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Abstract We establish the weak Banach–Saks property for function spaces arising as the
optimal domain of an operator.
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1 Introduction

Astashkin and Maligranda proved that the Banach function space (B.f.s.)

Cesp[0, 1] :=
{

f : x �→ 1

x

∫ x

0
| f (y)| dy ∈ L p([0, 1])

}
, 1 ≤ p < ∞,

has theweak Banach–Saks property, namely, everyweakly null sequence inCesp[0, 1] admits
a subsequence whose arithmetic means converge to zero in the norm of Cesp[0, 1], [2, §7].
The space L p([0, 1]), for 1 ≤ p < ∞, itself has the weak Banach–Saks property. This is
due to Banach and Saks for 1 < p < ∞ [3], and to Szlenk for p = 1 [25]. An important
step in the proof of the above result in [2] is to first establish that Cesp[0, 1] satisfies the
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subsequence splitting property. This property goes back to a celebrated paper of Kadec and
Pełczyński [16], where they observed that in L p([0, 1]), 1 ≤ p < ∞, every norm bounded
sequence { fn} has a subsequence { f ′

n} that can be split in the form f ′
n = gn + hn , where the

functions {hn} have pairwise disjoint support and the sequence {gn} has uniformly absolutely
continuous (a.c.) norm in L p([0, 1]), that is, supn ‖gnχA‖p → 0 when λ(A) → 0, where
λ is Lebesgue measure on [0, 1]. Characterizations of the subsequence splitting property (in
terms of ultraproducts) are due to Weis [26]; they play a crucial role in Sect. 3.

The above results raise the question of whether the subsequence splitting property and the
weak Banach–Saks property are also satisfied in analogous B.f.s.’, such as, for example,

{ f ∈ L1(G) : ν ∗ | f | ∈ L p(G)}, 1 < p < ∞, (1)

where ν is a positive, finite Borel measure on a compact abelian group G; or for
{

f : [0, 1] → R : Iα( f )(x) :=
∫ 1

0

| f (y)|
|x − y|1−α

dy ∈ X

}
, (2)

where 0 < α < 1 and X is a rearrangement invariant (r.i.) space on [0, 1]; or for
{

f : [0, 1] → R : T ( f )(x) :=
∫ 1

x
y(1/n)−1| f (y)| dy ∈ X

}
, (3)

where n ≥ 2 and X is a r.i. space on [0, 1].
The common feature for these types of B.f.s.’ is that each one is the optimal extension

domain of an appropriate linear operator. Indeed, in the case of Cesp[0, 1] this is so for the
Cesàro operator

f �→ C( f ) : x �→ 1

x

∫ x

0
f (y) dy;

see [2]; in the case of the B.f.s. in (1) for the operator of convolution with the measure ν, that
is, for

f �→ Tν( f ) = f ∗ ν : x �→
∫

G
f (y − x) dν(y);

see [21]; in the case of the B.f.s. in (2) for the Riemann–Liouville fractional integral of order
α, that is, for

f �→ Iα( f ) : x �→
∫ 1

0

f (y)

|x − y|1−α
dy;

see [6]; and in the case of the B.f.s. in (3) for the kernel operator associated to the n-
dimensional Sobolev inequality, that is, for

f �→ Tn( f ) : x �→
∫ 1

x
y(1/n)−1 f (y) dy;

see [7,8,13].
Concerning the optimal domain of anoperator, consider afinitemeasure space (�,�,μ), a

Banach space X and an X -valued linearmap T defined on an idealD ⊆ L0(μ)which contains
L∞(μ). Here L0(μ) is the space of classes of all a.e. R-valued, measurable functions defined
on �. Then the optimal domain for T , taking its values in X , is the linear space defined by

[T, X ] := { f ∈ L0(μ) : T (| f |) ∈ X},
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which becomes a B.f.s. when endowed with the norm

‖ f ‖[T,X ] := ‖T (| f |)‖X , f ∈ [T, X ].
Note that D ⊆ [T, X ]. In this notation, we have Cesp = [C, L p([0, 1])], the B.f.s. in (1) is
[Tν, L p(G)], the B.f.s. in (2) is [Iα, X ], and the B.f.s. in (3) is [Tn, X ].

The aimof this paper is to extend the abovementioned results ofAstashkin andMaligranda
to the setting of operators other than the Cesàro operator and B.f.s.’ other than L p([0, 1]).
For this we need to determine conditions on the Banach space X and on the operator T
which guarantee that the space [T, X ] has the subsequence splitting property and the weak
Banach–Saks property. This is achieved in Theorems 4, 5 and 6. The combination of these
theorems leads to the following result.

Recall that a linear operator between function spaces is said to be positive if it maps
positive functions to positive functions. If both function spaces are B.f.s.’, then the operator
is automatically continuous.

Theorem 1 Let (�,�,μ) be a separable, finite measure space, X be a B.f.s. which possesses
the weak Banach–Saks property and such that both X and X∗ have the subsequence splitting
property. Let T : D → X be a positive, linear operator with L∞(μ) ⊆ D ⊆ L0(μ). Then
the B.f.s. [T, X ] has both the subsequence splitting property and the weak Banach–Saks
property.

Given a measurable function K : (x, y) ∈ [0, 1]× [0, 1] �→ K (x, y) ∈ [0,∞], recall that
the associated kernel operator TK is defined by

TK f (x) :=
∫ 1

0
K (x, y) f (y) dy, x ∈ [0, 1], (4)

for any function f ∈ L0 for which it is meaningful to do so, i.e., such that TK f ∈ L0.
As a consequence of Theorem 1 we have the following result.

Corollary 2 Let X be a r.i. space on [0, 1] which possesses the weak Banach–Saks property
and such that both X and X∗ have the subsequence splitting property. Let K : (x, y) ∈
[0, 1]×[0, 1] �→ K (x, y) ∈ [0,∞] be a measurable kernel such that TK (χ[0,1]) ∈ X, where
TK is as in (4). Then the B.f.s. [TK , X ] has both the subsequence splitting property and the
weak Banach–Saks property.

