ORIGINAL PAPER

The weak Banach–Saks property for function spaces

Guillermo P. Curbera[1](http://orcid.org/0000-0002-1683-3221) · Werner J. Ricker²

Received: 12 April 2016 / Accepted: 1 July 2016 / Published online: 13 July 2016 © Springer-Verlag Italia 2016

Abstract We establish the weak Banach–Saks property for function spaces arising as the optimal domain of an operator.

Keywords Weak Banach–Saks property · Subsequence splitting property · Banach function space · Optimal domain · Vector measure · Ultraproduct

Mathematics Subject Classification Primary 46E30 · 46B20 · 46G10; Secondary 46B08

1 Introduction

Astashkin and Maligranda proved that the Banach function space (B.f.s.)

$$
Ces_p[0, 1] := \left\{ f : x \mapsto \frac{1}{x} \int_0^x |f(y)| dy \in L^p([0, 1]) \right\}, \quad 1 \le p < \infty,
$$

has the*weak Banach–Saks property*, namely, every weakly null sequence in*Cesp*[0, 1] admits a subsequence whose arithmetic means converge to zero in the norm of $Ces_p[0, 1]$, [\[2](#page-14-0), §7]. The space $L^p([0, 1])$, for $1 \leq p < \infty$, itself has the weak Banach–Saks property. This is due to Banach and Saks for $1 < p < \infty$ [\[3\]](#page-14-1), and to Szlenk for $p = 1$ [\[25\]](#page-14-2). An important step in the proof of the above result in [\[2](#page-14-0)] is to first establish that $Ces_p[0, 1]$ satisfies the

Werner J. Ricker werner ricker@ku.de

G. P. Curbera acknowledges the support of the "International Visiting Professor Program 2015" from the Ministry of Education, Science and Art, Bavaria (Germany), and of MTM2012-36732-C03-03, MINECO (Spain).

B Guillermo P. Curbera curbera@us.es

¹ Facultad de Matemáticas and IMUS, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain

² Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, 85072 Eichstätt, Germany

subsequence splitting property. This property goes back to a celebrated paper of Kadec and Pełczyński [\[16](#page-14-3)], where they observed that in $L^p([0, 1])$, $1 \leq p < \infty$, every norm bounded sequence $\{f_n\}$ has a subsequence $\{f'_n\}$ that can be split in the form $f'_n = g_n + h_n$, where the functions ${h_n}$ have pairwise disjoint support and the sequence ${g_n}$ has uniformly absolutely continuous (a.c.) norm in $L^p([0, 1])$, that is, $\sup_n ||g_n \chi_A||_p \to 0$ when $\lambda(A) \to 0$, where λ is Lebesgue measure on [0, 1]. Characterizations of the subsequence splitting property (in terms of ultraproducts) are due to Weis [\[26\]](#page-14-4); they play a crucial role in Sect. [3.](#page-4-0)

The above results raise the question of whether the subsequence splitting property and the weak Banach–Saks property are also satisfied in analogous B.f.s.', such as, for example,

$$
\{f \in L^1(G) : \nu * |f| \in L^p(G)\}, \quad 1 < p < \infty,\tag{1}
$$

where ν is a positive, finite Borel measure on a compact abelian group *G*; or for

$$
\left\{ f: [0,1] \to \mathbb{R} : I_{\alpha}(f)(x) := \int_0^1 \frac{|f(y)|}{|x-y|^{1-\alpha}} dy \in X \right\},\tag{2}
$$

where $0 < \alpha < 1$ and X is a rearrangement invariant (r.i.) space on [0, 1]; or for

$$
\left\{ f: [0,1] \to \mathbb{R} : T(f)(x) := \int_{x}^{1} y^{(1/n)-1} |f(y)| dy \in X \right\},\tag{3}
$$

where $n > 2$ and X is a r.i. space on [0, 1].

The common feature for these types of B.f.s.' is that each one is the *optimal extension domain* of an appropriate linear operator. Indeed, in the case of *Cesp*[0, 1] this is so for the Cesàro operator

$$
f \mapsto C(f) : x \mapsto \frac{1}{x} \int_0^x f(y) dy;
$$

see [\[2](#page-14-0)]; in the case of the B.f.s. in [\(1\)](#page-1-0) for the operator of convolution with the measure ν , that is, for

$$
f \mapsto T_{\nu}(f) = f * \nu : x \mapsto \int_G f(y - x) d\nu(y);
$$

see [\[21\]](#page-14-5); in the case of the B.f.s. in [\(2\)](#page-1-1) for the Riemann–Liouville fractional integral of order α , that is, for

$$
f \mapsto I_{\alpha}(f) : x \mapsto \int_0^1 \frac{f(y)}{|x - y|^{1 - \alpha}} dy;
$$

see [\[6](#page-14-6)]; and in the case of the B.f.s. in [\(3\)](#page-1-2) for the kernel operator associated to the *n*dimensional Sobolev inequality, that is, for

$$
f \mapsto T_n(f) : x \mapsto \int_x^1 y^{(1/n)-1} f(y) dy;
$$

see [\[7,](#page-14-7)[8](#page-14-8)[,13\]](#page-14-9).

Concerning the optimal domain of an operator, consider a finite measure space (Ω, Σ, μ) , a Banach space *X* and an *X*-valued linear map *T* defined on an ideal $\mathcal{D} \subseteq L^0(\mu)$ which contains $L^{\infty}(\mu)$. Here $L^{0}(\mu)$ is the space of classes of all a.e. R-valued, measurable functions defined on Ω . Then the optimal domain for *T*, taking its values in *X*, is the linear space defined by

$$
[T, X] := \{ f \in L^0(\mu) : T(|f|) \in X \},
$$

which becomes a B.f.s. when endowed with the norm

$$
||f||_{[T,X]} := ||T(|f|)||_X, \quad f \in [T, X].
$$

Note that $\mathcal{D} \subseteq [T, X]$. In this notation, we have $Ces_p = [\mathcal{C}, L^p([0, 1])]$, the B.f.s. in [\(1\)](#page-1-0) is $[T_v, L^p(G)]$, the B.f.s. in [\(2\)](#page-1-1) is $[I_\alpha, X]$, and the B.f.s. in [\(3\)](#page-1-2) is $[T_n, X]$.

The aim of this paper is to extend the above mentioned results of Astashkin and Maligranda to the setting of operators other than the Cesàro operator and B.f.s.' other than $L^p([0, 1])$. For this we need to determine conditions on the Banach space *X* and on the operator *T* which guarantee that the space $[T, X]$ has the subsequence splitting property and the weak Banach–Saks property. This is achieved in Theorems [4,](#page-5-0) [5](#page-7-0) and [6.](#page-11-0) The combination of these theorems leads to the following result.

Recall that a linear operator between function spaces is said to be *positive* if it maps positive functions to positive functions. If both function spaces are B.f.s.', then the operator is automatically continuous.

Theorem 1 Let (Ω, Σ, μ) be a separable, finite measure space, *X* be a B.f.s. which possesses *the weak Banach–Saks property and such that both X and X*∗ *have the subsequence splitting property. Let* $T: \mathcal{D} \to X$ *be a positive, linear operator with* $L^{\infty}(\mu) \subseteq \mathcal{D} \subseteq L^{0}(\mu)$ *. Then the B.f.s.* [*T*, *X*] *has both the subsequence splitting property and the weak Banach–Saks property.*

Given a measurable function $K: (x, y) \in [0, 1] \times [0, 1] \mapsto K(x, y) \in [0, \infty]$, recall that the associated kernel operator T_K is defined by

$$
T_K f(x) := \int_0^1 K(x, y) f(y) dy, \quad x \in [0, 1],
$$
 (4)

for any function $f \in L^0$ for which it is meaningful to do so, i.e., such that $T_K f \in L^0$.

As a consequence of Theorem [1](#page-2-0) we have the following result.

