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Abstract Let X, X1, X2, . . . be a sequence of independent and identically distributed ran-
dom variables with zero mean and finite second moment. A universal result in almost sure
central limit theorem for the self-normalized partial sums Sn/Vn and maxima Mn is estab-
lished, where Sn = ∑n

i=1 Xi , V 2
n = ∑n

i=1 X
2
i , and Mn = max1≤i≤n Xi .
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1 Introduction

Throughout this paper we assume {X, Xn}n∈N is a sequence of independent and identi-
cally distributed (i.i.d.) random variables with zero mean and finite second moment. For
each 1 ≤ k ≤ n, let Sn = ∑n

i=1 Xi , Sk,n = ∑n
i=k+1 Xi , V 2

n = ∑n
i=1 X

2
i , Mn =

max1≤i≤n Xi , Mk,n = maxk+1≤i≤n Xi . The symbols Sn/Vn and Mn denote self-normalized
partial sums andmaxima respectively. Random sequence {Xn}n∈N is said to satisfy the central
limit theorem (CLT), or random variable X is said to belong to the domain of attraction of the

normal law, if there exist constants an > 0, bn ∈ R such that (Sn − bn)/an
d−→ N , where
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N is the standard normal random variable and
d−→ denotes the convergence in distribution.

It is known that CLT is equivalent to

lim
x→∞

x2P(|X | > x)

EX2 I (|X | ≤ x)
= 0. (1.1)

Giné et al. [7] considered the limiting properties of self-normalized partial sums and

obtained the following self-normalized version of the central limit theorem: Sn/Vn
d−→ N

as n → ∞ if and only if (1.1) holds.
Brosamler [3] and Schatte [15] obtained the almost sure central limit theorem (ASCLT) for

partial sums. Some improved and generalized ASCLT results for partial sums were obtained
by Miao [12], Berkes and Csáki [1], Hörmann [8], and Wu [16,17]. Huang and Pang [10],
Wu [18], Wu and Chen [21] and Zhang and Yang [23] obtained ASCLT results for self-
normalized version. Lin [11] and Cao and Peng [4] obtained ASCLT results for maxima.
Further, Zang [22] and Peng et al. [14] obtained the ASCLT result for partial sums and
maxima. Peng et al. [14] obtained the following ASCLT result for partial sums and maxima:
Let {X, Xn}n∈N be i.i.d. random variables with EX = 0 and EX2 = 1. Suppose there exist
constants an > 0, bn ∈ R and a nondegenerate distribution G(y) such that

lim
n→∞ P

(
Mn − bn

an
≤ y

)

= G(y),−∞ < y < ∞. (1.2)

Then

lim
n→∞

1

Dn

n∑

k=1

dk I

(
Sk√
k

≤ x,
Mk − bk

ak
≤ y

)

= �(x)G(y) a.s. for all x, y ∈ R,

(1.3)
with dk = 1/k and Dn = ∑n

k=1 dk , where I denotes an indicator function, and �(x) is the
standard normal distribution function.

However, ASCLT result for self-normalized partial sums and maxima has not been
reported. Because the denominator of self-normalized partial sums contains random vari-
ables, so ASCLT for self-normalized partial sums and maxima is more difficult to study.

The difference between CLT and ASCLT lies in the weight in ASCLT. By a classical
theorem of Hardy (see e.g. [5]: p. 35), if (1.3) holds with a weight sequence {dk; k ≥ 1},
then, under certain regularity conditions, it will also hold for all smaller weight sequences.
Therefore, one should also expect to get stronger results if we use larger weights. Schatte
[15] pointed out that ASCLT fails for weight dk = 1. It would be of considerable interest to
determine the optimal weights.

The purpose of this paper is to study and establish the ASCLT for self-normalized partial
sums and maxima of i.i.d. random variables, we will show that the ASCLT holds under a
fairly general growth condition on dk = k−1 exp(lnα k), 0 ≤ α < 1.

Our theorem is formulated as follows.

Theorem 1.1 Let {X, Xn}n∈N be a sequence of i.i.d. random variables with EX = 0 and
EX2 = 1. Set

dk = exp(lnα k)

k
, Dn =

n∑

k=1

dk, for 0 ≤ α < 1. (1.4)

Suppose that (1.2) holds. Then
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lim
n→∞

1

Dn

n∑

k=1

dk I

(
Sk
Vk

≤ x,
Mk − bk

ak
≤ y

)

= �(x)G(y) a.s. for any x, y ∈ R.