In particular, the result holds whenever X is reflexive and possesses the weak Banach–
Saks property.

From Corollary 2 it follows, for example, that the B.f.s [Iα, X ] in (2) corresponding
to the kernel K (x, y) := |x − y|α−1, the B.f.s. [Tn, X ] in (3) generated by the Sobolev
kernel K (x, y) = y(1/n)−1χ[x,1](y), and the Cesàro space [C, X ] corresponding to the kernel
K (x, y) := (1/x)χ[0,x](y), all have the subsequence splitting property and theweakBanach–
Saks property, whenever X is a reflexive r.i. space with the weak Banach–Saks property. We
refer to Sect. 5 for the details and further examples, also including convolution operators by
measures.

A comment regarding the techniques is in order. There is a (somewhat unexpected,
although classical) tool available for treating optimal domains in a unified way: there always
exists an underlying vector measure associated with the operator together with its corre-
sponding L1-space consisting of all the scalar functions which are integrable with respect to
that vector measure (in the sense of Bartle, Dunford and Schwartz). Accordingly, Theorems 4
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and 5 are formulated for the subsequence splitting property and the weak Banach–Saks prop-
erty for L1-spaces of a general vector measure, respectively. For instance, in the case of the
Cesàro operator, the associated L p([0, 1])-valued vector measure is given by

mL p : A �→ mL p (A) := C(χA), A ⊆ [0, 1] measurable.

For this vector measure it turns out that Cesp[0, 1] = L1(mL p ).

2 Preliminaries

A Banach function space (B.f.s.) X over a measure space (�,�,μ) is a Banach space
of classes of measurable functions on � satisfying the ideal property, that is, g ∈ X and
‖g‖X ≤ ‖ f ‖X whenever f ∈ X and |g| ≤ | f | μ-a.e. We denote by X+ the cone in X
consisting in all f ∈ X satisfying f ≥ 0 μ-a.e. The B.f.s. X has absolutely continuous
(a.c.) norm if limμ(A)→0 ‖ f χA‖X = 0 for f ∈ X ; here χA denotes the characteris-
tic function of a set A ∈ �. An equivalent condition is that order bounded, increasing
sequences in X are norm convergent. A subset K ⊆ X is said to have uniformly a.c. norm if
limμ(A)→0 sup f ∈K ‖ f χA‖X = 0. Sets with uniform a.c. norm are also called almost order
bounded sets or L-weakly compact sets. In B.f.s.’ with a.c. norm, all relatively compact sets
have uniform a.c. norm, and all sets with uniform a.c. norm are relatively weakly compact;
see [20, §3.6].

A rearrangement invariant (r.i.) space X on [0, 1] is a B.f.s. on [0, 1] such that if g∗ ≤ f ∗
and f ∈ X , then g ∈ X and ‖g‖X ≤ ‖ f ‖X . Here f ∗ is the decreasing rearrangement of
f , that is, the right continuous inverse of its distribution function: μ f (τ ) := μ({t ∈ [0, 1] :
| f (t)| > τ }). If a r.i. space X has a.c. norm, then the dual space X∗ is again r.i. A r.i. space
X always satisfies L∞ ⊆ X ⊆ L1.

We recall briefly the theory of integration of real functionswith respect to a vectormeasure,
due to Bartle et al. [4]. Let (�,�) be a measurable space, X be a Banach space with dual
space X∗ and closed unit ball BX∗ , and m : � → X be a σ -additive vector measure. The
semivariation of m is defined by

A �→ ‖m‖(A) := sup{|x∗m|(A) : x∗ ∈ BX∗ }, A ∈ �,

where |x∗m| is the variation measure of the scalar measure x∗m : A �→ 〈x∗, m(A)〉 for
A ∈ �. A Rybakov control measure for m is a measure of the form η = |x∗

0m| for a suitable
element x∗

0 ∈ X∗ such that η(A) = 0 if and only if ‖m‖(A) = 0; see [12, Theorem IX.2.2].
A measurable function f : � → R is called m-scalarly integrable if f ∈ L1(|x∗m|), for

every x∗ ∈ X∗. The function f is m-integrable if, in addition, for each A ∈ � there exists a
vector in X (denoted by

∫
A f dm) such that 〈∫A f dm, x∗〉 = ∫

A f dx∗m, for every x∗ ∈ X∗.
The m-integrable functions form a linear space in which

‖ f ‖L1(m) := sup

{∫
�

| f | d|x∗m| : x∗ ∈ BX∗
}

is a seminorm. Identifying functions which differ ‖m‖-a.e., we obtain a Banach space (of
classes) of m-integrable functions, denoted by L1(m). It is a B.f.s. over (�,�, η) relative
to any Rybakov control measure η for m. Simple functions are dense in L1(m), the m-
essentially bounded functions are contained in L1(m), and L1(m) has a.c. norm. This last
property implies that L1(m)

∗
can be identified with its associate space, that is, with the space

of all measurable functions g satisfying f g ∈ L1(η) for all f ∈ L1(m); the identification



The weak Banach–Saks property for function spaces 661

is given by f ∈ L1(m) �→ ∫
�

f g dη ∈ R. In particular, L∞ ⊆ L1(m)
∗
. An equivalent

norm for L1(m) is given by ||| f ||| := sup{‖ ∫
A f dm‖X : A ∈ �}, which satisfies ||| f ||| ≤

|| f ||L1(m) ≤ 2||| f ||| for f ∈ L1(m). The integration operator Im : L1(m) → X is defined
by f �→ ∫

�
f dm. It is continuous, linear and has operator norm one. It should be noted

that the spaces L1(m) can be quite different to the classical L1-spaces of scalar measures.
Indeed, every Banach lattice with a.c. norm and having a weak unit (e.g., L2([0, 1])) is the
L1-space of some vector measure [5, Theorem 8].