Corollary 2 *Let X be a r.i. space on* [0, 1] *which possesses the weak Banach–Saks property and such that both X and X^{*} have the subsequence splitting property. Let K* : $(x, y) \in$ $[0, 1] \times [0, 1] \mapsto K(x, y) \in [0, \infty]$ *be a measurable kernel such that* $T_K(\chi_{[0,1]}) \in X$ *, where* T_K *is as in* [\(4\)](#page-2-1). Then the B.f.s. $[T_K, X]$ has both the subsequence splitting property and the *weak Banach–Saks property.*

In particular, *the result holds whenever X is reflexive and possesses the weak Banach– Saks property.*

From Corollary [2](#page-2-2) it follows, for example, that the B.f.s $[I_{\alpha}, X]$ in [\(2\)](#page-1-1) corresponding to the kernel $K(x, y) := |x - y|^{\alpha - 1}$, the B.f.s. [*T_n*, *X*] in [\(3\)](#page-1-2) generated by the Sobolev kernel $K(x, y) = y^{(1/n)-1} \chi_{[x,1]}(y)$, and the Cesàro space [C, X] corresponding to the kernel $K(x, y) := (1/x) \chi_{[0,x]}(y)$, all have the subsequence splitting property and the weak Banach– Saks property, whenever *X* is a reflexive r.i. space with the weak Banach–Saks property. We refer to Sect. [5](#page-12-0) for the details and further examples, also including convolution operators by measures.

A comment regarding the techniques is in order. There is a (somewhat unexpected, although classical) tool available for treating optimal domains in a unified way: there always exists an underlying vector measure associated with the operator together with its corresponding $L¹$ -space consisting of all the scalar functions which are integrable with respect to that vector measure (in the sense of Bartle, Dunford and Schwartz). Accordingly, Theorems [4](#page-5-0) and [5](#page-7-0) are formulated for the subsequence splitting property and the weak Banach–Saks property for L^1 -spaces of a general vector measure, respectively. For instance, in the case of the Cesàro operator, the associated $L^p([0, 1])$ -valued vector measure is given by

 $m_{L^p}: A \mapsto m_{L^p}(A) := C(\chi_A), \quad A \subseteq [0, 1]$ measurable.

For this vector measure it turns out that $Ces_p[0, 1] = L^1(m_{L^p})$.

2 Preliminaries

A *Banach function space* (B.f.s.) *X* over a measure space (Ω, Σ, μ) is a Banach space of classes of measurable functions on Ω satisfying the ideal property, that is, $g \in X$ and $\|g\|_X \leq \|f\|_X$ whenever $f \in X$ and $|g| \leq |f|$ μ -a.e. We denote by X^+ the cone in X consisting in all $f \in X$ satisfying $f \ge 0$ μ -a.e. The B.f.s. *X* has *absolutely continuous* (a.c.) norm if $\lim_{\mu(A)\to 0} ||f \chi_A||_X = 0$ for $f \in X$; here χ_A denotes the characteristic function of a set $A \in \Sigma$. An equivalent condition is that order bounded, increasing sequences in *X* are norm convergent. A subset $K \subseteq X$ is said to have *uniformly a.c.* norm if $\lim_{\mu(A)\to 0} \sup_{f\in K} ||f\chi_A||_X = 0$. Sets with uniform a.c. norm are also called almost order bounded sets or L-weakly compact sets. In B.f.s.' with a.c. norm, all relatively compact sets have uniform a.c. norm, and all sets with uniform a.c. norm are relatively weakly compact; see [\[20](#page-14-10), §3.6].

A *rearrangement invariant* (r.i.) space *X* on [0, 1] is a B.f.s. on [0, 1] such that if $g^* \leq f^*$ and $f \in X$, then $g \in X$ and $\|g\|_X \le \|f\|_X$. Here f^* is the decreasing rearrangement of *f*, that is, the right continuous inverse of its distribution function: $\mu_f(\tau) := \mu({f \in [0, 1]})$: $|f(t)| > \tau$). If a r.i. space *X* has a.c. norm, then the dual space X^* is again r.i. A r.i. space *X* always satisfies $L^\infty \subset X \subset L^1$.

We recall briefly the theory of integration of real functions with respect to a vector measure, due to Bartle et al. [\[4](#page-14-11)]. Let (Ω, Σ) be a measurable space, *X* be a Banach space with dual space X^* and closed unit ball B_{X^*} , and $m: \Sigma \to X$ be a σ -additive vector measure. The *semivariation* of *m* is defined by

$$
A \mapsto ||m||(A) := \sup\{|x^*m|(A) : x^* \in B_{X^*}\}, \quad A \in \Sigma,
$$

where $|x^*m|$ is the variation measure of the scalar measure $x^*m : A \mapsto \langle x^*, m(A) \rangle$ for *A* $\in \Sigma$. A *Rybakov control measure* for *m* is a measure of the form $\eta = |x_0^*m|$ for a suitable element $x_0^* \in X^*$ such that $\eta(A) = 0$ if and only if $||m||(A) = 0$; see [\[12](#page-14-12), Theorem IX.2.2].

A measurable function $f: \Omega \to \mathbb{R}$ is called *m*-*scalarly integrable* if $f \in L^1(|x^*m|)$, for every $x^* \in X^*$. The function f is *m*-*integrable* if, in addition, for each $A \in \Sigma$ there exists a vector in *X* (denoted by $\int_A f dm$) such that $\langle \int_A f dm, x^* \rangle = \int_A f dx^* m$, for every $x^* \in X^*$. The *m*-integrable functions form a linear space in which

$$
|| f ||_{L^1(m)} := \sup \left\{ \int_{\Omega} |f| \, d|x^*m| : x^* \in B_{X^*} \right\}
$$

is a seminorm. Identifying functions which differ $||m||$ -a.e., we obtain a Banach space (of classes) of *m*-integrable functions, denoted by $L^1(m)$. It is a B.f.s. over (Ω, Σ, η) relative to any Rybakov control measure η for *m*. Simple functions are dense in $L^1(m)$, the *m*essentially bounded functions are contained in $L^1(m)$, and $L^1(m)$ has a.c. norm. This last property implies that $L^1(m)^*$ can be identified with its associate space, that is, with the space of all measurable functions *g* satisfying $fg \in L^1(\eta)$ for all $f \in L^1(m)$; the identification

is given by $f \in L^1(m) \mapsto \int_{\Omega} fg \, d\eta \in \mathbb{R}$. In particular, $L^{\infty} \subseteq L^1(m)^*$. An equivalent norm for $L^1(m)$ is given by $|||f||| := \sup\{||\int_A f dm||_X : A \in \Sigma\}$, which satisfies $|||f||| \le$ $||f||_{L^1(m)} \le 2|||f|||$ for $f \in L^1(m)$. The integration operator $I_m: L^1(m) \to X$ is defined by $f \mapsto \int_{\Omega} f dm$. It is continuous, linear and has operator norm one. It should be noted that the spaces $L^1(m)$ can be quite different to the classical L^1 -spaces of scalar measures. Indeed, every Banach lattice with a.c. norm and having a weak unit (e.g., $L^2([0, 1])$) is the L^1 -space of some vector measure [\[5,](#page-14-13) Theorem 8].

For further details concerning B.f.s.' and r.i. spaces we refer to [\[19](#page-14-14)]. For further facts related to the spaces $L^1(m)$ see [\[23\]](#page-14-15).

The following result is implicit in the construction of the Bartle, Dunford, Schwartz integral (cf. the proof of Theorem 2.6(a) of $[4]$ $[4]$), although it is not explicitly stated; see also [\[23,](#page-14-15) Theorem 3.5]. We include a proof for the sake of completeness.

Lemma 3 *Let* $\{f_n\} \subseteq L^1(m)$ *be a sequence satisfying*

(a) $f_n(x) \rightarrow f(x)$ *for* $||m||$ *-a.e.* $x \in \Omega$ *, and* (b) $\{ \int_A f_n \, dm \}$ *is convergent in X, for each* $A \in \Sigma$.