(1.5)

Remark 1.2 By the terminology of summation procedures, Theorem 1.1 remains valid if we
replace the weight sequence {dk}k∈N by any {d∗

k }k∈N such that 0 ≤ d∗
k ≤ dk ,

∑∞
k=1 d

∗
k = ∞.

Remark 1.3 Our results not only extend the ASCLT for partial sums and maxima obtained
by Peng et al. [14] to the case of self-normalized partial sums and maxima but also give
substantial improvements for weight sequence in Corollary 2.2 in Peng et al. [14].

Remark 1.4 By the Theorem 1 of Schatte [15], for α = 1, i.e., dk = 1, ASCLT does not
hold. Therefore, in a sense, our Theorem 1.1 has been reached optimal form.

Remark 1.5 Obviously, EX2 = 1 < ∞ implies that (1.1) holds, so X is in the domain of
attraction of the normal law.

2 Proofs

In the following, an ∼ bn denotes limn→∞ an/bn = 1 and an 
 bn denotes that there exists
a constant c > 0 such that an ≤ cbn for sufficiently large n. The symbol c stands for a generic
positive constant which may differ from one place to another.

To prove Theorem 1.1, the following three lemmas play important role, the Lemma 2.1 is
due to Csörgő et al. [6]. Proof of Lemmas 2.2 and 2.3 is very difficult and the proof is given
in Appendix.

Lemma 2.1 Let X be a random variable, and denote l(x) = EX2 I {|X | ≤ x}. The following
statements are equivalent:

(i) X is in the domain of attraction of the normal law.
(ii) x2P(|X | > x) = o(l(x)).
(iii) xE(|X |I (|X | > x)) = o(l(x)).
(iv) E(|X |β I (|X | ≤ x)) = o(xβ−2l(x)) for β > 2.

Lemma 2.2 Let {Xn}n∈N be a sequence of random variables, and let ξk, j := f (Xk+1, . . . ,

X j ) and ξ j := ξ0, j = g(X1, . . . , X j ) be two functions which they are only related to
Xk+1, . . . , X j and X1, . . . , X j , respectively. If there exist constants c > 0 and δ > 0 such
that

|ξk, j | ≤ c, for any 0 ≤ k < j, (2.1)

and

|Eξkξ j | 

(
k

j

)δ

,E|ξ j − ξk, j | 

(
k

j

)δ

, for 1 ≤ k < j, (2.2)

then

lim
n→∞

1

Dn

n∑

k=1

dkξk = 0 a.s., (2.3)

where dk and Dn are defined by (1.4).
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Let l(x) = EX2 I {|X | ≤ x}, b = inf{x ≥ 1; l(x) > 0} and

η j = inf

{

s; s ≥ b + 1,
l(s)

s2
≤ 1

j

}

for j ≥ 1.

By the definition of η j , we have jl(η j ) ≤ η2j and jl(η j − ε) > (η j − ε)2 for any ε > 0.
It implies that

nl(ηn) ∼ η2n, as n → ∞. (2.4)

Let

X̄ni = Xi I (|Xi | ≤ ηn), S̄n =
n∑

i=1

X̄ni , V̄
2
n =

n∑

i=1

X̄2
ni , for 1 ≤ i ≤ n,

S̄k,n =
n∑

i=k+1

X̄ni , V̄ 2
k,n =

n∑

i=k+1

X̄2
ni , for 0 ≤ k < n.

Lemma 2.3 Suppose that the assumptions of Theorem 1.1 hold. Then

lim
n→∞

1

Dn

n∑

k=1

dk I

(
S̄k − ES̄k√

kl(ηk)
≤ x,

Mk − bk
ak

≤ y

)

= �(x)G(y) a.s. for any x, y ∈ R,

(2.5)

lim
n→∞

1

Dn

n∑

k=1

dk

(

I

(
k⋃

i=1

(|Xi | > ηk)

)

− EI

(
k⋃

i=1

(|Xi | > ηk)

))

= 0 a.s., (2.6)

lim
n→∞

1

Dn

n∑

k=1

dk

(

f

(
V̄ 2
k

kl(ηk)

)

− E f

(
V̄ 2
k

kl(ηk)

))

= 0 a.s., (2.7)

where dk and Dn are defined by (1.4) and f is a non-negative, bounded Lipschitz function.

