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Abstract We study constant mean curvature spacelike hypersurfaces in generalized
Robertson–Walker spacetimes M = I × f F which are spatially parabolic (i.e. its fiber F is
a (non-compact) complete Riemannian parabolic manifold) and satisfy the null convergence
condition. In particular, we provide several rigidity results under appropriate mathematical
and physical assumptions. We pay special attention to the case where the GRW spacetime is
Einstein. As an application, some Calabi–Bernstein type results are given.
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1 Introduction

For aGeneralizedRobertson–Walker (GRW) spacetimewemean a productmanifold I ×F of
an open interval I of the real line R endowed with the metric dt2 and an n(≥ 2)-dimensional
(connected) Riemannian manifold (F, gF ), furnished with the Lorentzian metric
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g = −π∗
I
(dt2) + f (πI )

2 π∗
F
(gF ),

where πI and πF denote the projections onto I and F , respectively, and f is a positive
smooth function on I [8]. We will denote this (n + 1)-dimensional Lorentzian manifold by
M = I × f F . So defined, M is a warped product in the sense of [22, Chap. 7], with base
(I,−dt2), fiber (F, gF ) and warping function f . Observe that the family of GRW spacetimes
includes the classical Robertson–Walker (RW) spacetimes. Recall that in a RW spacetime
the fiber is 3-dimensional and of constant sectional curvature, and the warping function
(sometimes called scale-factor) can be thought, when the curvature sectional of the fiber is
positive, as the radius of the spatial universe {t} × F .

Note that a RW spacetime obeys the cosmological principle, i.e., it is spatially homo-
geneous and spatially isotropic, at least locally. Thus, GRW spacetimes widely extend to
RW spacetimes and include, for instance, the Lorentz-Minkowski spacetime, the Einstein-de
Sitter spacetime, the Friedmann cosmological models, the static Einstein spacetime and the
de Sitter spacetime. GRW spacetimes are useful to analyze if a property of a RW spacetime
M is stable, i.e., if it remains true for spacetimes close to M in a certain topology defined
on a suitable family of spacetimes [19]. Moreover, a conformal change of the metric of a
GRW spacetime with a conformal factor which only depends on t , produces a new GRW
spacetime.

Observe that a GRW spacetime is not necessarily spatially homogeneous. Recall that
spatial homogeneity seems appropriate just as a rough approach to consider the universe in
the large. However, this assumption could not be realistic when the universe is considered in
a more accurate scale. Thus, these warped Lorentzian manifolds become suitable spacetimes
to model universes with inhomogeneous spacelike geometries [23]. A GRW spacetime such
that f is constant will be called static. Indeed, a static GRW spacetime is in fact a Lorentzian
product. On the other hand, if the warping function f is non-locally constant (i.e. there is no
open subinterval J (�= ∅) of I such that f| J is constant) then the GRW spacetime M is said
to be proper. This assumption means that there is no (nonempty) open subset of M such that
the sectional curvature in M of any plane tangent to a spacelike slice {t} × F equals to the
sectional curvature of that plane in the inner geometry of the slice.

If the fiber of a GRW spacetime is compact, then it is called spatially closed. Classically,
the subfamily of spatially closed GRW spacetimes has been very useful to get closed cos-
mological models. On the other hand, a number of observational and theoretical arguments
on the total mass balance of the universe [16] suggests the convenience of adopting open
cosmological models.

In this work we are interested in the class of spatially parabolic GRW spacetimes. This
notion was introduced and motivated in [25] as a natural counterpart of the spatially closed
GRW spacetimes. Spatially parabolic GRW spacetimes have a parabolic Riemannian man-
ifold as fiber, what provides a significant wealth from a geometric-analytic point of view.
Recall that a complete Riemannian manifold is parabolic if its only positive superharmonic
functions are the constants.

The importance in General Relativity of maximal and constant mean curvature spacelike
hypersurfaces in spacetimes is well-known; a summary of several reasons justifying it can be
found in [21]. Classical papers dealing with uniqueness problems for such kind of hypersur-
faces are [11,17,21], although a previous relevant result in this direction was the proof of the
Calabi–Bernstein conjecture [13] for maximal hypersurfaces in the n-dimensional Lorent-
Minkowski spacetime given by Cheng and Yau [15]. In [11], Brill and Flaherty replaced the
Lorent-Minkowski spacetime by a spatial closed universe, and proved uniqueness in the large
by assumingRic(z, z) > 0 for all timelike vectors z. In [21], this energy conditionwas relaxed
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by Marsden and Tipler to include, for instance, non-flat vacuum spacetimes. More recently,
Bartnik proved in [10] very general existence theorems and consequently, he claimed that it
would be useful to find new satisfactory uniqueness results. Still more recently, in [8] Alías,
Romero and Sánchez gave new uniqueness results in the class of spatially closedGRWspace-
times under the Temporal Convergence Condition (TCC). In [12] several known uniqueness
results for compact CMC spacelike hypersurfaces in GRW spacetimes were widely extended
by means of new techniques to the case of compact CMC spacelike hypersurfaces in space-
times with a timelike gradient conformal vector field. Finally, in [25] Romero, Rubio and
Salamanca, obtained uniqueness results in the maximal case for spatially parabolic GRW
spacetimes under a convexity property of the warping function.