For further details concerning B.f.s.’ and r.i. spaces we refer to [19]. For further facts
related to the spaces L1(m) see [23].

The following result is implicit in the construction of the Bartle, Dunford, Schwartz
integral (cf. the proof of Theorem 2.6(a) of [4]), although it is not explicitly stated; see also
[23, Theorem 3.5]. We include a proof for the sake of completeness.

Lemma 3 Let { fn} ⊆ L1(m) be a sequence satisfying

(a) fn(x) → f (x) for ||m||-a.e. x ∈ �, and
(b) {∫A fn dm} is convergent in X, for each A ∈ �.

Then, f ∈ L1(m) and { fn} converges to f in the norm of L1(m).

Proof For each fn ∈ L1(m), n ∈ N, the set function A �→ ∫
A fn dm ∈ X , A ∈ �, is a

σ -additive measure (due to the Orlicz–Pettis Theorem), which is absolutely continuous with
respect to a control measure for m. This fact, together with (b) implies, via the Vitali–Hahn–
Saks Theorem [12, Theorem I.5.6], that the convergence in (b) is uniform with respect to the
sets A ∈ �. Accordingly, f ∈ L1(m) [4, Theorem 2.7]. The convergence fn → f in norm
in L1(m) follows directly by considering the equivalent norm ||| · ||| in L1(m). ��

3 The subsequence splitting property for L1(m)

In [26, 2.1 Definition] Weis gives a general definition of the subsequence splitting property.
Let X be a B.f.s. with a.c. norm defined over a measure space (S, σ, μ). Then X has the
subsequence splitting property if for every norm bounded sequence { fn} ⊆ X there is a
subsequence { f ′

n} of { fn} and sequences {gn} and {hn} in X such that:

(a) For n ∈ N we have f ′
n = gn + hn , with gn and hn having disjoint support.

(b) The sequence {gn} has uniformly a.c. norm in X .
(c) The functions {hn} have pairwise disjoint support.

Weis gives several characterizations of the subsequence splitting property, [26, 2.5 Theo-
rem]. We select only those which are required in the sequel. Namely,

(i) X has the subsequence splitting property,
(ii) X̃ has a.c. norm,
(iii) X̃ does not contain a copy of c0,

where the space X̃ is constructed as follows; see [26]. Let U be a free ultrafilter inN. Consider
the ultraproduct of X via U given by the quotient

XU := �∞(X)
/

NU , where NU =
{
{ fn} ∈ �∞(X) : lim

U
‖ fn‖X = 0

}

and �∞(X) is the space of all bounded sequences in X . Denote by [ fn] ∈ XU the equivalence
class of the element { fn} ∈ �∞(X). The space XU becomes a Banach lattice for the following
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norm and order:

‖[ fn]‖U := lim
U

‖ fn‖X , inf{[ fn], [gn]} := [inf{ fn, gn}].

For details on ultraproducts of Banach spaces see [15]. Let χS be the characteristic function
of the underlying set S. Then, [χS] is the equivalence class of the constant sequence {χS}.
Let X̃ denote the band in XU generated by [χS], that is, X̃ = [χS]⊥⊥. Recall that a band M
in a Banach lattice Z is a closed subspace which is an order ideal (i.e., f ∈ M and g ∈ Z
with |g| ≤ | f | imply g ∈ M) and is closed under the formation of suprema [19, p. 3].

Theorem 4 Let X be a B.f.s. and m : � → X be a σ -additive vector measure. The following
conditions are assumed to hold.

(a) X and X∗ have the subsequence splitting property.
(b) The range m(�) of m has uniformly a.c. norm in X.

Then, the B.f.s. L1(m) has the subsequence splitting property.

Proof Recall, since X has the subsequence splitting property, that it has a.c. norm. In order
to prove the result we construct an X̃ -valued σ -additive measure m̃ with the property that
(L1(m))˜ is order isomorphically contained in the B.f.s. L1(m̃). A general result asserts that
every L1-space of a vector measure has a.c. norm [5, Theorem 1], and hence, (L1(m))˜ has
a.c. norm. Then, by the characterization (ii) recorded above, it follows that L1(m) has the
subsequence splitting property.

Let η be a Rybakov control measure for m. Then, with continuous inclusions, we have

L∞(�,�, η) ⊆ L1(m) ⊆ L1(�,�, η). (5)

Fix a free ultrafilter U in N. Then the ultraproduct of L1(�,�, η) via U can be identified as

L1(�,�, η)U = L1(�̃, �̃, η̃) ⊕ �′,

where (�̃, �̃, η̃) is a measure space and the elements of �′ are disjoint from [χ�]; see [10,
§4], [11], [14, §3]. Thus, it follows that

(L1(�,�, η))˜= L1(�̃, �̃, η̃).

The same procedure can be done with L∞(�,�, η). This allows the identification of
(L1(m))˜ with a function space by forming the ultraproducts of the inclusions in (5), namely

L∞(�̃, �̃, η̃) ⊆ (L1(m))˜⊆ L1(�̃, �̃, η̃),

with both inclusions being continuous.
The σ -algebra �̃ is isomorphic to the Boolean ring {[χAn ] : An ∈ �} formed in the

quotient space L1(�,�, λ)U . Thus, every measurable set Ã ∈ �̃ can be identified with a
sequence of sets {An} with each An ∈ �, where two sequences of measurable sets {An} and
{Bn} are identified if limU η(An � Bn) = 0. Here A�B denotes the symmetric difference of
two sets A and B. The measure η̃ is then defined via

Ã = {An} ∈ �̃ �→ η̃( Ã) := lim
U

η(An) ∈ R
+.

