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Abstract In this paper, we consider the existence andmultiplicity of solutions of biharmonic
equations with critical nonlinearity in R

N : ε4�2u + V (x)u = |u|2∗∗−2u + h(x, u), (t, x) ∈
R×R

N . Under suitable assumptions, we prove that it has at least one solution and, if h(x, .)
is odd, for any m ∈ N, it has at least m pairs of solutions.
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1 Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions of the
following singularly perturbed biharmonic equations with critical nonlinearity of the form{

ε4�2u + V (x)u = |u|2∗∗−2u + h(x, u), x ∈ R
N ,

u(x) → 0, as |x | → ∞,
(1.1)
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where ε > 0 and N ≥ 5, 2∗∗ = 2N
N−4 is the Sobolev critical exponent, V (x) and h(x, u) are

functions satisfying the following assumptions throughout this paper:

(V) V (x) ∈ C(RN ,R); V (x0) = minx∈RN V = 0 and there is a > 0 such that the set
V a = {x ∈ R

N : V (x) < a} has finite Lebesgue measure;
(H) (h1) h ∈ C(RN × R,R) and h(x, t) = o(|t |) uniformly in x as t → 0;

(h2) there are C0 > 0 and q ∈ (2, 2∗∗) such that |h(x, t)| ≤ C0(1 + tq−1);
(h3) there exist a0 > 0, p > 2 and 2∗∗ > μ > 2 such that H(x, t) ≥ a0t p and
μH(x, t) ≤ h(x, t)t , where H(x, t) = ∫ t

0 h(x, s)ds for all (x, t).

In the last years, many authors have studied Schrödinger equation

− ε2�u + V (x)u = f (x, u), x ∈ R
N . (1.2)

Different approaches have been taken to attack this problem under various hypotheses
on the potential and the nonlinearity. See for examples [19,20,25,29,30] and the references
therein. Observe that in all these papers the nonlinearities are assumed to be subcritical

| f (x, u)| ≤ c(1 + |u|p−1) with p ∈ (2, 2∗), (1.3)

together with some other technical conditions of course. Under the condition V (x) > 0,
there have been enormous investigations on problem (1.2). Much of the impetus for these
studies seems to have originated from the pioneering paper [25] by Floer and Weinstein in
which the one-dimensional case (N = 1) with a cubic nonlinearity was studied by assuming
that V (x) is a bounded potential having a single non-degenerate minimum point x0 while
infR V > 0. As a matter of fact, based on a Lyapounov–Schmidt reduction technique, it was
shown there that (1.2) admits, for ε > 0 sufficiently small, a family of spike-like solutions
which in the semiclassical limit (i.e. as ε → 0) concentrate around x0; see also [29,30]. The
extension of this important result to higher dimensions with condition (1.3) and V (x) having
a finite set of non-degenerate critical points was achieved in [29] while this last hypothesis
was eventually removed in [21]; for complementary results obtained by perturbation or
variational methods see [3,32], as well as the recent monograph [4]. For more results, we
refer the reader to [5,17,24]. If the nonlinearities are assumed to be critical, Clapp and Ding
[18] studied problem: −�u + λV (x)u = μu + u2

∗−1 and V (x) ≥ 0 and has a potential
well and is invariant under an orthogonal involution of RN , they established existence and
multiplicity of solutions which change sign exactly once and these solutions localize near the
potential well for real numbers μ small and λ large. Ding and Lin [22] showed the existence
and multiplicity of semiclassical solutions of perturbed nonlinear Schrödinger equations
with critical nonlinearity. Ding and Wei [23] established the existence and multiplicity of
semiclassical bound states of the nonlinear Schrödinger equations under the assumption of
V (x) changes sign and f is superlinear with critical or supercritical growth as |u| → ∞. For
someother important results the interested reader is also referred to [6–8,10,12–16,27,28,35–
38].

Although there are many works dealing with problem (1.2), just few works can be found
dealing with biharmonic or even polyharmonic Schrödinger equations. We would like to cite
[1,2],where the authors have obtained nontrivial solutions to semilinear biharmonic problems
with nonlinearities and also [33], where Salvatore and Squassina obtained infinitely many
solutions for a polyharmonic Schrödinger equations with nonhomogenous boundary data on
unbounded domains. Recently in [31], Pimenta and Soares studied{

ε4�2u + V (x)u = h(u), x ∈ R
N ,

u ∈ H2(RN ),
(1.4)
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where ε > 0 and N ≥ 5, V ∈ C(RN )∩ L∞(RN ) and there exist a bounded domain� ⊂ R
N

and x0 ∈ � such that 0 < V (x0) = V0 = inf
RN V < inf∂� V . They obtained a ground state

solution and concentration of nontrivial solutions by a penalization-type method, where h is
a subcritical and superlinear function.

In this paper,motivated by [22,23],we study the existence andmultiplicity of semiclassical
solutions of perturbed biharmonic equation with critical nonlinearity (1.1). To the best of our
knowledge, the existence and multiplicity of solutions to problem (1.1) on R

N has not been
studied before by variational methods. Because of lack of a general form of the maximum
principle to the biharmonic operator and the impossibility of splitting u = u+ + u− in
H2(RN ), we obtain only nontrivial solutions for (1.1). Furthermore, differently from [22,23]
we use Lions’ second concentration compactness principle and concentration compactness
principle at infinity to prove that the (PS)c condition holds. Let us point out that although
the idea was used before for other problems, the adaptation to the procedure to our problem
is not trivial at all, since due to the appearance of the biharmonic operator, we must consider
our problem in a suitable space and so we need more delicate estimates.