Our main aim in this paper is to give new uniqueness results for (non-compact) complete
CMChypersurfaces in spatially parabolicGRWspacetimeswhich obey theNullConvergence
Condition (NCC). As known, the TCC is violated in inflationary spacetimes and so it is
natural to study uniqueness problems under the NCC, since some inflationary scenarios can
be modeled by spacetimes obeying this energy condition. Moreover, certain class of GRW
spacetimes obeying the NCC arise as physically realistic cosmological models since they
satisfy the weak energy condition (see Sect. 5). Some recent papers dealing with uniqueness
problems in GRW spacetimes obeying the NCC under hypothesis relative to the curvatures
of the spacelike hypersurfaces are [2,5,6,14,20]

The paper is organized as follows. In Sect. 2 we revise some notions regarding spacelike
hypersurfaces in GRW spacetimes. In Sect. 3 we provide several rigidity results for CMC
hypersurfaces in spatially parabolic GRW spacetimes satisfying the NCC. We pay special
attention to the case when the GRW spacetime is Einstein, so completing the characterization
of compact CMC spacelike hypersurfaces in spatially closed Einstein GRW spacetimes par-
tially developed in some previous papers (see [9,12]), and extending this study to complete
CMC spacelike hypersurfaces in spatially parabolic Einstein GRW spacetimes. Section 4 is
devoted to provide several Calabi–Bernstein results which follow from the former parametric
study. Finally, in Sect. 5 we justify the adequacy of GRW spacetimes which satisfy the NCC
condition to model some physically realistic cosmological universes.

2 Preliminaries

Let (F, gF ) be an n-dimensional (n ≥ 2) connected Riemannianmanifold and I ⊆ R an open
interval in R endowed with the metric −dt2. The warped product M = I × f F endowed
with the Lorentzian metric

ḡ = −π∗
I

(
dt2

) + f
(
πI

)2
π∗

F
(gF ) (1)

where f > 0 is a smooth function on I , and πI and πF denote the projections onto I and
F respectively, is said to be a Generalized Robertson–Walker (GRW) spacetime with fiber
(F, gF ), base (I,−dt2) and warping function f (see [8]).

The coordinate vector field ∂t := ∂/∂t globally defined on M is (unitary) timelike, and so
M is time-orientable. We will also consider on M the conformal closed timelike vector field
K := f (πI ) ∂t . From the relationship between the Levi-Civita connections of M and those
of the base and the fiber [22, Corollary 7.35], it follows that

∇X K = f ′(πI ) X (2)

for any X ∈ X(M), where ∇ is the Levi-Civita connection of the Lorentzian metric (1).
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We will denote by Ric the Ricci tensor of M . From [22, Corollary 7.43] it follows that

Ric(X, Y ) = RicF
(

X F , Y F
)

+
(

f ′′

f
+ (n − 1)

f ′2

f 2

)
g

(
X F , Y F

)
−n

f ′′

f
g(X, ∂t )g(Y, ∂t )

(3)
for X, Y ∈ X(M), where RicF stands for the Ricci tensor of F . Here X F denotes the lift of
the projection of the vector field X onto F , that is,

X = X F − g(X, ∂t )∂t .

Regarding the scalar curvature S of M , we get from (3) that

S = trace(Ric) = SF

f 2
+ 2n

f ′′

f
+ n(n − 1)

f ′2

f 2
, (4)

where SF stands for the scalar curvature of F .
Recall that a Lorentzian manifold M obeys the Null Convergence Condition (NCC) if its

Ricci tensor Ric satisfies Ric(X, X) ≥ 0 for all null vector X ∈ X(M). In the case when
M = I × f F is a GRW spacetime, it can be checked (see [4]) that M obeys the NCC if and
only if

RicF − (n − 1) f 2(log f )′′ ≥ 0, (5)

where RicF stands for the Ricci curvature of (F, gF ). Recall that the Ricci curvature at each
point p ∈ F in the direction X (p) ∈ Tp F , X ∈ X(F), is defined as

RicF (X (p)) = RicF (X (p), X (p))

gF (X (p), X (p))
= RicF

( X (p)

|X (p)|
F

,
X (p)

|X (p)|
F

)
.