Then, $f \in L^1(m)$ *and* $\{f_n\}$ *converges to* f *in the norm of* $L^1(m)$ *.*

Proof For each $f_n \in L^1(m)$, $n \in \mathbb{N}$, the set function $A \mapsto \int_A f_n dm \in X$, $A \in \Sigma$, is a σ -additive measure (due to the Orlicz–Pettis Theorem), which is absolutely continuous with respect to a control measure for *m*. This fact, together with (b) implies, via the Vitali–Hahn– Saks Theorem [\[12](#page-14-12), Theorem I.5.6], that the convergence in (b) is uniform with respect to the sets *A* ∈ Σ . Accordingly, $f \in L^1(m)$ [\[4](#page-14-11), Theorem 2.7]. The convergence $f_n \to f$ in norm in $L^1(m)$ follows directly by considering the equivalent norm $||| \cdot |||$ in $L^1(m)$. in $L^1(m)$ follows directly by considering the equivalent norm $|||\cdot|||$ in $L^1(m)$.

3 The subsequence splitting property for $L^1(m)$

In [\[26](#page-14-4), 2.1 Definition] Weis gives a general definition of the subsequence splitting property. Let *X* be a B.f.s. with a.c. norm defined over a measure space (S, σ, μ) . Then *X* has the *subsequence splitting property* if for every norm bounded sequence $\{f_n\} \subseteq X$ there is a subsequence $\{f'_n\}$ of $\{f_n\}$ and sequences $\{g_n\}$ and $\{h_n\}$ in *X* such that:

- (a) For $n \in \mathbb{N}$ we have $f'_n = g_n + h_n$, with g_n and h_n having disjoint support.
- (b) The sequence {*gn*} has uniformly a.c. norm in *X*.
- (c) The functions $\{h_n\}$ have pairwise disjoint support.

Weis gives several characterizations of the subsequence splitting property, [\[26,](#page-14-4) 2.5 Theorem]. We select only those which are required in the sequel. Namely,

- (i) *X* has the subsequence splitting property,
- (ii) \overline{X} has a.c. norm,
- (iii) \overline{X} does not contain a copy of c_0 ,

where the space \hat{X} is constructed as follows; see [\[26](#page-14-4)]. Let \mathcal{U} be a free ultrafilter in N. Consider the ultraproduct of X via U given by the quotient

$$
X_{\mathcal{U}} := \ell_{\infty}(X) / N_{\mathcal{U}}, \quad \text{where } N_{\mathcal{U}} = \left\{ \{ f_n \} \in \ell_{\infty}(X) : \lim_{\mathcal{U}} \| f_n \|_{X} = 0 \right\}
$$

and $\ell_{\infty}(X)$ is the space of all bounded sequences in *X*. Denote by $[f_n] \in X_{\mathcal{U}}$ the equivalence class of the element ${f_n} \in \ell_\infty(X)$. The space $X_\mathcal{U}$ becomes a Banach lattice for the following norm and order:

$$
\| [f_n] \|_{\mathcal{U}} := \lim_{\mathcal{U}} \| f_n \|_{X}, \quad \inf \{ [f_n], [g_n] \} := [\inf \{ f_n, g_n \}].
$$

For details on ultraproducts of Banach spaces see [\[15](#page-14-16)]. Let χ*S* be the characteristic function of the underlying set *S*. Then, $[\chi_S]$ is the equivalence class of the constant sequence $\{\chi_S\}$. Let *X* denote the band in X_U generated by [χ_S], that is, $X = [\chi_S]^{\perp \perp}$. Recall that a band *M* in a Banach lattice *Z* is a closed subspace which is an order ideal (i.e., $f \in M$ and $g \in Z$ with $|g| \le |f|$ imply $g \in M$) and is closed under the formation of suprema [\[19,](#page-14-14) p. 3].

Theorem 4 Let X be a B.f.s. and $m: \Sigma \rightarrow X$ be a σ -additive vector measure. The following *conditions are assumed to hold.*

- (a) *X and X*∗ *have the subsequence splitting property.*
- (b) *The range* $m(\Sigma)$ *of m has uniformly a.c. norm in X.*

Then, the B.f.s. $L^1(m)$ *has the subsequence splitting property.*

Proof Recall, since *X* has the subsequence splitting property, that it has a.c. norm. In order to prove the result we construct an \ddot{X} -valued σ -additive measure \ddot{m} with the property that $(L^1(m))^{\sim}$ is order isomorphically contained in the B.f.s. $L^1(\tilde{m})$. A general result asserts that every L^1 -space of a vector measure has a.c. norm [\[5,](#page-14-13) Theorem 1], and hence, $(L^1(m))^{\sim}$ has a.c. norm. Then, by the characterization (ii) recorded above, it follows that $L^1(m)$ has the subsequence splitting property.

Let η be a Rybakov control measure for m . Then, with continuous inclusions, we have

$$
L^{\infty}(\Omega, \Sigma, \eta) \subseteq L^{1}(m) \subseteq L^{1}(\Omega, \Sigma, \eta).
$$
 (5)

Fix a free ultrafilter *U* in N. Then the ultraproduct of $L^1(\Omega, \Sigma, \eta)$ via *U* can be identified as

$$
L^1(\Omega, \Sigma, \eta)_{\mathcal{U}} = L^1(\tilde{\Omega}, \tilde{\Sigma}, \tilde{\eta}) \oplus \Delta',
$$

where $(\tilde{\Omega}, \tilde{\Sigma}, \tilde{\eta})$ is a measure space and the elements of Δ' are disjoint from [χ_{Ω}]; see [\[10,](#page-14-17) §4], [\[11](#page-14-18)], [\[14,](#page-14-19) §3]. Thus, it follows that

$$
(L^1(\Omega, \Sigma, \eta))^{\sim} = L^1(\tilde{\Omega}, \tilde{\Sigma}, \tilde{\eta}).
$$

The same procedure can be done with $L^{\infty}(\Omega, \Sigma, \eta)$. This allows the identification of $(L^1(m))^{\sim}$ with a function space by forming the ultraproducts of the inclusions in [\(5\)](#page-5-1), namely

$$
L^{\infty}(\tilde{\Omega},\tilde{\Sigma},\tilde{\eta}) \subseteq (L^{1}(m))^{*} \subseteq L^{1}(\tilde{\Omega},\tilde{\Sigma},\tilde{\eta}),
$$

with both inclusions being continuous.

The σ -algebra $\tilde{\Sigma}$ is isomorphic to the Boolean ring $\{[\chi_{A_n}] : A_n \in \Sigma\}$ formed in the quotient space $L^1(\Omega, \Sigma, \lambda)$ *U*. Thus, every measurable set $\tilde{A} \in \tilde{\Sigma}$ can be identified with a sequence of sets $\{A_n\}$ with each $A_n \in \Sigma$, where two sequences of measurable sets $\{A_n\}$ and ${B_n}$ are identified if $\lim_{U \to N} \eta(A_n \triangle B_n) = 0$. Here $A \triangle B$ denotes the symmetric difference of two sets *A* and *B*. The measure $\tilde{\eta}$ is then defined via

$$
\tilde{A} = \{A_n\} \in \tilde{\Sigma} \mapsto \tilde{\eta}(\tilde{A}) := \lim_{\mathcal{U}} \eta(A_n) \in \mathbb{R}^+.
$$

A function \tilde{f} in $L^1(\tilde{\Omega}, \tilde{\Sigma}, \tilde{\eta})$ is an element $[f_n]$ in $L^1(\Omega, \Sigma, \eta)_U$, and the integral of \tilde{f} over measurable sets with respect to $\tilde{\eta}$ is defined as

$$
\int_{\tilde{A}} \tilde{f} \, d\tilde{\eta} = \lim_{\mathcal{U}} \int_{A_n} f_n \, d\eta, \quad \tilde{A} = \{A_n\} \in \tilde{\Sigma}.
$$

For further details, see [\[15](#page-14-16), 85].

