

∣∣ 1
n

∑n
k=1 Yk

∣∣ → ∞ a.s. and the claim holds for ω ∈ �1. The case
w ∈ �2 also holds in a similar fashion and, thus, we spare the details of the calculations
involved in it. �
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