On the other hand, we will say that a spacetime M verifies the NCC with strict inequality
if its Ricci tensor Ric satisfies Ric(X, X) > 0 for all null vector X ∈ X(M). Now, a GRW
spacetime M = I × f F obeys the NCC with strict inequality if and only if RicF − (n − 1)
f 2(log f )′′ > 0.
A smooth immersion ψ : Mn −→ M of an n-dimensional (connected) manifold M is

said to be a spacelike hypersurface if the induced metric via ψ is a Riemannian metric g on
M .

Since M is time-orientable we can take, for each spacelike hypersurface M in M , a
unique unitary timelike vector field N ∈ X⊥(M) globally defined on M with the same
time-orientation as ∂t , i.e., such that ḡ(N , ∂t ) < 0. From the wrong-way Cauchy-Schwarz
inequality (see [22, Proposition 5.30], for instance), we have ḡ(N , ∂t ) ≤ −1, and the equality
holds at a point p ∈ M if and only if N = ∂t at p. The hyperbolic angle ϕ, at any point of
M , between the unit timelike vectors N and ∂t , is given by ḡ(N , ∂t ) = − cosh ϕ. This angle
has a reasonable physical interpretation. In fact, in a GRW spacetime M the integral curves
of ∂t are called comoving observers [26, p. 43]. If p is a point of a spacelike hypersurface
M in M , among the instantaneous observers at p, ∂t (p) and Np appear naturally. In this
sense, observe that the energy e(p) and the speed v(p) that ∂t (p) measures for Np are given,
respectively, by e(p) = cosh ϕ(p) and |v(p)|2 = tanh2 ϕ(p) [26, pp. 45–67].

We will denote by A and H := −(1/n)tr(A) the shape operator and the mean curva-
ture function associated to N . A spacelike hypersurface with H = 0 is called a maximal
hypersurface. The reason for this terminology is that the mean curvature is zero if and only
if the spacelike hypersurface is a local maximum of the n-dimensional area functional for
compactly supported normal variations.
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In anyGRW spacetime M there is a remarkable family of spacelike hypersurfaces, namely
its spacelike slices {t0} × F , t0 ∈ I . The spacelike slices constitute for each value t0 the
restspace of the distinguished observers in ∂t . A spacelike hypersurface in M is a (piece
of) spacelike slice if and only if the function τ := πI ◦ ψ is constant. Furthermore, a
spacelike hypersurface in M is a (piece of) spacelike slice if and only if the hyperbolic
angle ϕ vanishes identically. The shape operator of the spacelike slice τ = t0 is given by
A = − f ′(t0)/ f (t0) I , where I denotes the identity transformation, and so its (constant) mean
curvature is H = f ′(t0)/ f (t0). Thus, a spacelike slice is maximal if and only if f ′(t0) = 0
(and hence, totally geodesic). We will say that the spacelike hypersurface is contained in a
slab, if it is contained between two spacelike slices.

If we put ∂T
t = ∂t + g(∂t , N )N the tangential part of ∂t and N F = N + g(N , ∂t )∂t , it

follows from g(N , N ) = −1 = g(∂t , ∂t ) that
∣
∣
∣∂T

t

∣
∣
∣
2 =

∣
∣
∣N F

∣
∣
∣
2 = sinh2 ϕ. (6)

Hence, a spacelike hypersurface in M is a (piece of) spacelike slice if and only if
∣
∣∂T

t

∣
∣2 =

∣
∣N F

∣
∣2 vanishes identically on M .

To finish this section, let us briefly revise some important notions on parabolicity in GRW
spacetimes. Recall that a GRW spacetime M = I × f F is said to be spatially parabolic [25]
if its fiber is parabolic; i.e., it is a non-compact complete Riemannian manifold such that the
only superharmonic functions on it which are bounded from below are the constants. GRW
spacetimes which admit a complete parabolic spacelike hypersurface have been studied in
[25], where the following result is proved:

Lemma 1 Let M be a complete spacelike hypersurface in a spatially parabolic GRW space-
time M = I × f F. If the hyperbolic angle of M is bounded and the restriction f (τ ) on M
of the warping function f satisfies:

(i) sup f (τ ) < ∞, and
(ii) inf f (τ ) > 0,

then, M is parabolic.

This result will be used in Sect. 3.

3 Parametric type results

Let ψ : M → M be a spacelike hypersurface in a GRW spacetime M = I × f F . It is easy
to check that the gradient of τ = πI ◦ ψ on M is given by

∇τ = −∂T
t (7)

and its Laplacian by

�τ = − f ′(τ )

f (τ )

{
n + |∇τ |2} − nH g(N , ∂t ). (8)

Let us take G : I −→ R such that G ′ = f . Using (7) we have that the gradient of G(τ )

on M is given by
∇G(τ ) = G ′(τ )∇τ = − f (τ )∂T

t = −K T , (9)
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where K T = K +g(K , N )N is the tangential component of K alongψ , and so its Laplacian
on M (see [8, Eq. 6]) yields

�G(τ ) = div(∇G(τ )) = −n f ′(τ ) − nH g(K , N ). (10)

A direct computation from (2) gives

∇g(K , N ) = −AK T ,

where we have also used (7), and so the Laplacian of g(K , N ) on M becomes (see
[8, Eq. 8])

�g(K , N ) = div(∇g(K , N )) = Ric(K T , N ) + ng(∇ H, K ) + n f ′(τ )H + g(K , N )tr(A2).