We define a vector measure \tilde{m} by

$$
\tilde{A} = \{A_n\} \in \tilde{\Sigma} \longmapsto \tilde{m}(\tilde{A}) = [m(A_n)] \in X_{\mathcal{U}}.
$$

As $m(\Sigma)$ is a bounded subset of X it is clear that \tilde{m} is well defined. Moreover, \tilde{m} is finitely additive [\[10,](#page-14-17) p. 322]. To verify its σ -additivity, let $\varepsilon > 0$. As *m* is absolutely continuous with respect to *n*, there exists $\delta > 0$ such that if $\eta(A) < \delta$, then $\|m\|(A) < \varepsilon$. Let $\tilde{A} = \{A_n\} \in \tilde{\Sigma}$ satisfy $\tilde{\eta}(\tilde{A}) < \delta$, that is, $\lim_{\mathcal{U}} \eta(A_n) < \delta$. Then there exists $V \in \mathcal{U}$ such that for every $n \in V$ we have $\eta(A_n) < \delta$. Thus, for every $n \in V$ it follows that $\|m(A_n)\| \leq \|m\|(A_n) < \varepsilon$. So, $\|\tilde{m}(\tilde{A})\|_{\mathcal{U}} < \varepsilon$. Hence, \tilde{m} is absolutely continuous with respect to $\tilde{\eta}$ from which we deduce that \tilde{m} is σ -additive.

By hypothesis, the range $m(\Sigma)$ of the measure *m* has uniformly a.c. norm in *X*. In order to show that the measure \tilde{m} actually takes its values in $\tilde{X} \subseteq X_{\mathcal{U}}$ we use [\[26,](#page-14-4) 1.5 Proposition] which asserts that if $\{f_n\}$ has uniformly a.c. norm in *X*, then $[f_n] \in \tilde{X}$. Let $\tilde{A} = \{A_n\} \in \tilde{\Sigma}$. Then $\tilde{m}(\tilde{A}) = [m(A_n)] \in X_{\mathcal{U}}$. But, $\{m(A_n)\} \subseteq m(\Sigma)$ which has uniformly a.c. norm. Hence, $\tilde{m}(\tilde{A}) = [m(A_n)] \in \tilde{X}$.

Next, we prove that $(L^1(m))^{\sim}$ is contained in $L^1(\tilde{m})$. To this aim, it suffices to show that each $\tilde{f} \in (L^1(m))^{\sim}$ is scalarly \tilde{m} -integrable. The reason for this is two-fold. On the one hand, \tilde{X} does not contain a copy of c_0 since *X* satisfies the subsequence splitting property; see (iii) above. On the other hand, for vector measures with values in a Banach space not containing c_0 , integrability and scalar integrability coincide $[18,$ Theorem 5.1].

Since *X* and *X*[∗] satisfy the subsequence splitting property, we have $(\tilde{X})^* = (X^*)^*$ and the norms in both spaces coincide [\[26,](#page-14-4) Corollary 2.7]. Hence, the elements of $(X^*)^*$ are of the form $\tilde{g}^* = [g_n^*]$ for $\{g_n^*\}$ a bounded sequence in X^* .

Fix \tilde{g}^* ∈ $(\tilde{X})^*$. The scalar measure $\tilde{g}^*\tilde{m}$: $\tilde{\Sigma} \to \mathbb{R}$ is absolutely continuous with respect to $\tilde{\eta}$ (since \tilde{m} is absolutely continuous with respect to $\tilde{\eta}$). Thus, $\tilde{g}^* \tilde{m}$ has a Radon–Nikodym derivative with respect to $\tilde{\eta}$. We denote it by $h_{\tilde{\varrho}^*}$; it belongs to $L^1(\tilde{\eta})$.

Let $\tilde{A} = \{A_n\} \in \tilde{\Sigma}$. Then,

$$
\langle \tilde{g}^*, \tilde{m}(\tilde{A}) \rangle = \langle [g_n^*], [m(A_n)] \rangle = \lim_{\mathcal{U}} \langle g_n^*, m(A_n) \rangle
$$

=
$$
\lim_{\mathcal{U}} \int_{A_n} 1 d(g_n^* m) = \lim_{\mathcal{U}} \int_{A_n} h_{g_n^*} d\eta = \int_{\tilde{A}} \tilde{h} d\tilde{\eta},
$$

where $\tilde{h} := [h_{g_n^*}]$ and $h_{g_n^*} \in L^1(\eta)$ is the Radon–Nikodym derivative of the measure g_n^*m with respect to η , for each $n \in \mathbb{N}$. Hence, $h_{\tilde{g}^*} = [h_{g_n^*}]$.

Let now $\tilde{f} \in (L^1(m))^{\sim}$. Then $\tilde{f} = [f_n]$ for a bounded sequence $\{f_n\}$ in $L^1(m)$, with $\|\tilde{f}\|_{\mathcal{U}} = \lim_{\mathcal{U}} \|\tilde{f}_n\|_{L^1(m)}$. Accordingly,

$$
\int |\tilde{f}| d|\tilde{g}^* \tilde{m}| = \int |\tilde{f}| \cdot |\tilde{h}_{\tilde{g}^*}| d\tilde{\eta} = \lim_{\mathcal{U}} \int |f_n| \cdot |h_{g_n^*}| d\eta
$$

=
$$
\lim_{\mathcal{U}} \int |f_n| d|g_n^* m| \le \lim_{\mathcal{U}} \|f_n\|_{L^1(m)} \cdot \|g_n^*\|_{X^*}
$$

=
$$
\|\tilde{f}\|_{\mathcal{U}} \cdot \|\tilde{g}^*\|_{\mathcal{U}}.
$$

Hence, \tilde{f} is integrable with respect to $\tilde{g}^* \tilde{m}$. It follows that \tilde{f} is scalarly \tilde{m} -integrable and hence, integrable with respect to the vector measure \tilde{m} . We also deduce from the previous inequality that

$$
\|\tilde{f}\|_{L^1(\tilde{m})}\leq \|\tilde{f}\|_{\mathcal{U}},\quad \tilde{f}\in (L^1(m))^{\sim}.
$$

Let $\varepsilon > 0$. By using the equivalent norm $||| \cdot |||$ in $L^1(m)$, we can select for every $n \in \mathbb{N}$, a measurable set *An* such that

$$
\left\| \int_{A_n} f_n \, dm \right\|_X \geq \frac{1-\varepsilon}{2} \| f_n \|_{L^1(m)}.
$$

Set $\tilde{A} := \{A_n\}$ in $\tilde{\Sigma}$. Then

$$
\|\tilde{f}\|_{L^1(\tilde{m})} \ge \left\| \int_{\tilde{A}} \tilde{f} d\tilde{m} \right\|_{\tilde{X}} = \lim_{\mathcal{U}} \left\| \int_{A_n} f_n dm \right\|_{X}
$$

$$
\ge \frac{1-\varepsilon}{2} \lim_{\mathcal{U}} \|f_n\|_{L^1(m)} = \frac{1-\varepsilon}{2} \|\tilde{f}\|_{\mathcal{U}}.
$$

Thus, the norm of $(L^1(m))^{\sim}$ and the norm of $L^1(\tilde{m})$ are equivalent on $L^1(m)^{\sim}$. Hence, $(L^1(m))^{\sim}$ is order isomorphic to a subspace of $L^1(\tilde{m})$ which completes the proof. $(L^1(m))^{\sim}$ is order isomorphic to a subspace of $L^1(\tilde{m})$ which completes the proof.

Well known examples of B.f.s.' satisfying the subsequence splitting property include those Orlicz spaces satisfying the Δ_2 condition, *q*-concave B.f.s.' for $q < \infty$, and r.i. spaces not containing *c*⁰ [\[26\]](#page-14-4).

4 The weak Banach–Saks property for $L^1(m)$

In the following result we require the vector measure $m: \Sigma \rightarrow X$ to be *separable*. In analogy to the scalar case, this means that the associated pseudometric space (Σ, d_m) is separable, that is, it contains a countable dense subset. The pseudometric d_m is given by

$$
d_m(A, B) := ||m|| (A \triangle B), \quad A, B \in \Sigma,
$$

where $\|m\|(\cdot)$ is the semivariation of *m*. For η a Rybakov control measure for *m* (see Sect. [2\)](#page-3-0), due to the mutual absolute continuity between $\eta(\cdot)$ and $\|m\|(\cdot)$, this it is equivalent to the pseudometric space (Σ, d_n) being separable, where $d_n(A, B) := \eta(A \triangle B)$, for $A, B \in \Sigma$. We point out that *m* is separable precisely when the B.f.s. $L^1(m)$ is separable [\[24](#page-14-21)].