A function f̃ in L1(�̃, �̃, η̃) is an element [ fn] in L1(�,�, η)U , and the integral of f̃ over
measurable sets with respect to η̃ is defined as
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∫
Ã

f̃ dη̃ = lim
U

∫
An

fn dη, Ã = {An} ∈ �̃.

For further details, see [15, §5].
We define a vector measure m̃ by

Ã = {An} ∈ �̃ �−→ m̃( Ã) = [m(An)] ∈ XU .

As m(�) is a bounded subset of X it is clear that m̃ is well defined. Moreover, m̃ is finitely
additive [10, p. 322]. To verify its σ -additivity, let ε > 0. As m is absolutely continuous with
respect to η, there exists δ > 0 such that if η(A) < δ, then ‖m‖(A) < ε. Let Ã = {An} ∈ �̃

satisfy η̃( Ã) < δ, that is, limU η(An) < δ. Then there exists V ∈ U such that for every n ∈ V
we have η(An) < δ. Thus, for every n ∈ V it follows that ‖m(An)‖ ≤ ‖m‖(An) < ε. So,
‖m̃( Ã)‖U < ε. Hence, m̃ is absolutely continuous with respect to η̃ from which we deduce
that m̃ is σ -additive.

By hypothesis, the range m(�) of the measure m has uniformly a.c. norm in X . In order
to show that the measure m̃ actually takes its values in X̃ ⊆ XU we use [26, 1.5 Proposition]
which asserts that if { fn} has uniformly a.c. norm in X , then [ fn] ∈ X̃ . Let Ã = {An} ∈ �̃.
Then m̃( Ã) = [m(An)] ∈ XU . But, {m(An)} ⊆ m(�)which has uniformly a.c. norm.Hence,
m̃( Ã) = [m(An)] ∈ X̃ .

Next, we prove that (L1(m))˜ is contained in L1(m̃). To this aim, it suffices to show that
each f̃ ∈ (L1(m))˜ is scalarly m̃-integrable. The reason for this is two-fold. On the one hand,
X̃ does not contain a copy of c0 since X satisfies the subsequence splitting property; see (iii)
above. On the other hand, for vector measures with values in a Banach space not containing
c0, integrability and scalar integrability coincide [18, Theorem 5.1].

Since X and X∗ satisfy the subsequence splitting property, we have (X̃)∗ = (X∗)˜and the
norms in both spaces coincide [26, Corollary 2.7]. Hence, the elements of (X̃)∗ are of the
form g̃∗ = [g∗

n ] for {g∗
n} a bounded sequence in X∗.

Fix g̃∗ ∈ (X̃)∗. The scalar measure g̃∗m̃ : �̃ → R is absolutely continuous with respect
to η̃ (since m̃ is absolutely continuous with respect to η̃). Thus, g̃∗m̃ has a Radon–Nikodym
derivative with respect to η̃. We denote it by hg̃∗ ; it belongs to L1(η̃).

Let Ã = {An} ∈ �̃. Then,〈
g̃∗, m̃( Ã)

〉 = 〈[g∗
n ], [m(An)]〉 = lim

U
〈
g∗

n , m(An)
〉

= lim
U

∫
An

1 d(g∗
nm) = lim

U

∫
An

hg∗
n

dη =
∫

Ã
h̃ dη̃,

where h̃ := [hg∗
n
] and hg∗

n
∈ L1(η) is the Radon–Nikodym derivative of the measure g∗

nm
with respect to η, for each n ∈ N. Hence, hg̃∗ = [hg∗

n
].

Let now f̃ ∈ (L1(m))˜ . Then f̃ = [ fn] for a bounded sequence { fn} in L1(m), with
‖ f̃ ‖U = limU ‖ fn‖L1(m). Accordingly,∫

| f̃ | d|g̃∗m̃| =
∫

| f̃ | · |h̃ g̃∗ | d η̃ = lim
U

∫
| fn | · |hg∗

n
| dη

= lim
U

∫
| fn | d|g∗

nm| ≤ lim
U

‖ fn‖L1(m) · ‖g∗
n‖X∗

= ‖ f̃ ‖U · ‖g̃∗‖U .

Hence, f̃ is integrable with respect to g̃∗m̃. It follows that f̃ is scalarly m̃-integrable and
hence, integrable with respect to the vector measure m̃. We also deduce from the previous
inequality that
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‖ f̃ ‖L1(m̃) ≤ ‖ f̃ ‖U , f̃ ∈ (L1(m))˜ .
Let ε > 0. By using the equivalent norm ||| · ||| in L1(m), we can select for every n ∈ N,

a measurable set An such that∥∥∥∥
∫

An

fn dm

∥∥∥∥
X

≥ 1 − ε

2
‖ fn‖L1(m).

Set Ã := {An} in �̃. Then

‖ f̃ ‖L1(m̃) ≥
∥∥∥∥
∫

Ã
f̃ dm̃

∥∥∥∥
X̃

= lim
U

∥∥∥∥
∫

An

fn dm

∥∥∥∥
X

≥ 1 − ε

2
lim
U

‖ fn‖L1(m) = 1 − ε

2
‖ f̃ ‖U .

Thus, the norm of (L1(m))˜ and the norm of L1(m̃) are equivalent on L1(m)˜ . Hence,
(L1(m))˜ is order isomorphic to a subspace of L1(m̃) which completes the proof. ��

Well known examples of B.f.s.’ satisfying the subsequence splitting property include those
Orlicz spaces satisfying the �2 condition, q-concave B.f.s.’ for q < ∞, and r.i. spaces not
containing c0 [26].