(11)
On the other hand, from (3) we have

Ric
(

K T , N
)

= g(K , N )Ric
(

N F , N F
)

− g(K , N )

∣
∣
∣∂T

t

∣
∣
∣
2
Ric(∂t , ∂t )

= g(K , N )

(
RicF

(
N F , N F

)
− (n − 1)

∣
∣
∣N F

∣
∣
∣
2

(log f )′′(τ )

)

= g(K , N )

∣∣∣N F
∣∣∣
2

F

(
RicF

(
N F

)
− (n − 1) f 2(τ ) (log f )′′(τ )

)
, (12)

where
∣∣N F

∣∣
F

= gF (N F , N F )1/2. In particular, observe that if M obeys the NCC

then Ric(K T , N ) ≤ 0. Furthermore, if M obeys the NCC with strict inequality, then
Ric(K T , N ) ≡ 0 if and only if M is a (piece of) spacelike slice [see (6)].

Let M = I × f F be a spatially parabolic GRW spacetime obeying the NCC. From
the study developed above, next we will provide several rigidity results for CMC complete
spacelike hypersurfaces in M . In some of these results, in order to derive the parabolicity of
the spacelike hypersurface it is used that the assumptions inf f (τ ) > 0 and sup f (τ ) < ∞
are automatically satisfied if the hypersurface is contained in a slab.

Theorem 2 Let M = I × f F be a spatially parabolic GRW spacetime obeying the NCC
and ψ : M → M a complete CMC spacelike hypersurface which is contained in a slab and
whose hyperbolic angle is bounded. Then M is totally umbilical. Moreover, if the spacetime
obeys NCC spacetime obeying the NCC with strict inequality, then M must be a spacelike
slice.

Proof Consider us the distinguished function (H G(τ ) + g(K , N )), defined on M . Then,
from (10)–(12), we get

�(H G(τ ) + g(K , N )) = −g(K , N )
{
nH2 − tr

(
A2)

−
∣∣∣N F

∣∣∣
2

F

(
RicF

(
N F

)
− (n − 1) f 2(τ ) (log f )′′(τ )

)}
.

In particular, if M obeys the NCC then �(H G(τ ) + g(K , N )) ≤ 0.
Observe that, since M is contained between two spacelike slices, both G(τ ) and f (τ )

are bounded, being also inf f (τ ) > 0. As said in Sect. 2, under the assumptions above it
follows that M is parabolic. Then, since H G(τ ) + g(K , N ) is a bounded function on M
whose Laplacian is non positive, we conclude that such Laplacian must vanish identically
and consequently nH2 − tr(A2) ≡ 0 on M , i.e., M is totally umbilical.

Finaly, note that, under this additional assumption, it must be
∣∣N F

∣∣2 ≡ 0 on M , which
implies (see 6) that M is a spacelike slice. ��
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For the particular case when M is maximal, we have

Corollary 3 Let M = I × f F be a spatially parabolic GRW spacetime obeying the NCC and
ψ : M → M a complete maximal spacelike hypersurface which is contained in a slab and
whose hyperbolic angle is bounded. Then M is totally geodesic. Moreover, if the spacetime
obeys NCC spacetime obeying the NCC with strict inequality, then M is a totally geodesic
spacelike slice.

Recall that a GRW spacetime is said to be proper if the warping function f is non-locally
constant, i.e., there is no open subinterval J (�=∅) of I such that f| J is constant. Next we
characterize the spacelike slices of a proper spatially parabolic GRW spacetime obeying the
NCC by means of a pinching condition for its (constant) mean curvature H .

Theorem 4 Let M = I × f F be a proper spatially parabolic GRW spacetime obeying the
NCC and ψ : M → M a complete CMC spacelike hypersurface whose hyperbolic angle is

bounded. If the mean curvature function of M satisfies that H2 ≥ f ′(τ )2

f (τ )2
and the restriction

f (τ ) of the warping function f on M is such that inf f (τ ) > 0 and sup f (τ ) < ∞, then M

is a spacelike slice (τ = t0) with H2 = f ′(t0 )2

f (t0 )2
.

Proof Since the hyperbolic angle of M is bounded and f (τ ) satisfies that inf f (τ ) > 0 and
sup f (τ ) < ∞, we conclude that M is parabolic (see Sect. 2).