Theorem 5 Let *X* be a B.f.s. and $m: \Sigma \rightarrow X$ be a σ -additive vector measure. The following *conditions are assumed to hold.*

- (a) *X has the weak Banach–Saks property.*
- (b) *The measure m is separable and positive, i.e.,* $m(A) \in X^+$ *for* $A \in \Sigma$ *.*
- (c) $L^1(m)$ has the subsequence splitting property.

Then, the B.f.s. $L^1(m)$ *has the weak Banach–Saks property.*

Proof We need to verify, for a given weakly null sequence $\{f_n\} \subseteq L^1(m)$, that there exists a subsequence $\{f_n^{\prime\prime\prime}\}\subseteq \{f_n\}$ whose arithmetic means converge to zero in the norm of $L^1(m)$, that is,

$$
\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=1}^{n} f_k''' \right\|_{L^1(m)} = 0.
$$

The proof will be carried out in several steps.

Step 1 An important observation, which Szlenk credits to Pełczyński [\[25,](#page-14-2) Remarque 1], is that the weak Banach–Saks property for a Banach space *Z* is equivalent to the following (a priori stronger) property: for every weakly null sequence $\{z_n\} \subseteq Z$ there exists a subsequence ${z'_n}$ ⊆ ${z_n}$ satisfying

$$
\lim_{m \to \infty} \sup_{n_1 < n_2 < \dots < n_m} \left\| \frac{1}{m} \sum_{k=1}^m z'_{n_k} \right\|_Z = 0. \tag{6}
$$

It is to be remarked that this condition is a technical improvement: any further subsequence extracted from $\{z'_n\}$ again satisfies [\(6\)](#page-8-0), for that new subsequence. *Step 2* Let $f_n \to 0$ weakly in $L^1(m)$. Then, $\{f_n\}$ is a bounded sequence in $L^1(m)$. Since $L^1(m)$

has the subsequence splitting property, there is a subsequence $\{f_n\} \subseteq \{f_n\}$ and sequences ${g_n}$ and ${h_n}$ in $L^1(m)$ such that

- (a) $f'_n = g_n + h_n$, with g_n and h_n having disjoint support, $n \in \mathbb{N}$.
- (b) ${g_n}$ has uniformly a.c. norm in $L^1(m)$.
- (c) $\{h_n\}$ have pairwise disjoint support.

Since $f_n \to 0$ weakly in $L^1(m)$, also $f'_n \to 0$ weakly in $L^1(m)$. The claim is that (a), (b), (c) imply that both $g_n \to 0$ weakly in $L^1(m)$ and $h_n \to 0$ weakly in $L^1(m)$.

To establish this claim, recall that sets of functions having uniformly a.c. norm are relatively weakly compact (see Sect. [2\)](#page-3-0). Thus, from (b), the set $\{g_n : n \in \mathbb{N}\}\$ is a relatively weakly compact set in $L^1(m)$. By the Eberlein–Smulian Theorem, there is a subsequence ${g_{n_k}}$ and $g \in L^1(m)$ such that $g_{n_k} \to g$ weakly in $L^1(m)$. Since $f_{n_k} \to 0$ weakly in $L^1(m)$, it follows that $h_{n_k} \to (-g)$ weakly in $L^1(m)$. Let D_k denote the support of h_{n_k} ; from (c) the sets D_k , $k \in \mathbb{N}$, are pairwise disjoint. Set $E := \bigcup_{1}^{\infty} D_k$ and $E_j := \bigcup_{1}^{j} D_k$. Since $L^{\infty} \subseteq L^1(m)^*$, we have $\chi_A \in L^1(m)^*$ for every $A \in \Sigma$. Let $A \in \Sigma$ with $A \subseteq E^c$. Then, $\langle \chi_A, h_{n_k} \rangle \rightarrow \langle \chi_A, (-g) \rangle$. But, $\langle \chi_A, h_{n_k} \rangle = 0$ for all $k \ge 1$ and so $g = 0$ a.e. on E^c . Fix $j \in \mathbb{N}$. For any $A \in \Sigma$ with $A \subseteq E_j$ we have $\langle \chi_A, h_{n_k} \rangle \to \langle \chi_A, (-g) \rangle$. But, $\langle \chi_A, h_{n_k} \rangle = 0$ for all $k > j$ and so $g = 0$ a.e. on E_j . Since this occurs for all $j \in \mathbb{N}$, it follows that $g = 0$ a.e. on *E*. Consequently, $g = 0$ a.e. and so $g_{n_k} \to 0$ weakly. This argument shows that the sequence ${g_n}$ has the property that, for each of its subsequences, there is a further subsequence which converges weakly to zero. This implies that the original sequence $g_n \to 0$ weakly. Consequently, also $h_n \to 0$ weakly.

Step 3 Consider the functions $\{h_n\} \subseteq L^1(m)$ from Step 2. They have pairwise disjoint support. Let B_n be the support of h_n , for $n \in \mathbb{N}$, and *B* be the complement of $\bigcup_n B_n$. Define

$$
F := \chi_B + \sum_{n=1}^{\infty} sign(h_n) \chi_{B_n},
$$

where $sign(h_n) = h_n/|h_n|$ on B_n . The function *F* is measurable and satisfies $|F| \equiv 1$. The operator $f \in L^1(m) \mapsto fF \in L^1(m)$ of multiplication by *F* is a linear isometric isomorphism on $L^1(m)$. Since $h_n \to 0$ weakly in $L^1(m)$ and $h_n F = |h_n|$, for $n \in \mathbb{N}$, it follows that $|h_n| \to 0$ weakly in $L^1(m)$.

Due to the continuity of the integration operator, it follows that $\int_{\Omega} |h_n| dm \to 0$ weakly in *X*. Since *X* has the weak Banach–Saks property, there exists a subsequence $\{h'_n\} \subseteq \{h_n\}$ such that

$$
\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=1}^{n} \int_{\Omega} |h'_k| \, dm \right\|_X = 0. \tag{7}
$$

Due to the fact that the vector measure *m* is positive we have

$$
\|f\|_{L^1(m)} = \| |f| \|_{L^1(m)} = \left\| \int_{\Omega} |f| \, dm \right\|_X, \quad f \in L^1(m),
$$

[\[23,](#page-14-15) Theorem 3.13]. This, together with the fact (due to the supports of the functions h'_n , *n* ∈ ℕ, being disjoint) that $\sum_{k=1}^{n}$ $|h'_k| = |\sum_{k=1}^{n} h'_k|$ for *n* ∈ ℕ implies, from [\(7\)](#page-8-1), that

$$
\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=1}^{n} h'_k \, dm \right\|_{L^1(m)} = \lim_{n \to \infty} \left\| \int_{\Omega} \left(\frac{1}{n} \sum_{k=1}^{n} |h'_k| \right) dm \right\|_{X} = 0. \tag{8}
$$

Note, in view of Step 1, that the above conclusion still holds if we replace $\{h'_n\}$ by any subsequence $\{h_n''\}$ ⊂ $\{h_n'\}.$

Step 4 Consider now the functions $\{g_n\} \subseteq L^1(m)$ from Step 2. Let $\{g'_n\}$ be the subsequence of {*g_n*} corresponding to the subsequence { h'_n } \subseteq { h_n } from Step 3. Since $g_n \to 0$ weakly in $L^1(m)$, also $g'_n \to 0$ weakly in $L^1(m)$.