4 The weak Banach–Saks property for L1(m)

In the following result we require the vector measure m : � → X to be separable. In analogy
to the scalar case, this means that the associated pseudometric space (�, dm) is separable,
that is, it contains a countable dense subset. The pseudometric dm is given by

dm(A, B) := ‖m‖(A�B), A, B ∈ �,

where ‖m‖(·) is the semivariation of m. For η a Rybakov control measure for m (see Sect. 2),
due to the mutual absolute continuity between η(·) and ‖m‖(·), this it is equivalent to the
pseudometric space (�, dη) being separable, where dη(A, B) := η(A�B), for A, B ∈ �.
We point out that m is separable precisely when the B.f.s. L1(m) is separable [24].

Theorem 5 Let X be a B.f.s. and m : � → X be a σ -additive vector measure. The following
conditions are assumed to hold.

(a) X has the weak Banach–Saks property.
(b) The measure m is separable and positive, i.e., m(A) ∈ X+ for A ∈ �.
(c) L1(m) has the subsequence splitting property.

Then, the B.f.s. L1(m) has the weak Banach–Saks property.

Proof We need to verify, for a given weakly null sequence { fn} ⊆ L1(m), that there exists a
subsequence { f ′′′

n } ⊆ { fn} whose arithmetic means converge to zero in the norm of L1(m),
that is,

lim
n→∞

∥∥∥∥∥
1

n

n∑
k=1

f ′′′
k

∥∥∥∥∥
L1(m)

= 0.

The proof will be carried out in several steps.
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Step 1 An important observation, which Szlenk credits to Pełczyński [25, Remarque 1], is
that the weak Banach–Saks property for a Banach space Z is equivalent to the following (a
priori stronger) property: for everyweakly null sequence {zn} ⊆ Z there exists a subsequence
{z′

n} ⊆ {zn} satisfying

lim
m→∞ sup

n1<n2<···<nm

∥∥∥∥∥
1

m

m∑
k=1

z′
nk

∥∥∥∥∥
Z

= 0. (6)

It is to be remarked that this condition is a technical improvement: any further subsequence
extracted from {z′

n} again satisfies (6), for that new subsequence.
Step 2Let fn → 0weakly in L1(m). Then, { fn} is a bounded sequence in L1(m). Since L1(m)

has the subsequence splitting property, there is a subsequence { f ′
n} ⊆ { fn} and sequences

{gn} and {hn} in L1(m) such that

(a) f ′
n = gn + hn , with gn and hn having disjoint support, n ∈ N.

(b) {gn} has uniformly a.c. norm in L1(m).
(c) {hn} have pairwise disjoint support.

Since fn → 0 weakly in L1(m), also f ′
n → 0 weakly in L1(m). The claim is that (a), (b),

(c) imply that both gn → 0 weakly in L1(m) and hn → 0 weakly in L1(m).
To establish this claim, recall that sets of functions having uniformly a.c. norm are

relatively weakly compact (see Sect. 2). Thus, from (b), the set {gn : n ∈ N} is a relatively
weakly compact set in L1(m). By the Eberlein–S̆mulian Theorem, there is a subsequence
{gnk } and g ∈ L1(m) such that gnk → g weakly in L1(m). Since fnk → 0 weakly in
L1(m), it follows that hnk → (−g) weakly in L1(m). Let Dk denote the support of hnk ;

from (c) the sets Dk , k ∈ N, are pairwise disjoint. Set E := ∪∞
1 Dk and E j := ∪ j

1 Dk . Since
L∞ ⊆ L1(m)

∗
, we have χA ∈ L1(m)

∗
for every A ∈ �. Let A ∈ � with A ⊆ Ec. Then,

〈χA, hnk 〉 → 〈χA, (−g)〉. But, 〈χA, hnk 〉 = 0 for all k ≥ 1 and so g = 0 a.e. on Ec. Fix
j ∈ N. For any A ∈ � with A ⊆ E j we have 〈χA, hnk 〉 → 〈χA, (−g)〉. But, 〈χA, hnk 〉 = 0
for all k > j and so g = 0 a.e. on E j . Since this occurs for all j ∈ N, it follows that g = 0
a.e. on E . Consequently, g = 0 a.e. and so gnk → 0 weakly. This argument shows that the
sequence {gn} has the property that, for each of its subsequences, there is a further subse-
quence which converges weakly to zero. This implies that the original sequence gn → 0
weakly. Consequently, also hn → 0 weakly.
Step 3Consider the functions {hn} ⊆ L1(m) fromStep 2. They have pairwise disjoint support.
Let Bn be the support of hn , for n ∈ N, and B be the complement of ∪n Bn . Define

F := χB +
∞∑

n=1

sign(hn)χBn ,

where sign(hn) = hn/|hn | on Bn . The function F is measurable and satisfies |F | ≡ 1.
The operator f ∈ L1(m) �→ f F ∈ L1(m) of multiplication by F is a linear isometric
isomorphism on L1(m). Since hn → 0 weakly in L1(m) and hn F = |hn |, for n ∈ N, it
follows that |hn | → 0 weakly in L1(m).

Due to the continuity of the integration operator, it follows that
∫
�

|hn | dm → 0 weakly
in X . Since X has the weak Banach–Saks property, there exists a subsequence {h′

n} ⊆ {hn}
such that

lim
n→∞

∥∥∥∥∥
1

n

n∑
k=1

∫
�

|h′
k | dm

∥∥∥∥∥
X

= 0. (7)
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Due to the fact that the vector measure m is positive we have

‖ f ‖L1(m) = ‖ | f | ‖L1(m) =
∥∥∥∥
∫

�

| f | dm

∥∥∥∥
X

, f ∈ L1(m),

[23, Theorem 3.13]. This, together with the fact (due to the supports of the functions h′
n ,

n ∈ N, being disjoint) that
∑n

k=1 |h′
k | = | ∑n

k=1 h′
k | for n ∈ N implies, from (7), that

lim
n→∞

∥∥∥∥∥
1

n

n∑
k=1

h′
k dm

∥∥∥∥∥
L1(m)