From the assumption on the mean curvature of M we have that

|H |≥ | f ′(τ )|
f (τ )

,

and so

tr
(

A2) ≥ nH2 ≥ n

f (τ )
| f ′(τ )H |.

Then

n f ′(τ )H + g(K , N )tr
(

A2) ≤ 0,

which implies that the Laplacian of g(K , N ) (11) is non positive and consequently constant.
Moreover

|n f ′(τ )H | =| g(N , K )|tr (A2) ≥ f tr
(

A2) ≥ |n f ′(τ )H |,
and therefore f = |g(N , K )| = f (τ ) cosh ϕ. Consequently ϕ vanishes identically on M ,
which means that M is a spacelike slice. ��
Remark 5 The inequality H2 ≥ f ′(τ )2

f (τ )2
can be geometrically interpreted as follows: the mean

curvature of the spacelike hypersurface, at any point is, in absolute value, greater or equal
than the mean curvature of the spacelike slice at that point.

As commented in the introduction, a GRW spacetime is spatially closed if its fiber F is
compact [8, Proposition 3.2]. Since on a compact Riemannian manifold the only functions
with signed Laplacian are the constants, reasoning as in Theorem 4 it can be proved the
following

Theorem 6 Let M = I × f F be a proper spatially closed GRW spacetime obeying the NCC
and ψ : M → M a compact CMC spacelike hypersurface whose mean curvature satisfies

that H2 ≥ f ′(τ )2

f (τ )2
. Then M is a spacelike slice (τ = t0) with H2 = f ′(t0 )2

f (t0 )2
.
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A relevant example of proper spatially closed GRW spacetime obeying the NCC is the de
Sitter spacetime which, in its intrinsic version is given as the Robertson–Walker spacetime
S

n+1
1 = R ×cosh t S

n . In [3, Theorem 1] the authors established a sufficient condition for a
compact spacelike in Sn+1

1 (considered as an hyperquadric of the (n+2)-dimensional Lorent-
Minkowski spacetime) to be totally umbilical, in terms of a lower bound for the squared of its
mean curvature. As a consequence of Theorem 6, we obtain the following intrinsic approach
of the previously cited result:

Corollary 7 Let ψ : M → S
n+1
1 be a spacelike hypersurface in the de Sitter spacetime

whose constant mean curvature satisfies that H2 ≥ tanh2(τ ). Then M is a spacelike slice
with H2 = tanh2(τ ).

Notice that in S
n+1
1 there exists an only maximal slice and, for any t �= 0, exactly two

spacelike slices with H2 = tanh2(t).
Next, we provide another uniqueness result under the hypothesis of monotony of the

warping function.

Theorem 8 Let M = I × f F be a spatially parabolic GRW spacetime obeying the NCC,
and let ψ : M → M be a complete CMC spacelike hypersurface whose hyperbolic angle is
bounded and such that sup f (τ ) < ∞ and inf f (τ ) > 0.

If the restriction of f to τ(M) is non-increasing (resp. non decreasing) and H ≥ 0 (resp.
H ≤ 0), then M is totally geodesic.

Proof From (11) we have that g(K , N ) is subharmonic on the parabolic manifold (M, g).
Since moreover that function is bounded, it must be constant. Finally, using again (11) it
follows that tr(A2) vanishes identically and therefore M is totally geodesic. ��

In the above theorem, if we ask M = I × f F to obey the NCC with strict inequality, then
we conclude that M is a totally geodesic spacelike slice.

Next we provide another rigidity result (Theorem 10) for complete CMC spacelike hyper-
surfaces in GRW spacetimes whose fiber has its sectional curvature bounded from below
and whose warping function f satisfies that (log f )′′ ≤ 0. Note that the NCC will be not
required in this theorem. In order to do that, we will need the following result which extends
[4, Lemma 13]. In fact, note that in such Lemma the fiber is asked to have non-negative sec-
tional curvature, whereas in the following result this assumption changes to have sectional
curvature bounded from below.

Lemma 9 Let ψ : M → M be a complete CMC spacelike hypersurface in a GRW spacetime
M = I × f F whose warping function satisfies (log f )′′ ≤ 0 and whose fiber has its sectional
curvature bounded from below. Then the Ricci curvature of M is bounded from below.

Proof Given Y ∈ X(M) such that g(Y, Y ) = 1, let us write

Y = −g(∂t , Y )∂t + Y F .

From the Schwarz inequality, we get using (7) and (6) that

g(∂t , Y )2 = g(∇τ, Y )2 ≤ |∇τ |2 = sinh2 ϕ.