Proof of Theorem 1.1. For any given 0 < ε < 1, note that

I

(
Sk
Vk

≤ x,
Mk − bk

ak
≤ y

)

≤ I

(
S̄k√

(1 + ε)kl(ηk)
≤ x,

Mk − bk
ak

≤ y

)

+ I
(
V̄ 2
k > (1 + ε)kl(ηk)

) + I

(
k⋃

i=1

(|Xi | > ηk)

)

, for x ≥ 0,

I

(
Sk
Vk

≤ x,
Mk − bk

ak
≤ y

)

≤ I

(
S̄k√

(1 − ε)kl(ηk)
≤ x,

Mk − bk
ak

≤ y

)

+ I
(
V̄ 2
k < (1 − ε)kl(ηk)

) + I

(
k⋃

i=1

(|Xi | > ηk)

)

, for x < 0,

and

I

(
Sk
Vk

≤ x,
Mk − bk

ak
≤ y

)

≥ I

(
S̄k√

(1 − ε)kl(ηk)
≤ x,

Mk − bk
ak

≤ y

)

− I
(
V̄ 2
k < (1 − ε)kl(ηk)

) − I

(
k⋃

i=1

(|Xi | > ηk)

)

, for x ≥ 0,
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I

(
Sk
Vk

≤ x,
Mk − bk

ak
≤ y

)

≥ I

(
S̄k√

(1 + ε)kl(ηk)
≤ x,

Mk − bk
ak

≤ y

)

− I
(
V̄ 2
k > (1 + ε)kl(ηk)

) − I

(
k⋃

i=1

(|Xi | > ηk)

)

, for x < 0.

Hence, to prove (1.5), it suffices to prove

lim
n→∞

1

Dn

n∑

k=1

dk I

(
S̄k√
kl(ηk)

≤ x
√
1 ± ε,

Mk − bk
ak

≤ y

)

= �(x
√
1 ± ε)G(y) a.s.,

(2.8)

lim
n→∞

1

Dn

n∑

k=1

dk I

(
k⋃

i=1

(|Xi | > ηk)

)

= 0 a.s., (2.9)

lim
n→∞

1

Dn

n∑

k=1

dk I (V̄
2
k > (1 + ε)kl(ηk)) = 0 a.s., (2.10)

lim
n→∞

1

Dn

n∑

k=1

dk I (V̄
2
k < (1 − ε)kl(ηk)) = 0 a.s. (2.11)

by the arbitrariness of ε > 0.
We first prove (2.8). Let 0 < β < 1/2 and h(·, ·) be a real function, such that for any

given x, y ∈ R,

I

(

χ ≤ √
1 ± εx − β,

Mk − bk
ak

≤ y

)

≤ h(χ, y) ≤ I

(

χ ≤ √
1 ± εx + β,

Mk − bk
ak

≤ y

)

.

(2.12)
Obviously, EX2 = 1 < ∞ implies that (1.1) holds, so X is in the domain of attraction of

the normal law. By EX = 0, Lemma 2.1 (iii) and (2.4), we have

|ES̄k | = |kEX I (|X | ≤ ηk)| = |kEX I (|X | > ηk)| ≤ kE|X |I (|X | > ηk)

= o(
√
kl(ηk)), as k → ∞.

This, combining with (2.5), (2.12) and the arbitrariness of β in (2.12), (2.8) holds.
By Lemma 2.1 (ii) and (2.4), we get

P(|X | > η j ) = o(1)
l(η j )

η2j
= o(1)

j
, as j → ∞. (2.13)

This, combining with (2.6) and the Toeplitz lemma,

0 ≤ 1

Dn

n∑

k=1

dk I

(
k⋃

i=1

(|Xi | > ηk)

)

∼ 1

Dn

n∑

k=1

dkEI

(
k⋃

i=1

(|Xi | > ηk)

)

≤ 1

Dn

n∑

k=1

dkkP(|X | > ηk) → 0 a.s., as n → ∞.

That is (2.9) holds.
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Nowwe prove (2.10). For anyμ > 0, let f be a non-negative, bounded Lipschitz function
such that

I (x > 1 + μ) ≤ f (x) ≤ I (x > 1 + μ/2).