= lim
n→∞

∥∥∥∥∥
∫

�

(
1

n

n∑
k=1

|h′
k |

)
dm

∥∥∥∥∥
X

= 0. (8)

Note, in view of Step 1, that the above conclusion still holds if we replace {h′
n} by any

subsequence {h′′
n} ⊂ {h′

n}.
Step 4 Consider now the functions {gn} ⊆ L1(m) from Step 2. Let {g′

n} be the subsequence
of {gn} corresponding to the subsequence {h′

n} ⊆ {hn} from Step 3. Since gn → 0 weakly
in L1(m), also g′

n → 0 weakly in L1(m).
Let η be a Rybakov control measure for m. Since L1(m) ⊆ L1(η) continuously and

g′
n → 0 weakly in L1(m), we have that g′

n → 0 weakly in L1(η). Due to the well known
Komlós theorem [17, Theorem 1a], applied in L1(η) to the norm bounded sequence {g′

n},
there exists a subsequence {g′′

n } ⊆ {g′
n} and a function g0 ∈ L1(η) such that, for every further

subsequence {g′′′
n } ⊆ {g′′

n }, we have

lim
n→∞

1

n

n∑
k=1

g′′′
k (x) → g0(x), η-a.e.

Since g′
n → 0 weakly in L1(η), also g′′

n → 0 weakly in L1(η) and so its averages
1
n

∑n
k=1 g′′

k → 0 weakly in L1(η). Set ξn := 1
n

∑n
k=1 g′′

k ∈ L1(η). Then ξn → 0 weakly in
L1(η) and ξn → g0 η-a.e. Combining the Egorov theorem and the Dunford-Pettis criterion
for relative weak compactness in L1(η) [1, Theorem 5.2.9], we deduce that ξn → g0 for the
norm in L1(η) and so g0 = 0.

Consequently, we have selected a subsequence {g′′
n } ⊆ {g′

n} with the property that, for
every subsequence {g′′′

n } ⊆ {g′′
n }, we have

lim
n→∞

1

n

n∑
k=1

g′′′
k (x) → 0, m-a.e. (9)

Step 5 Due to the separability of the measure m, there exists a sequence {An} ⊂ � which is
dense in the pseudometric space (�, dη).

We start a diagonalization process. For notational convenience, let

Im( f, A) :=
∫

A
f dm, f ∈ L1(m), A ∈ �.

Define g(1)
n := g′′

n , n ∈ N, where {g′′
n } is the sequence obtained in Step 4. Since g(1)

n → 0
weakly in L1(m) and the operator of integration over A1, namely

f ∈ L1(m) �→ Im( f, A1) =
∫

A1

f dm ∈ X

is continuous, it follows that Im(g(1)
n , A1) → 0 weakly in X . But, X has the weak Banach–

Saks property and so there exists a subsequence of {Im(g(1)
n , A1)} satisfying the condition
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(6) in X . We denote that subsequence by {Im(g(2)
n , A1)}. In this way we have also selected a

subsequence {g(2)
n } ⊆ {g(1)

n }.
Next we apply the same procedure to the subsequence {g(2)

n } and the set A2 as follows.
Since g(2)

n → 0 weakly in L1(m) and the operator of integration over A2, i.e.,

f ∈ L1(m) �→ Im( f, A2) =
∫

A2

f dm ∈ X

is continuous, it follows that Im(g(2)
n , A2) → 0 weakly in X . But, X has the weak Banach–

Saks property and so there exists a subsequence of {Im(g(2)
n , A2)} satisfying the condition

(6) in X . We denote that subsequence by {Im(g(3)
n , A2)}. In this way we have selected a

subsequence {g(3)
n } ⊆ {g(2)

n }.Note, fromStep1, that {Im(g(3)
n , A1)} also satisfies the condition

(6) in X .
For the general step, consider the subsequence {g(k)

n } ⊆ {g(k−1)
n }. Since g(k)

n → 0 weakly
in L1(m) and the operator of integration over Ak , i.e.,

f ∈ L1(m) �→ Im( f, Ak) =
∫

Ak

f dm ∈ X

is continuous, it follows that Im(g(k)
n , Ak) → 0 weakly in X . But, X has the weak Banach–

Saks property and so there exists a subsequence of {Im(g(k)
n , Ak)} satisfying the condition

(6). We denote that subsequence by {Im(g(k+1)
n , Ak)}. In this way we have also selected a

subsequence {g(k+1)
n } ⊆ {g(k)

n }. Note, from Step 1, that also {Im(g(k+1)
n , A j )} satisfies the

condition (6) in X for all 1 ≤ j ≤ k.
By defining g′′′

n := g(n)
n , n ∈ N, we obtain a subsequence {g′′′

n } ⊆ {g′′
n } satisfying

lim
n→∞

∥∥∥∥∥
1

n

n∑
k=1

∫
A j

g′′′
k dm

∥∥∥∥∥
X

= 0, j = 1, 2, . . . . (10)

Set

Fn := 1

n

n∑
k=1

g′′′
k , n = 1, 2, . . . .