As a consequence, |Y F |2 = 1 + g(∂t , Y )2 is bounded.
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Given p ∈ M , let us take a local orthonormal frame {U1, . . . , Un} around p. From the
Gauss equation

〈R(X, Z)V, W 〉 = 〈R(X, Z)V, W 〉 + 〈AZ , W 〉〈AX, V 〉
−〈AZ , V 〉〈AX, W 〉, X, Z , V, W ∈ X(M)

where R and R denote the curvature tensors of M and M respectively, and A is the shape
operator of ψ , we get that the Ricci curvature of M , RicM , satisfies

RicM (Y, Y ) ≥
∑

k

g(R(Y, Uk)Y, Uk) − n2

4
H2|Y |2, Y ∈ X(M), g(Y, Y ) = 1.

Now, from [22, Proposition 7.42] we have

n∑

k=1

g(R(Y, Uk)Y, Uk) =
n∑

k=1

gF (RF (Y F , U F
k )Y F , U F

k ) + (n − 1)
f ′2

f 2

−(n − 2)(log f )′′g(Y,∇τ)2 − (log f )′′|∇τ |2,
where RF denotes the curvature tensor of the fiber F . Since the sectional curvature of F
is bounded from below, there exists a constant C such that

∑n
k=1 g(R(Y, Uk)Y, Uk) ≥ C .

Therefore

RicM (Y, Y ) ≥ C − n2

4
H2,

namely, the Ricci curvature of M is bounded from below as we wanted to prove. ��
To demonstrate Theorem 10 we will use [4, Lemma 12]. To facilitate the understanding

of its proof, observe that in the paper [4] the hypersurface ψ : M → M was oriented by
choosing the Gauss map N such that ḡ(N , ∂t ) > 0. This change of orientation means that,
according to the orientation chosen in the present article, the thesis of [4, Lemma 12] becomes
H = f ′(τ )/ f (τ ).

Theorem 10 Let M = I × f F be a spatially parabolic GRW spacetime whose warping
function satisfies (log f )′′ ≤ 0 and whose fiber has its sectional curvature bounded from
below. Let ψ : M → M be a complete CMC spacelike hypersurface which is contained in a
slab and whose hyperbolic angle is bounded. Then M is a spacelike slice.

Proof From the assumptions it follows using Lemma 9 and [4, Lemma12] that

H = f ′(τ )

f (τ )
.

Now, using (10) we obtain

�G(τ ) = −n f (τ )(−H + H cosh ϕ) ≤ 0.

Taking into account the boundedness of the function G(τ ) and the parabolicity of M , we
have that G(τ ) must be constant and ∇G(τ ) = − f (τ )∂t

T = 0, namely M is a spacelike
slice. ��
Remark 11 Observe that Theorem 10 widely improves [4, Theorem 14] in many aspects:

• In [4, Theorem 14] the dimension of M is restricted to n ≤ 4, whereas in Theorem 10
this dimension is arbitrary.



124 J. A. Aledo et al.

• In [4, Theorem 14] the fiber is asked to have non-negative sectional curvature, whereas
in Theorem 10 this assumption changes to have sectional curvature bounded from below.

• In [4, Theorem 14] the warped function f is asked to satisfy f ′′(τ ) ≤ 0, whereas in
Theorem 10 this assumption changes to the weaker one (log f )′′(τ ) ≤ 0.

• Finally, in contrast to [4, Theorem 14], in Theorem 10 the maximal case is included.

In [1, Sect. 4], Albujer and Alías introduced the notion of steady state type spacetimes,
as the warped products with fiber an n-dimensional Riemannian manifold (F, gF ), base
(R,−dt2) and warping function f (t) = et . This family contains, for instance, the De Sitter
cusp [18]. In particular, these GRW spacetimes obey the NCC provided that the fiber F has
non-negative Ricci curvature. As a consequence of our Theorem 10, we can enunciate

Corollary 12 Let M = R ×et F be a spatially parabolic stedy state type spacetime, whose
fiber has non-negative Ricci curvature. Let ψ : M → M be a complete CMC spacelike
hypersurface which is contained in a slab and whose hyperbolic angle is bounded. Then M
is a spacelike slice.

This result extends [1, Theorem 8] to arbitrary dimension. In fact, in [1, Theorem 8] the
authors obtain the same rigidity result when the fiber has dimension 2 using that a complete
2-dimensional Riemannian manifold whose Gaussian curvature is non-negative is parabolic.

3.1 Einstein GRW spacetimes

Recall that a spacetime (M, g) is called Einstein if its Ricci tensor Ric is proportional to the
metric g. When M = I × f F is a GRW spacetime, it is well-known that M is Einstein with
Ric = c g, c ∈ R, if and only if the fiber (F, gF ) has constant Ricci curvature c and the
warping function f satisfies the differential equations

f ′′

f
= c

n
and

c(n − 1)

n
= c + (n − 1)( f ′)2

f 2
, (13)

which, in particular, imply that (n − 1)(log f )′′ = c
f 2

(see [12, Sect. 6]). Obviously, every
Einstein spacetime obeys the NCC.

All the positive solutions to (13) were collected in [9]. For the sake of completeness, we
show such classification in Table 1.