From EV̄ 2
k = kl(ηk), X̄ni is i.i.d., Lemma 2.1 (iv), and (2.4),

P

(
V̄ 2
k >

(
1 + μ

2

)
kl(ηk)

)
= P

(
V̄ 2
k − EV̄ 2

k >
μ

2
kl(ηk)

)


 E(V̄ 2
k − EV̄ 2

k )2

k2l2(ηk)

 EX4 I (|X | ≤ ηk)

kl2(ηk)

= o(1)η2k
kl(ηk)

= o(1) → 0, as k → ∞.

Therefore, from (2.7) and the Toeplitz lemma,

0 ≤ 1

Dn

n∑

k=1

dk I
(
V̄ 2
k > (1 + μ)kl(ηk)

) ≤ 1

Dn

n∑

k=1

dk f

(
V̄ 2
k

kl(ηk)

)

∼ 1

Dn

n∑

k=1

dkE f

(
V̄ 2
k

kl(ηk)

)

≤ 1

Dn

n∑

k=1

dkEI
(
V̄ 2
k > (1 + μ/2)kl(ηk)

)

= 1

Dn

n∑

k=1

dkP(V̄ 2
k > (1 + μ/2)kl(ηk))

→ 0 a.s., as n → ∞.

Hence, (2.10) holds. By similar methods used to prove (2.10), we can prove (2.11). This
completes the proof of Theorem 1.1.

3 Appendix

Proof of Lemma 2.2 Without loss of generality, we can suppose that α > 0. By the proof of
Lemma 2.2 in Wu [19], we know that (2.1) and (2.2) imply the following formula.

E

∣
∣
∣
∣
∣

n∑

k=1

dkξk

∣
∣
∣
∣
∣

p



⎛

⎝
∑

1≤k≤ j≤n

dkd j

(
k

j

)δ
⎞

⎠

p/2

for any p > 0. (3.1)

Note that

∑

1≤k≤ j≤n

dkd j

(
k

j

)δ

≤
∑

1≤k≤ j≤n,k/j≤(ln Dn)−2/δ

dkd j

(
k

j

)δ

+
∑

1≤k≤ j≤n,k/j>(ln Dn)−2/δ

dkd j

:= Tn1 + Tn2 . (3.2)

Tn1 ≤
∑

1≤k≤ j≤n,k/j≤(ln Dn)−2/δ

dkd j
1

ln2 Dn
≤ D2

n

ln2 Dn
. (3.3)

By (2.10) in Wu [20],
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Dn ∼ 1

α
ln1−α n exp(lnα n), ln Dn ∼ lnα n, exp(lnα n) ∼ αDn

(ln Dn)
1−α
α

, ln ln Dn ∼ α ln ln n.

(3.4)

Hence,

Tn2 ≤
n∑

k=1

dk
∑

k≤ j<k(ln Dn)2/δ

1

j
exp(lnα n) 
 Dn

(ln Dn)
1−α
α

n∑

k=1

dk ln ln Dn 
 D2
n ln ln Dn

(ln Dn)
1−α
α

.

(3.5)

Thus, let α1 = min(2, (1 − α)/α) > 0, by (3.2), (3.3) and (3.5), we get

∑

1≤k≤l≤n

dkdl

(
k

l

)δ


 D2
n ln ln Dn

(ln Dn)α1
. (3.6)

Let p > 2(3α+1)/(α1α), i.e., α1 p/2−1 > 2, by theMarkov inequality, (ln ln Dn)
p/2 =

o(ln Dn) for any p > 0, (3.1) and (3.6), for sufficiently large n, we have

P

(∣
∣
∣
∣
∣

1

Dn

n∑

k=1

dkξk

∣
∣
∣
∣
∣
> ε

)


 1

Dp
n
E

∣
∣
∣
∣
∣

n∑

k=1

dkξk

∣
∣
∣
∣
∣

p


 1

Dp
n

⎛

⎝
∑

1≤k≤l≤n

dkdl

(
k

l

)δ
⎞

⎠

p/2


 1

Dp
n

(
D2
n ln ln Dn

(ln Dn)α1

)p/2


 1

(ln Dn)α1 p/2−1

≤ 1

ln2 Dn
.

By (3.4), we have Dn+1 ∼ Dn . Let nk = inf{n; Dn ≥ exp(k2/3)}, then Dnk ≥
exp(k2/3), Dnk−1 < exp(k2/3). Therefore

1 ≤ Dnk

exp(k2/3)
∼ Dnk−1

exp(k2/3)
< 1, k → ∞,

i.e.,

Dnk ∼ exp(k2/3).