Then, {Fn} ⊆ L1(m) and we can write (10) as

lim
n→∞

∥∥∥∥∥
∫

A j

Fn dm

∥∥∥∥∥
X

= 0, j = 1, 2, . . . . (11)

Step 6 Since the functions {gn} have uniformly a.c. norm in L1(m), also the functions {g′′′
n } ⊆

{gn} have uniformly a.c. norm in L1(m). Recall that L1(m) is a B.f.s. over the finite measure
space (�,�, η), where η is the Rybakov control measure in Step 4. The uniform a.c. of the
norm of {g′′′

n } in L1(m) implies that for every ε > 0 there exists a δ > 0 such that

η(A) < δ ⇒ sup
n

∥∥g′′′
n χA

∥∥
L1(m)

< ε. (12)

Our next objective is to extend the validity of (11) to an arbitrary measurable set A ∈ �.
So, fix A ∈ � and let ε > 0. Select δ > 0 to satisfy (12). Due to the separability of (�, dη)
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there exists j ∈ N such that η(A�A j ) < δ. Then,

∥∥∥∥
∫

A
Fn dm

∥∥∥∥
X

≤
∥∥∥∥∥
∫

A
Fn dm −

∫
A j

Fn dm

∥∥∥∥∥
X

+
∥∥∥∥∥
∫

A j

Fn dm

∥∥∥∥∥
X

≤ 1

n

n∑
k=1

∥∥∥∥∥
∫

A
g′′′

k dm −
∫

A j

g′′′
k dm

∥∥∥∥∥
X

+
∥∥∥∥∥
∫

A j

Fn dm

∥∥∥∥∥
X

≤ 1

n

n∑
k=1

∥∥g′′′
k χA�A j

∥∥
L1(m)

+
∥∥∥∥∥
∫

A j

Fn dm

∥∥∥∥∥
X

≤ ε +
∥∥∥∥∥
∫

A j

Fn dm

∥∥∥∥∥
X

,

where we have used |χA\A j g′′′
k | ≤ |χA�A j g′′′

k | and ‖ ∫
�

g dm‖X ≤ ‖g‖L1(m) = ‖ |g| ‖L1(m)

for g ∈ L1(m). Due to (11), the last term can be made smaller than ε for n ≥ n0 and some
n0 ∈ N. Hence,

lim
n→∞

∥∥∥∥
∫

A
Fn dm

∥∥∥∥
X

→ 0, A ∈ �.

Note that {g′′′
n } ⊆ {g′′

n } implies, from (9), that Fn → 0 a.e. Consequently, we have a
sequence {Fn} in L1(m) such that Fn → 0 a.e. and

∫
A Fn dm → 0 in X , for each A ∈ �.

These two conditions, via Lemma 3, imply that Fn → 0 in L1(m), that is

lim
n→∞

∥∥∥∥∥
1

n

n∑
k=1

g′′′
k

∥∥∥∥∥
L1(m)

= 0. (13)

Step 7 Let {h′′′
n } be the subsequence of {hn} corresponding to the subsequence {g′′′

n } of {gn}
from Step 6. For the subsequence f ′′′

n = g′′′
n + h′′′

n , n ∈ N, of { fn} it follows from (8) and
(13) that

lim
n→∞

∥∥∥∥∥
1

n

n∑
k=1

f ′′′
k dm

∥∥∥∥∥
L1(m)

= 0.

This completes the proof. ��
The combination of Theorems 4 and 5 renders the following result.

Theorem 6 Let X be a B.f.s. and m : � → X be a σ -additive vector measure. The following
conditions are assumed to hold.

(a) X has the weak Banach–Saks property.
(b) X and X∗ have the subsequence splitting property.
(c) The measure m is separable and positive, i.e., m(A) ∈ X+ for A ∈ �.
(d) The range m(�) of m has uniformly a.c. norm in X.

Then, the B.f.s. L1(m) has both the subsequence splitting property and the weak Banach–Saks
property.

We now turn to the
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Proof of Theorem 1 Wewill deduce Theorem 1 from Theorem 6. We first define the relevant
vector measure m and verify that the conditions (c), (d) of Theorem 6 are satisfied. So, let

m : A ∈ � �→ m(A) := T (χA) ∈ X.

It a well defined, finitely additive measure (as T is linear) with values in X+ (as T is positive).
For the σ -additivity of m, let {An} ⊆ � be pairwise disjoint sets. Since χ∪n

1 Ak ↑ χ∪∞
1 Ak and

T is positive, it follows that T (χ∪n
1 Ak ) ↑ T (χ∪∞

1 Ak ) in X . Since X has a.c. norm (as it has
the subsequence splitting property), this implies that T (χ∪n

1 Ak ) converges to T (χ∪∞
1 Ak ) in

the norm of X . Hence,
∑n

1 m(Ak) → ∑∞
1 m(Ak) in the norm of X , i.e., m is σ -additive.

Next we verify condition (c) of Theorem 6. The vector measurem is absolutely continuous
with respect to the underlying measure μ. Indeed, if μ(A) = 0 for some A ∈ �, then
m(A) = T (χA) = 0 (as T is linear). Actually, for any B ∈ � with B ⊆ A we have
μ(B) = 0 and so m(B) = 0. This implies that ‖m‖(A) = 0. It follows for any given ε > 0
that there is δ > 0 such that μ(A) < δ implies ‖m‖(A) < ε. Since μ is separable, there
exists a countable set {A j } which is dense in (�, dμ). For any A ∈ � and ε > 0, let δ > 0 be
chosen as above. The separability of (�, dμ) ensures there is j ∈ N such that μ(A�A j ) < δ

and so ‖m‖(A�A j ) < ε. Thus, {A j } is dense in (�, dm). Hence, m is separable.
In order to verify condition (d) of Theorem 6 note, for every A ∈ �, that 0 ≤ T (χA) ≤

T (χ[0,1]). Then, for any B ∈ �, it follows that 0 ≤ χB T (χA) ≤ χB T (χ[0,1]) and so
‖χB T (χA)‖X ≤ ‖χB T (χ[0,1])‖X . Since X has a.c. norm, the function T (χ[0,1]) has a.c. norm
in X . So, given ε > 0 there is δ > 0 such that μ(B) < δ implies that ‖χB T (χ[0,1])‖X < ε.
Then also ‖χB T (χA)‖X < ε for all A ∈ �, that is, the set {T (χA) : A ∈ �} has uniformly
a.c. norm in X . From m(�) = {T (χA) : A ∈ �} it follows that m(�) has uniformly a.c.
norm in X .