In [12, Theorem 6.1], the authors proved that the spacelike slices are the only compact
CMC spacelike hypersurfaces in an Einstein GRW spacetime whose fiber has Ricci curvature
c ≤ 0. This result covers the cases 2–6 in Table 1. However, the techniques used there cannot

Table 1 Warping functions for Einstein GRW spacetimes

1 c > 0 c > 0 f (t) = a ebt + cn
4ac(n−1) e−bt , a > 0, b = √

c/n

2 c > 0 c = 0 f (t) = a eεbt , a > 0, ε = ±1, b = √
c/n

3 c > 0 c < 0 f (t) = a ebt + cn
4ac(n−1) e−bt , a �= 0, b = √

c/n

4 c = 0 c = 0 f (t) = a, a > 0

5 c = 0 c < 0 f (t) = ε

√ −c
n−1 t + a, ε = ±1

6 c < 0 c < 0 f (t) = a1 cos(bt) + a2 sin(bt), a21 + a22 = cn
c(n−1) , b = √−c/n
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be applied to study the first case (c > 0 and c > 0). For these values, from the Bonnet-Myers
Theorem we have that the fiber F is compact, and so the GRW spacetime is spatially closed.

Since on a compact Riemannian manifold the only functions with signed Laplacian are
the constants, as a direct consequence of the proof of Theorem 2 we conclude that

Corollary 13 Every compact CMC spacelike hypersurface in an Einstein GRW spacetime
whose fiber has positive Ricci curvature c > 0 is totally umbilical.

Actually, this is the best possible result. In fact, recall that the de Sitter spacetime has a
realization as the GRW spacetime Sn+1

1 = R×cosh t S
n . In particular, Sn+1

1 is included in the
case 1 of Table 1 and, as is well-known, it contains compact CMC spacelike hypersurfaces
which are not spacelike slices.

Also observe that Theorem 2 allows to extend the previous study from the compact case
to the one of complete CMC spacelike hypersurfaces in a spatially parabolic Einstein GRW
spacetime, being able to consider jointly the six cases mentioned above. Specifically, we have
the following corollary which widely extend [12, Theorem 6.1] and the rigidity results in [9]

Corollary 14 Let M = I × f Fbe a spatially parabolic Einstein GRW spacetime and ψ :
M → M a complete CMC spacelike hypersurface which is contained in a slab and whose
hyperbolic angle is bounded. Then M is totally umbilical.

Anyway, we are able to go further in the cases 2–6. In fact, note that in these cases the
warping function f satisfies that (log f )′′ ≤ 0. Then, if additionally we ask the fiber F to
have its sectional curvature bounded from below we have

Corollary 15 Let M = I × f F be a spatially parabolic Einstein GRW spacetime whose
fiber has Ricci curvature c ≤ 0 (cases 2–6 in Table 1) and whose sectional curvature is
bounded from below. Let ψ : M → M be a complete CMC spacelike hypersurface which is
contained in a slab and whose hyperbolic angle is bounded. Then M is a spacelike slice.

4 Calabi–Bernstein type problems

Let (F, gF ) be a (non-compact) n-dimensional Riemannian manifold and f : I −→ R a
positive smooth function. For each u ∈ C∞(F) such that u(F) ⊆ I , we can consider its
graph 	u = {(u(p), p) : p ∈ F} in the Lorentzian warped product (M = I × f F, g). The
graph inherits from M a metric, represented on F by

gu = −du2 + f (u)2gF .

This metric is Riemannian (i.e. positive definite) if and only if u satisfies |Du| < f (u)

everywhere on F , where Du denotes the gradient of u in (F, gF ) and |Du|2 = gF (Du, Du).
Note that τ(u(p), p) = u(p) for any p ∈ F , and so τ and u may be naturally identified on
	u .

When 	u is spacelike, the unitary normal vector field on 	u satisfying g(N , ∂t ) < 0 is

N = 1

f (u)
√

f (u)2 − |Du|2
(

f (u)2∂t + Du
)
.

Then the hyperbolic angle ϕ, at any point of M , between the unit timelike vectors N and
∂t , is given by

cosh ϕ = f (u)
√

f (u)2 − |Du|2
(14)

and the corresponding mean curvature function is
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H(u) = div

(
Du

n f (u)
√

f (u)2 − |Du|2
)

+ f ′(u)

n
√

f (u)2 − |Du|2
(

n + |Du|2
f (u)2

)
.