Therefore, let Tn := 1
Dn

∑n
i=1 diξi , we have

∞∑

k=1

P

(∣
∣
∣
∣
∣

1

Dnk

nk∑

i=1

diξi

∣
∣
∣
∣
∣
> ε

)



∞∑

k=1

1

k4/3
< ∞,

i.e.,

Tnk → 0 a.s.

For nk ≤ n < nk+1, by (2.1)

|Tn | ≤ |Tnk | + 2c

Dnk
(Dnk+1 − Dnk ) → 0 a.s.

from Dnk+1/Dnk = exp((k + 1)2/3 − k2/3) = exp(k2/3[(1 + 1/k)2/3 − 1]) ∼
exp(2k−1/3/3) → 1. Therefore, (2.3) holds. This completes the proof of Lemma 2.2.
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Proof of Lemma 2.3 By the central limit theorem for i.i.d. random variables and Var S̄n ∼
nl(ηn) as n → ∞ from EX = 0, Lemma 2.1 (iii), and (2.4), it follows that

S̄n − ES̄n√
nl(ηn)

d−→ N , as n → ∞,

where N denotes the standard normal random variable. By Theorem 1.1 in Hsing [9], we
get

lim
n→∞P

(
S̄n − ES̄n√
nl(ηn)

≤ x,
Mn − bn

an
≤ y

)

= �(x)G(y) for any x, y ∈ R.

This implies that for any g(x, y) which is a non-negative, bounded Lipschitz function

lim
n→∞Eg

(
S̄n − ES̄n√
nl(ηn)

,
Mn − bn

an

)

=
∞∫

−∞

∞∫

−∞
g(x, y)�(dx)G(dy).

Hence, we obtain

lim
n→∞

1

Dn

n∑

k=1

dkEg

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

=
∞∫

−∞

∞∫

−∞
g(x, y)�(dx)G(dy)

from the Toeplitz lemma.
On the other hand, note that (2.5) is equivalent to

lim
n→∞

1

Dn

n∑

k=1

dkg

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

=
∞∫

−∞

∞∫

−∞
g(x, y)�(dx)G(dy) a.s.

from Theorem 7.1 of Billingsley [2] and Section 2 of Peligrad and Shao [13]. Hence, to prove
(2.5), it suffices to prove

lim
n→∞

1

Dn

n∑

k=1

dk

(

g

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

− Eg

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

))

= 0 a.s.,

(3.7)
for any g(x, y) which is a non-negative, bounded Lipschitz function.

For any 1 ≤ k < j , let

ξk := g

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

− Eg

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

,

ξk, j := g

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

)

− Eg

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

)

.

For any 1 ≤ k < j , noting that g
(
S̄k−ES̄k√
kl(ηk )

,
Mk−bk

ak

)
and g

(
S̄k, j−ES̄k, j√

jl(η j )
,
Mk, j−b j

a j

)

are

independent, and the fact that g(x, y) is a non-negative, bounded Lipschitz function, it is
easy to see that
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|Eξkξ j | =
∣
∣
∣
∣
∣
Cov

(

g

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

, g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mj − b j

a j

))∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
Cov

(

g

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

, g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mj − b j

a j

)

− g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mk, j − b j

a j

))∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
Cov

(

g

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

, g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mk, j − b j

a j

)

− g

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

))∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
Cov

(

g

(
S̄k − ES̄k√

kl(ηk)
,
Mk − bk

ak

)

, g

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

))∣
∣
∣
∣
∣


 E

∣
∣
∣
∣
∣
g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mj − b j

a j

)

− g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mk, j − b j

a j

)∣
∣
∣
∣
∣

+E

∣
∣
∣
∣
∣
g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mk, j − b j

a j

)

− g

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

)∣
∣
∣
∣
∣

:= H1 + H2. (3.8)

From the fact that g(x, y) is a non-negative, bounded Lipschitz function, it follows that

H1 
 E

(

min

(
Mj − Mk, j

a j
, 2

))


 P(Mj �= Mk, j ) = P(Mj > Mk, j ) 
 k

j
. (3.9)

By the definition of η j and Cauchy–Schwarz inequality, we get

H2 
 E

∣
∣
∣
∣
∣

S̄ j − S̄k, j − E(S̄ j − S̄k, j )
√
jl(η j )