Theorem 6 now implies that L1(m) has both the subsequence splitting property and the
weak Banach–Saks property. It remains to establish the equality between L1(m) and the
optimal domain [T, X ]. This is a general fact for optimal domains of kernel operators on
spaces with a.c. norm [6, Corollary 3.3]. ��

5 Applications

Weprovide an application of Theorem6 to function spaces arising fromconvolution operators
on groups. The proof of Corollary 2 on functions spaces arising from kernel operators on
[0, 1] is also presented.

Let G be a compact, metrizable, abelian group and λ denote normalized Haar measure on
G. Let ν be any positive, finite Borel measure on G. Define a vector measure m(p)

ν : B(G) →
L p(G), for each 1 < p < ∞, by convolution with ν, i.e.,

m(p)
ν (A) := χA ∗ ν, A ∈ B(G).

Note that the space L p(G) has a.c. norm, possesses the subsequence splitting property and
has the weak Banach–Saks property. Moreover, its dual space (L p(G))∗ = Lq(G), with
1/p + 1/q = 1, also has the subsequence splitting property. In addition, the vector measure
m(p)

ν is clearly positive and separable (as the σ -algebra B(G) of Borel subsets of G is
countably generated). Concerning the range ofm(p)

ν being uniformly a.c. in L p(G), it suffices
for this range to be relatively compact in L p(G) (see Sect. 2). For 1 < p < ∞, this is the case
precisely when ν ∈ M0(G), i.e., the Fourier–Stieltjes coefficients of ν vanish at infinity on
the dual group of G [23, Proposition 7.58]. In particular, this is so whenever ν ∈ L1(G), that
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is, whenever ν has an integrable density with respect to λ, i.e., ν = f dλ with f ∈ L1(G).
So, Theorem 1 implies that each of the B.f.s.’

L1(m(p)
ν ) = {

f : ν ∗ | f | ∈ L p(G)
}
, ν ≥ 0, ν ∈ M0(G),

[23, pp. 350–351], has the subsequence splitting property and the weak Banach–Saks prop-
erty. It should be remarked in the event that the measure ν /∈ L p(G), then the B.f.s. L1(m(p)

ν )

described above is situated strictly between L p(G) and L1(G), i.e.,

L p(G) � L1(m(p)
ν ) � L1(G);

see [23, Proposition 7.83] and the discussion following that result. It is known that always
L1(G) � M0(G) [23, p. 320].

We now turn to the

Proof of Corollary 2 We verify that the conditions of Theorem 1 are satisfied.
The Lebesgue measure space ([0, 1],M, λ) is separable. Moreover, the operator TK

defined by (4) is linear and positive (as the kernel K ≥ 0). To verify that TK maps L∞
into X note, for each f ∈ L∞, that |T ( f )| ≤ T (| f |) ≤ ‖ f ‖∞ T (χ[0,1]). As the function
T (χ[0,1]) belongs to X by assumption, it follows that T ( f ) ∈ L∞. So, T : L∞([0, 1]) → X .

In the case when X is reflexive, neither X nor X∗ can contain a subspace isomorphic to
c0. Accordingly, as both X and X∗ are r.i., they have the subsequence splitting property [26,
2.6 Corollary]. ��

Corollary 2 applies to many different situations, e.g., to the following kernels on [0, 1].
(i) The Volterra kernel, K (x, y) := χ�(x, y) with � := {(x, y) ∈ [0, 1] × [0, 1] : 0 ≤

y ≤ x}.
(ii) The Riemann–Liouville fractional kernel, K (x, y) := |x − y|α−1 for 0 < α < 1.
(iii) The Poisson semigroup kernel, K (x, y) := arctan(y/x) for x �= 0 and K (0, y) = π/2.
(iv) The kernel associated with Sobolev’s inequality, K (x, y) := y(1/n)−1χ[x,1](y) for n ≥

2.
(v) The Cesàro kernel, K (x, y) := (1/x)χ[0,x](y).

All of these kernels K generate positive operators TK on L∞. The function TK (χ[0,1])
belongs, in all cases, to L∞ and hence, to all r.i. spaces on [0, 1]. In particular, the function
belongs to all r.i. spaces with a.c. norm.

In relation to condition (d) of Theorem 6, let us comment on the range of the associated
vector measures mK : A �→ mK (A) = TK (χA). In the cases (i)–(iv), the range is, in fact,
relatively compact in C([0, 1]) and hence, also in any r.i. space X ; see [23, Example 4.25]
and the references given there. In the case (v), the range is relatively compact in any r.i. space
X �= L∞ [9, Theorem 2.1]. So, in all cases (i)–(v) the B.f.s. [TK , X ] = L1(mK ) has the
subsequence splitting property and the weak Banach–Saks property, whenever the B.f.s. X
satisfies the hypotheses in Corollary 2.

In conclusion, we point out for a Banach-space valued measure m : � → X that if
the integration map Im : L1(m) → X is compact, then m has a finite variation measure
|m| : � → [0,∞) and L1(m) = L1(|m|) is a classical L1-space [22, Theorems 1 & 4].
Accordingly, L1(m) has the weak Banach–Saks property. Moreover, the compactness of
Im ensures that m(�) is a relatively compact subset of X but, the converse is not true in
general [22, Remark 3.3(ii)]. So, the condition (d) of Theorem 6 is typically weaker than
the compactness of Im . Indeed, for the convolution vector measures m(p)

ν discussed above,
it was noted that m(p)

ν has relatively compact range if and only if ν ∈ M0(G). On the other
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hand, I
m(p)

ν
is compact if and only if ν ∈ L p(G) � M0(G) [23, Theorem 7.67]. Or, for

the X -valued vector measure m X corresponding to the Cesàro kernel in (v) above, with
X �= L∞ any r.i. space whose upper Boyd index αX < 1, it is known that the integration
map Im X : L1(m X ) → X is never compact; see the discussion after Proposition 4.1 in [9].
On the other hand, it was noted above that m X always has relatively compact range.
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