Let η be a Rybakov control measure for *m*. Since $L^1(m) \subseteq L^1(\eta)$ continuously and $g'_n \to 0$ weakly in $L^1(m)$, we have that $g'_n \to 0$ weakly in $L^1(\eta)$. Due to the well known Komlós theorem [\[17](#page-14-22), Theorem 1a], applied in $L^1(\eta)$ to the norm bounded sequence $\{g'_n\}$, there exists a subsequence $\{g''_n\} \subseteq \{g'_n\}$ and a function $g_0 \in L^1(\eta)$ such that, for every further subsequence $\{g''_n\} \subseteq \{g''_n\}$, we have

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} g_k'''(x) \to g_0(x), \quad \eta\text{-}a.e.
$$

Since $g'_n \to 0$ weakly in $L^1(\eta)$, also $g''_n \to 0$ weakly in $L^1(\eta)$ and so its averages $\frac{1}{n}\sum_{k=1}^n g''_k \to 0$ weakly in $L^1(\eta)$. Set $\xi_n := \frac{1}{n}\sum_{k=1}^n g''_k \in L^1(\eta)$. Then $\xi_n \to 0$ weakly in $L^1(\eta)$ and $\xi_n \to g_0$ η -a.e. Combining the Egorov theorem and the Dunford-Pettis criterion for relative weak compactness in $L^1(\eta)$ [\[1](#page-14-23), Theorem 5.2.9], we deduce that $\xi_n \to g_0$ for the norm in $L^1(\eta)$ and so $g_0 = 0$.

Consequently, we have selected a subsequence $\{g''_n\} \subseteq \{g'_n\}$ with the property that, for every subsequence $\{g''_n\} \subseteq \{g''_n\}$, we have

$$
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} g_k'''(x) \to 0, \quad m-a.e. \tag{9}
$$

Step 5 Due to the separability of the measure *m*, there exists a sequence ${A_n} \subset \Sigma$ which is dense in the pseudometric space (Σ, d_n) .

We start a diagonalization process. For notational convenience, let

$$
I_m(f, A) := \int_A f \, dm, \quad f \in L^1(m), \ A \in \Sigma.
$$

Define $g_n^{(1)} := g_n''$, $n \in \mathbb{N}$, where $\{g_n''\}$ is the sequence obtained in Step 4. Since $g_n^{(1)} \to 0$ weakly in $L^1(m)$ and the operator of integration over A_1 , namely

$$
f \in L^1(m) \mapsto I_m(f, A_1) = \int_{A_1} f dm \in X
$$

is continuous, it follows that $I_m(g_n^{(1)}, A_1) \rightarrow 0$ weakly in *X*. But, *X* has the weak Banach– Saks property and so there exists a subsequence of $\{I_m(g_n^{(1)}, A_1)\}\$ satisfying the condition [\(6\)](#page-8-0) in *X*. We denote that subsequence by $\{I_m(g_n^{(2)}, A_1)\}\$. In this way we have also selected a subsequence ${g_n^{(2)}}$ ⊆ ${g_n^{(1)}}$.

Next we apply the same procedure to the subsequence ${g_n^{(2)}}$ and the set A_2 as follows. Since $g_n^{(2)} \rightarrow 0$ weakly in $L^1(m)$ and the operator of integration over A_2 , i.e.,

$$
f \in L^1(m) \mapsto I_m(f, A_2) = \int_{A_2} f dm \in X
$$

is continuous, it follows that $I_m(g_n^{(2)}, A_2) \to 0$ weakly in *X*. But, *X* has the weak Banach– Saks property and so there exists a subsequence of $\{I_m(g_n^{(2)}, A_2)\}\$ satisfying the condition [\(6\)](#page-8-0) in *X*. We denote that subsequence by $\{I_m(g_n^{(3)}, A_2)\}\)$. In this way we have selected a subsequence ${g_n^{(3)}} \subseteq {g_n^{(2)}}$. Note, from Step 1, that ${I_m(g_n^{(3)}, A_1)}$ also satisfies the condition [\(6\)](#page-8-0) in *X*.

For the general step, consider the subsequence ${g_n^{(k)}} \subseteq {g_n^{(k-1)}}$. Since $g_n^{(k)} \to 0$ weakly in $L^1(m)$ and the operator of integration over A_k , i.e.,

$$
f \in L^1(m) \mapsto I_m(f, A_k) = \int_{A_k} f \, dm \in X
$$

is continuous, it follows that $I_m(g_n^{(k)}, A_k) \to 0$ weakly in *X*. But, *X* has the weak Banach– Saks property and so there exists a subsequence of $\{I_m(g_n^{(k)}, A_k)\}\$ satisfying the condition [\(6\)](#page-8-0). We denote that subsequence by $\{I_m(g_n^{(k+1)}, A_k)\}\)$. In this way we have also selected a subsequence $\{g_n^{(k+1)}\} \subseteq \{g_n^{(k)}\}$. Note, from Step 1, that also $\{I_m(g_n^{(k+1)}, A_j)\}$ satisfies the condition [\(6\)](#page-8-0) in *X* for all $1 \le j \le k$.

By defining $g_n''' := g_n^{(n)}$, $n \in \mathbb{N}$, we obtain a subsequence $\{g_n'''\} \subseteq \{g_n''\}$ satisfying

$$
\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=1}^{n} \int_{A_j} g_k''' \, dm \right\|_X = 0, \quad j = 1, 2, \dots \tag{10}
$$

Set

$$
F_n := \frac{1}{n} \sum_{k=1}^n g_k''' , \quad n = 1, 2, \dots
$$

Then, ${F_n} \subset L^1(m)$ and we can write [\(10\)](#page-10-0) as

$$
\lim_{n \to \infty} \left\| \int_{A_j} F_n \, dm \right\|_X = 0, \quad j = 1, 2, \dots. \tag{11}
$$

Step 6 Since the functions {*g_n*} have uniformly a.c. norm in $L^1(m)$, also the functions {*g*^{*n*}} ⊆ ${g_n}$ have uniformly a.c. norm in $L^1(m)$. Recall that $L^1(m)$ is a B.f.s. over the finite measure space (Ω, Σ, η) , where η is the Rybakov control measure in Step 4. The uniform a.c. of the norm of ${g''_n }$ in $L^1(m)$ implies that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
\eta(A) < \delta \Rightarrow \sup_{n} \|g_n''' \chi_A\|_{L^1(m)} < \varepsilon. \tag{12}
$$

Our next objective is to extend the validity of [\(11\)](#page-10-1) to an arbitrary measurable set $A \in \Sigma$. So, fix $A \in \Sigma$ and let $\epsilon > 0$. Select $\delta > 0$ to satisfy [\(12\)](#page-10-2). Due to the separability of (Σ, d_n) there exists $j \in \mathbb{N}$ such that $\eta(A \triangle A_j) < \delta$. Then,

$$
\left\| \int_{A} F_{n} dm \right\|_{X} \leq \left\| \int_{A} F_{n} dm - \int_{A_{j}} F_{n} dm \right\|_{X} + \left\| \int_{A_{j}} F_{n} dm \right\|_{X}
$$

\n
$$
\leq \frac{1}{n} \sum_{k=1}^{n} \left\| \int_{A} g_{k}''' dm - \int_{A_{j}} g_{k}''' dm \right\|_{X} + \left\| \int_{A_{j}} F_{n} dm \right\|_{X}
$$

\n
$$
\leq \frac{1}{n} \sum_{k=1}^{n} \left\| g_{k}''' \chi_{A \triangle A_{j}} \right\|_{L^{1}(m)} + \left\| \int_{A_{j}} F_{n} dm \right\|_{X}
$$

\n
$$
\leq \varepsilon + \left\| \int_{A_{j}} F_{n} dm \right\|_{X},
$$

where we have used $|\chi_{A\setminus A_j} g_k'''| \le |\chi_{A\triangle A_j} g_k'''|$ and $||\int_{\Omega} g dm ||_X \le ||g||_{L^1(m)} = ||g|| ||_{L^1(m)}$ for $g \in L^1(m)$. Due to [\(11\)](#page-10-1), the last term can be made smaller than ε for $n \ge n_0$ and some $n_0 \in \mathbb{N}$. Hence,

$$
\lim_{n\to\infty}\left\|\int_A F_n dm\right\|_X\to 0, \quad A\in\Sigma.
$$

Note that $\{g_n''\} \subseteq \{g_n''\}$ implies, from [\(9\)](#page-9-0), that $F_n \to 0$ a.e. Consequently, we have a sequence ${F_n}$ in $L^1(m)$ such that $F_n \to 0$ a.e. and $\int_A F_n dm \to 0$ in *X*, for each $A \in \Sigma$. These two conditions, via Lemma [3,](#page-4-1) imply that $F_n \to 0$ in $L^1(m)$, that is

$$
\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=1}^{n} g_k''' \right\|_{L^1(m)} = 0.
$$
 (13)

Step 7 Let $\{h_n\}$ be the subsequence of $\{h_n\}$ corresponding to the subsequence $\{g_n''\}$ of $\{g_n\}$ from Step 6. For the subsequence $f_n''' = g_n''' + h_n'''$, $n \in \mathbb{N}$, of $\{f_n\}$ it follows from [\(8\)](#page-9-1) and (13) that

$$
\lim_{n\to\infty}\left\|\frac{1}{n}\sum_{k=1}^n f_k'''\,dm\right\|_{L^1(m)}=0.
$$

This completes the proof.