∣
∣
∣
∣
∣



√
kEX2 I (|X | ≤ η j )

√
jl(η j )

=
(
k

j

)1/2

. (3.10)

On the other hand, by (3.9) and (3.10),

E|ξ j − ξk, j | 
 E

∣
∣
∣
∣
∣
g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mj − b j

a j

)

− g

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

)∣
∣
∣
∣
∣

≤ E

∣
∣
∣
∣
∣
g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mj − b j

a j

)

− g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mk, j − b j

a j

)∣
∣
∣
∣
∣

+E

∣
∣
∣
∣
∣
g

(
S̄ j − ES̄ j
√
jl(η j )

,
Mk, j − b j

a j

)

− g

(
S̄k, j − ES̄k, j

√
jl(η j )

,
Mk, j − b j

a j

)∣
∣
∣
∣
∣

= H1 + H2 

(
k

j

)1/2

. (3.11)

By Lemma 2.2, (3.7) holds from (3.8)–(3.11), i.e., (2.5) holds.



708 Q. Wu, Y. Jiang

In a similar way, we prove (2.6). For any 1 ≤ k < j , let

Zk := I

(
k⋃

i=1

(|Xi | > ηk)

)

− EI

(
k⋃

i=1

(|Xi | > ηk)

)

,

and

Zk, j := I

⎛

⎝
j⋃

i=k+1

(|Xi | > η j )

⎞

⎠ − EI

⎛

⎝
j⋃

i=k+1

(|Xi | > η j )

⎞

⎠ .

It is known that I (A ∪ B) − I (B) ≤ I (A) for any sets A and B, then for 1 ≤ k < j , by
(2.13),

|EZk Z j | =
∣
∣
∣
∣
∣
∣
Cov

⎛

⎝I

(
k⋃

i=1

(|Xi | > ηk)

)

, I

⎛

⎝
j⋃

i=1

(|Xi | > η j )

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣
Cov

⎛

⎝I

(
k⋃

i=1

(|Xi | > ηk)

)

, I

⎛

⎝
j⋃

i=1

(|Xi | > η j )

⎞

⎠ − I

⎛

⎝
j⋃

i=k+1

(|Xi | > η j )

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ E

∣
∣
∣
∣
∣
∣
I

⎛

⎝
j⋃

i=1

(|Xi | > η j )

⎞

⎠ − I

⎛

⎝
j⋃

i=k+1

(|Xi | > η j )

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ EI

(
k⋃

i=1

(|Xi | > η j )

)

≤ kP(|X | > η j )

≤ k

j
,

and

E|Z j − Zk, j | 
 EI

(
k⋃

i=1

(|Xi | > η j )

)

≤ k

j
.

By Lemma 2.2, (2.6) holds.
Finally, we prove (2.7). For any 1 ≤ k < j , let

ζk := f

(
V̄ 2
k

kl(ηk)

)

− E f

(
V̄ 2
k

kl(ηk)

)

,

and

ζk, j := f

(
V̄ 2
k, j

jl(η j )

)

− E f

(
V̄ 2
k, j

jl(η j )

)

.

For 1 ≤ k < j , noting that f

(
V̄ 2
k√

kl(ηk )

)

and f

(
V̄ 2
k, j√
jl(η j )

)

are independent, we get
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|Eζkζ j | =
∣
∣
∣
∣
∣
Cov

(

f

(
V̄ 2
k

kl(ηk)

)

, f

(
V̄ 2
j

jl(η j )

))∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
Cov

(

f

(
V̄ 2
k

kl(ηk)

)

, f

(
V̄ 2
j

jl(η j )

)

− f

(
V̄ 2
k, j

jl(η j )

))∣
∣
∣
∣
∣



E

(
k∑

i=1
X2
i I (|Xi | ≤ η j )

)

jl(η j )
= kEX2 I (|X | ≤ η j )

jl(η j )
= kl(η j )

jl(η j )

= k

j
,

and

E|ζ j − ζk, j | 
 E

∣
∣
∣
∣
∣
f

(
V̄ 2
j

jl(η j )

)

− f

(
V̄ 2
k, j

jl(η j )

)∣
∣
∣
∣
∣



E

(
k∑

i=1
X2
i I (|Xi | ≤ η j )

)

jl(η j )
= k

j
,

By Lemma 2.2, (2.7) holds. This completes the proof of Lemma 2.3.
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