In this section, our aim is to derive non-parametric uniqueness results from the paramet-
ric ones provided in Sect. 4. To do that, we need the induced metric gu to be complete.
Observe that, in general, the induced metric on a closed spacelike hypersurface in a complete
Lorentzian manifold could be non-complete (see, for instance, [7]). In our setting, we can
derive the completeness of 	u as follows [4, Lemma 17]

Lemma 16 Let M = I × f F be a GRW spacetime whose fiber is a (non-compact) complete
Riemannian manifold. Consider a function u ∈ C∞(F), with Im(u) ⊆ I , such that the entire
graph 	u = {(u(p), p) : p ∈ F} ⊂ M endowed with the metric gu = −du2 + f (u)2gF

is spacelike. If the hyperbolic angle of 	u is bounded and inf f (u) > 0, then the graph
(	u, g	u

) is complete, or equivalently the Riemannian surface (F, gu) is complete.

As a consequence of Theorem 2, we have

Theorem 17 Let (F, g) be a simply connected parabolic Riemannian n-manifold, I ⊆ R

an open interval in R and f : I −→ R
+ a positive continuous function satisfying that

RicF − (n − 1) f 2(log f )′′ > 0. Then the only bounded entire solutions u ∈ C∞(F), with
Im(u) ⊆ I , to the uniformly elliptic non-linear differential equation

H(u) = cte

|Du| < λ f (u), 0 < λ < 1 (15)

are the constant functions u = u0 with H = f ′(u0)
f (u0)

.
For the particular case when H(u) = 0, then the only bounded entire solutions are the

constant functions u = u0 with f ′(u0) = 0.

Proof First observe that, from (14), the constraint condition (15) can be written as

cosh ϕ <
1√

1 − λ2
. (16)

Hence, (15) holds if and only if	u has bounded hyperbolic angle.Moreover, (15) also implies
that the metric gu is spacelike, and furthermore it is complete from Lemma 16. Finally, the
thesis follows from Theorem 2 and Corollary 3. ��
Remark 18 Note that the restriction (16) makes H(u) into a uniformly elliptic operator.

As a consequence of Theorem 10, we obtain (compare with [12, Theorem 7.1]),

Theorem 19 Let (F, g) be a simply connected parabolic Riemannian n-manifold whose
sectional curvature is bounded from below, I ⊆ R an open interval in R and f : I −→ R

+ a
positive smooth function satisfying that (log f )′′ ≤ 0. Then the only bounded entire solutions
u ∈ C∞(F), with Im(u) ⊆ I , to the uniformly elliptic non-linear differential equation

H(u) = cte

|Du| < λ f (u), 0 < λ < 1

are the constant functions u = u0 with H = f ′(u0)
f (u0)

.
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5 Additional comments

As is known, in an exact solution to the Einstein’s field equation the NCC follows from the
weak energy condition, even if there is a cosmological constant.

Conversely, consider a GRW spacetime M obeying the NCC and Z a timelike vector field
on M . Then from (3) and (4) we can compute the Einstein’s tensor G = Ric− 1

2 Sg evaluated
at Z , so obtaining

G(Z , Z) = RicF
(

Z F , Z F
)

− (n − 1) f 2(log f )′′gF

(
Z F , Z F

)
− SF

2 f 2
g(Z , Z)

−n(n − 1)

2

f ′2

f 2
g(Z , Z).

Hence, G(Z , Z) ≥ 0 when the scalar curvature of the fiber satisfies SF +n(n −1) f ′2 ≥ 0
or equivalently SF ≥ −n(n − 1) inf I f ′2. In particular, it holds when SF is non-negative.
Therefore, under this assumption on the scalar curvature of the fiber a GRW spacetime
obeying the NCC satisfies the weak energy condition. Of course, the weak energy condition
will also be satisfied if the Einstein’s tensor includes the additional term with non-negative
cosmological constant.

Recall that the weak energy condition is a natural physical assumption for normal matter.
Thus, taking all of this into account, we conclude that GRW spacetimes obeying the NCC and
whose fiber has non-negative scalar curvature can be suitable models for realistic universes.

On the other hand, in a GRW spacetime there is a privileged family of observer, that
is the observers in the unitary timelike vector field ∂t , which moreover are proper time
synchronizable.

For each p ∈ F the curve γp (t) = (t, p) is the worldline or galaxy of the corresponding
observer in ∂t . Taking t as a constant, we get the hypersurface

M(t) = {(t, p) : p ∈ F},
which represents the physical space of the observer at the instant t . Then, the distance between
two galaxies γp and γq in M(t) is f (t)d(p, q), where d is the Riemannian distance in the
fiber F . In particular, when f has positive (resp. negative) derivative, the spaces M(t) are
expanding (resp. contracting). Furthermore, if f ′ > 0 and f ′′ > 0 (resp. f ′′ < 0) the GRW
spacetime describes universes in accelerated (resp. decelerated) expansion.

Recall that in a GRW spacetime the timelike energy condition (TCC), which is stronger
than the NCC, implies that f ′′ ≤ 0. Therefore GRW spacetimes obeying the TCC are
not suitable models for accelerated expanding universes. On the contrary, certain GRW
spacetimes obeying the NCC can be appropriate models for describing such universes.
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