The combination of Theorems [4](#page-5-0) and [5](#page-7-0) renders the following result.

Theorem 6 Let *X* be a B.f.s. and $m: \Sigma \rightarrow X$ be a σ -additive vector measure. The following *conditions are assumed to hold.*

- (a) *X has the weak Banach–Saks property.*
- (b) *X and X*∗ *have the subsequence splitting property.*
- (c) *The measure m is separable and positive, i.e.,* $m(A) \in X^+$ *for* $A \in \Sigma$ *.*
- (d) *The range* $m(\Sigma)$ *of m has uniformly a.c. norm in X.*

Then, the B.f.s. $L^1(m)$ *has both the subsequence splitting property and the weak Banach–Saks property.*

We now turn to the

Proof of Theorem [1](#page-2-0) We will deduce Theorem [1](#page-2-0) from Theorem [6.](#page-11-0) We first define the relevant vector measure *m* and verify that the conditions (c), (d) of Theorem [6](#page-11-0) are satisfied. So, let

$$
m\colon A\in\Sigma\mapsto m(A):=T(\chi_A)\in X.
$$

It a well defined, finitely additive measure (as *T* is linear) with values in X^+ (as *T* is positive). For the σ -additivity of *m*, let { A_n } $\subseteq \Sigma$ be pairwise disjoint sets. Since $\chi_{\cup_1^n A_k} \uparrow \chi_{\cup_1^\infty A_k}$ and *T* is positive, it follows that $T(\chi_{\cup_{1}^{n}A_{k}}) \uparrow T(\chi_{\cup_{1}^{\infty}A_{k}})$ in *X*. Since *X* has a.c. norm (as it has the subsequence splitting property), this implies that $T(\chi_{\cup_{1}^{n}A_{k}})$ converges to $T(\chi_{\cup_{1}^{\infty}A_{k}})$ in the norm of *X*. Hence, $\sum_{1}^{n} m(A_k) \rightarrow \sum_{1}^{\infty} m(A_k)$ in the norm of *X*, i.e., *m* is σ -additive.

Next we verify condition (c) of Theorem [6.](#page-11-0) The vector measure *m* is absolutely continuous with respect to the underlying measure μ . Indeed, if $\mu(A) = 0$ for some $A \in \Sigma$, then $m(A) = T(\chi_A) = 0$ (as *T* is linear). Actually, for any $B \in \Sigma$ with $B \subseteq A$ we have $\mu(B) = 0$ and so $m(B) = 0$. This implies that $\|m\|(A) = 0$. It follows for any given $\varepsilon > 0$ that there is $\delta > 0$ such that $\mu(A) < \delta$ implies $\|m\|(A) < \varepsilon$. Since μ is separable, there exists a countable set { A_i } which is dense in (Σ, d_μ) . For any $A \in \Sigma$ and $\varepsilon > 0$, let $\delta > 0$ be chosen as above. The separability of (Σ, d_μ) ensures there is $j \in \mathbb{N}$ such that $\mu(A \Delta A_j) < \delta$ and so $\|m\|(A\Delta A_i) < \varepsilon$. Thus, $\{A_i\}$ is dense in (Σ, d_m) . Hence, *m* is separable.

In order to verify condition (d) of Theorem [6](#page-11-0) note, for every $A \in \Sigma$, that $0 \leq T(\chi_A) \leq$ *T*($\chi_{[0,1]}$). Then, for any $B \in \Sigma$, it follows that $0 \leq \chi_B T(\chi_A) \leq \chi_B T(\chi_{[0,1]})$ and so $\|\chi_B T(\chi_A)\|_X \le \|\chi_B T(\chi_{[0,1]})\|_X$. Since *X* has a.c. norm, the function $T(\chi_{[0,1]})$ has a.c. norm in *X*. So, given $\varepsilon > 0$ there is $\delta > 0$ such that $\mu(B) < \delta$ implies that $\|\chi_B T(\chi_{[0,1]})\|_X < \varepsilon$. Then also $\|\chi_B T(\chi_A)\|_X < \varepsilon$ for all $A \in \Sigma$, that is, the set $\{T(\chi_A) : A \in \Sigma\}$ has uniformly a.c. norm in *X*. From $m(\Sigma) = \{T(\chi_A) : A \in \Sigma\}$ it follows that $m(\Sigma)$ has uniformly a.c. norm in *X*.

Theorem [6](#page-11-0) now implies that $L^1(m)$ has both the subsequence splitting property and the weak Banach–Saks property. It remains to establish the equality between $L^1(m)$ and the optimal domain $[T, X]$. This is a general fact for optimal domains of kernel operators on spaces with a.c. norm $[6, \text{Corollary } 3.3]$. spaces with a.c. norm [\[6](#page-14-6), Corollary 3.3].

5 Applications

We provide an application of Theorem [6](#page-11-0) to function spaces arising from convolution operators on groups. The proof of Corollary [2](#page-2-2) on functions spaces arising from kernel operators on [0, 1] is also presented.

Let *G* be a compact, metrizable, abelian group and λ denote normalized Haar measure on *G*. Let *v* be any positive, finite Borel measure on *G*. Define a vector measure $m_v^{(p)}$: $\mathcal{B}(G) \rightarrow$ $L^p(G)$, for each $1 < p < \infty$, by convolution with ν , i.e.,

$$
m_{\nu}^{(p)}(A) := \chi_A * \nu, \quad A \in \mathcal{B}(G).
$$

Note that the space $L^p(G)$ has a.c. norm, possesses the subsequence splitting property and has the weak Banach–Saks property. Moreover, its dual space $(L^p(G))^* = L^q(G)$, with $1/p + 1/q = 1$, also has the subsequence splitting property. In addition, the vector measure $m_{\nu}^{(p)}$ is clearly positive and separable (as the σ -algebra $\mathcal{B}(G)$ of Borel subsets of *G* is countably generated). Concerning the range of $m_v^{(p)}$ being uniformly a.c. in $L^p(G)$, it suffices for this range to be relatively compact in $L^p(G)$ (see Sect. [2\)](#page-3-0). For $1 < p < \infty$, this is the case precisely when $\nu \in M_0(G)$, i.e., the Fourier–Stieltjes coefficients of ν vanish at infinity on the dual group of *G* [\[23](#page-14-15), Proposition 7.58]. In particular, this is so whenever $\nu \in L^1(G)$, that is, whenever v has an integrable density with respect to λ , i.e., $v = f d\lambda$ with $f \in L^1(G)$. So, Theorem [1](#page-2-0) implies that each of the B.f.s.'

$$
L^{1}(m_{\nu}^{(p)}) = \{f : \nu * |f| \in L^{p}(G)\}, \quad \nu \ge 0, \ \nu \in M_{0}(G),
$$

[\[23,](#page-14-15) pp. 350–351], has the subsequence splitting property and the weak Banach–Saks property. It should be remarked in the event that the measure $v \notin L^p(G)$, then the B.f.s. $L^1(m_v^{(p)})$ described above is situated strictly between $L^p(G)$ and $L^1(G)$, i.e.,

$$
L^p(G) \subsetneq L^1(m_v^{(p)}) \subsetneq L^1(G);
$$

see [\[23,](#page-14-15) Proposition 7.83] and the discussion following that result. It is known that always $L^1(G) \subsetneq M_0(G)$ [\[23](#page-14-15), p. 320].

We now turn to the

Proof of Corollary [2](#page-2-2) We verify that the conditions of Theorem [1](#page-2-0) are satisfied.

The Lebesgue measure space ([0, 1], M , λ) is separable. Moreover, the operator T_K defined by [\(4\)](#page-2-1) is linear and positive (as the kernel $K \ge 0$). To verify that T_K maps L^∞ into *X* note, for each $f \in L^{\infty}$, that $|T(f)| \leq T(|f|) \leq ||f||_{\infty} T(\chi_{[0,1]})$. As the function $T(\chi_{[0,1]})$ belongs to *X* by assumption, it follows that $T(f) \in L^{\infty}$. So, $T: L^{\infty}([0,1]) \to X$.

In the case when *X* is reflexive, neither *X* nor X^* can contain a subspace isomorphic to *c*0. Accordingly, as both *X* and *X*[∗] are r.i., they have the subsequence splitting property [\[26,](#page-14-4) 2.6 Corollary].

Corollary [2](#page-2-2) applies to many different situations, e.g., to the following kernels on [0, 1].

- (i) The Volterra kernel, $K(x, y) := \chi_{\Delta}(x, y)$ with $\Delta := \{(x, y) \in [0, 1] \times [0, 1] : 0 \le$ $y \leq x$.
- (ii) The Riemann–Liouville fractional kernel, $K(x, y) := |x y|^{\alpha 1}$ for $0 < \alpha < 1$.
- (iii) The Poisson semigroup kernel, $K(x, y) := \arctan(y/x)$ for $x \neq 0$ and $K(0, y) = \pi/2$.
- (iv) The kernel associated with Sobolev's inequality, $K(x, y) := y^{(1/n)-1} \chi_{[x, 1]}(y)$ for $n \ge$ 2.
- (v) The Cesàro kernel, $K(x, y) := (1/x) \chi_{[0,x]}(y)$.

All of these kernels *K* generate positive operators T_K on L^∞ . The function $T_K(\chi_{[0,1]})$ belongs, in all cases, to L^{∞} and hence, to all r.i. spaces on [0, 1]. In particular, the function belongs to all r.i. spaces with a.c. norm.

In relation to condition (d) of Theorem 6 , let us comment on the range of the associated vector measures $m_K: A \mapsto m_K(A) = T_K(\chi_A)$. In the cases (i)–(iv), the range is, in fact, relatively compact in $C([0, 1])$ and hence, also in any r.i. space X; see [\[23,](#page-14-15) Example 4.25] and the references given there. In the case (v), the range is relatively compact in any r.i. space $X \neq L^{\infty}$ [\[9](#page-14-24), Theorem 2.1]. So, in all cases (i)–(v) the B.f.s. $[T_K, X] = L^1(m_K)$ has the subsequence splitting property and the weak Banach–Saks property, whenever the B.f.s. *X* satisfies the hypotheses in Corollary [2.](#page-2-2)

In conclusion, we point out for a Banach-space valued measure $m: \Sigma \rightarrow X$ that if the integration map $I_m: L^1(m) \to X$ is compact, then *m* has a finite variation measure $|m|: \Sigma \to [0, \infty)$ and $L^1(m) = L^1(|m|)$ is a classical L^1 -space [\[22](#page-14-25), Theorems 1 & 4]. Accordingly, $L^1(m)$ has the weak Banach–Saks property. Moreover, the compactness of I_m ensures that $m(\Sigma)$ is a relatively compact subset of *X* but, the converse is not true in general $[22,$ Remark 3.3(ii)]. So, the condition (d) of Theorem [6](#page-11-0) is typically weaker than the compactness of I_m . Indeed, for the convolution vector measures $m_{\nu}^{(p)}$ discussed above, it was noted that $m_{\nu}^{(p)}$ has relatively compact range if and only if $\nu \in M_0(G)$. On the other

hand, $I_{m_{\nu}(\rho)}$ is compact if and only if $\nu \in L^p(G) \subsetneq M_0(G)$ [\[23](#page-14-15), Theorem 7.67]. Or, for the *X*-valued vector measure m_X corresponding to the Cesàro kernel in (v) above, with $X \neq L^{\infty}$ any r.i. space whose upper Boyd index $\overline{\alpha}_X < 1$, it is known that the integration map I_{mx} : $L^1(m_X) \rightarrow X$ is never compact; see the discussion after Proposition 4.1 in [\[9\]](#page-14-24). On the other hand, it was noted above that m_X always has relatively compact range.

References

- 1. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Springer, New York (2006)
- 2. Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces. Indag. Math. (N.S.) **20**, 329–379 (2009)
- 3. Banach, S., Saks, S.: Sur la convergence forte dans le champ *L ^p*. Stud. Math. **2**, 51–57 (1930)
- 4. Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Can. J. Math. **7**, 289–305 (1955)
- 5. Curbera, G.P.: Operators into *L*¹ of a vector measure and applications to Banach lattices. Math. Ann. **293**, 317–330 (1992)
- 6. Curbera, G.P., Ricker, W.J.: Optimal domains for kernel operators via interpolation. Math. Nachr. **244**, 47–63 (2002)
- 7. Curbera, G.P., Ricker, W.J.: Optimal domains for the kernel operator associated with Sobolev's inequality. Stud. Math. **158**, 131–152 (2003)
- 8. Curbera, G.P., Ricker, W.J.: Corrigenda to: Optimal domains for the kernel operator associated with Sobolev's inequality. Stud. Math. **170**, 217–218 (2005)
- 9. Curbera, G.P., Ricker, W.J.: Abstract Cesàro spaces: integral representations. J. Math. Anal. Appl. **441**, 25–44 (2016)
- 10. Dacunha-Castelle, D., Krivine, J.-L.: Applications des ultraproduits à l'étude des espaces et des algèbres de Banach. Stud. Math. **41**, 315–334 (1972)
- 11. Dacunha-Castelle, D., Krivine, J.-L.: Sous-espaces de *L*1. Isr. J. Math. **26**, 320–351 (1977)
- 12. Diestel, J., Uhl Jr., J.J.: Vector Measures. American Mathematical Society, Providence (1977)
- 13. Edmunds, D.E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. **170**, 307–355 (2000)
- 14. González, M., Martínez-Abejón, A.: Ultrapowers of $L^1(\mu)$ and the subsequence splitting principle. Isr. J. Math. **122**, 189–206 (2001)
- 15. Heinrich, S.: Ultraproducts in Banach space theory. J. Reine Angew. Math. **313**, 72–104 (1980)
- 16. Kadec, M., Pełczyński, A.: Bases, lacunary sequences and complemented subspaces in the spaces L^p . Stud. Math. **21**, 161–176 (1962)
- 17. Komlós, J.: A generalization of a problem of Steinhaus. Acta Math. Hung. **18**, 217–229 (1967)
- 18. Lewis, D.R.: On integration and summability in vector spaces. Ill. J. Math. **16**, 294–307 (1972)
- 19. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces, vol. II. Springer, Berlin (1979)
- 20. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)
- 21. Okada, S., Ricker, W.J.: Optimal domains and integral representation of $L^p(G)$ -valued convolution operators via measures. Math. Nachr. **280**, 423–436 (2007)
- 22. Okada, S., Ricker, W.J., Rodríguez-Piazza, L.: Compactness of the integration operator associated with a vector measure. Stud. Math. **150**, 133–149 (2002)
- 23. Okada, S., Ricker, W.J., Sánchez Pérez, E.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Operator Theory Advances Applications, vol. 180. Birkhäuser, Basel (2008)
- 24. Ricker, W.J.: Separability of the *L*1-space of a vector measure. Glasg. Math. J. **34**, 1–9 (1992)
- 25. Szlenk, W.: Sur les suites faiblement dans l'space *L*. Stud. Math. **25**, 337–341 (1965)
- 26. Weis, L.W.: Banach lattices with the subsequence splitting property. Proc. Am. Math. Soc. **105**, 87–96 (1989)