For problem (1.1), we want to obtain the following results.

Theorem 1.1 Let (V ) and (H) be satisfied. Then, for any σ > 0, there is Eσ > 0 such that
if ε ≤ Eσ , then problem (1.1) has at least one nontrivial solutions uε satisfying

μ − 2

2

∫
RN

H(x, uε)dx + 2

N

∫
RN

|uε|2∗∗
dx ≤ σεN (1.5)

and

μ − 2

2μ

∫
RN

(
ε4|�uε|2 + V (x)u2ε

)
dx ≤ σεN . (1.6)

Theorem 1.2 Let (V ) and (H) be satisfied. Moreover, assume that h(x, t) is odd in t. Then,
for any m ∈ N and σ > 0 there is Emσ > 0 such that problem (1.1) has at least m pairs of
solutions uε which satisfies the estimates (1.5) and (1.6).

2 Main results

We set λ = ε−4 and rewrite (1.1) in the following form{
�2u + λV (x)u = λ|u|2∗∗−1u + λh(x, u), x ∈ R

N ,

u(x) → 0, as |x | → ∞.
(2.1)

In order to prove our results, we introduce the space

E :=
{
u ∈ H2(RN ) :

∫
RN

V (x)|u|2dx < ∞
}

which is a Hilbert space with the inner product

〈u, v〉 =
∫
RN

(�u�v + V (x)uv)dx

and the associated norm ‖u‖2 = 〈u, u〉. By the assumption (V ), we know that the embedding
E ↪→ H2(RN ) is continuous (see [22,23]). Note that the norm ‖ · ‖ is equivalent to the one
‖ · ‖λ defined by
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‖u‖2λ =
∫
RN

(|�u|2 + λV (x)|u|2)dx

for each λ > 0. It is obvious that for each s ∈ [2, 2∗∗], there is cs > 0 (independent of λ)
such that if λ ≥ 1

|u|s ≤ cs‖u‖ ≤ cs‖u‖λ for all u ∈ E . (2.2)

Consider the functional

Jλ(u) := 1

2

∫
RN

(|�u|2 + λV (x)|u|2)dx − λ

2∗∗

∫
RN

|u|2∗∗
dx − λ

∫
RN

H(x, u)dx

= 1

2
‖u‖2λ − λ

2∗∗

∫
RN

|u|2∗∗
dx − λ

∫
RN

H(x, u)dx .

Under the assumptions (h1) and (h2), Jλ ∈ C1(E,R) (see [38], Theorem 1.22) and its
critical points are solutions of (2.1).

After the rescalings, the Theorems 1.1 and 1.2 can be restated as following:

Theorem 2.1 Let (V ) and (H) be satisfied. Then, for any σ > 0, there is 	σ > 0 such that
if λ ≥ 	σ , then problem (1.1) has at least one nontrivial solutions uλ satisfying

μ − 2

2

∫
RN

H(x, uλ)dx + 2

N

∫
RN

|uλ|2∗∗
dx ≤ σλ− N

4 (2.3)

and

μ − 2

2μ

∫
RN

(|�uλ|2 + λV (x)u2λ
)
dx ≤ σλ1−

N
4 . (2.4)

Theorem 2.2 Let (V ) and (H) be satisfied. Moreover, assume that h(x, t) is odd in t. Then,
for any m ∈ N and σ > 0 there is 	mσ > 0 such that if λ ≥ 	mσ , then problem (1.1) has at
least m pairs of solutions uλ which satisfy the estimates (2.3) and (2.4).

3 (PS)c condition

Recall that we say that a sequence (un) is a (PS) sequence at level c ((PS)c-sequence, for
short) if Jλ(un) → c and J ′

λ(un) → 0. 
λ is said to satisfy the (PS)c condition if any
(PS)c-sequence contains a convergent subsequence.

DenoteM+ as a cone of positive finite Radonmeasure.We omit the proof of the following
result since it is similar to that one of Lions [26] and Smets [34].

Lemma 3.1 Let {un} ⊂ H2(RN ) be a bounded sequence, going if necessary to subsequence,
we may assume that un ⇀ u in H2(RN ), |�un |2 ⇀ μ inM+, |un |2∗∗

⇀ ν inM+. Define

μ∞ := lim
R→∞ lim

n→∞

∫
RN∩|x |>R

|�un |2dx,

ν∞ := lim
R→∞ lim

n→∞

∫
RN∩|x |>R

|un |2∗∗
dx .

Then there exist an at most, countable index set J and a collection of points {x j }, j ∈ J , in
R
N such that

(i) μ∞ ≥ Sν
2/2∗∗
∞ ;
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(ii) ν = |u|2∗∗ + ∑
δx j ν j , ν j > 0, μ = |�u|2 + ∑

δx j μ
2/2∗∗
j ;

(iii) μ j ≥ Sν
2/2∗∗
j ;

(iv) limn→∞
∫
RN |un |2∗∗

dx = ∫
RN |u|2∗∗

dx + ν∞,

where S is the best Sobolev constant, i.e. S = inf
{∫

RN |�u|2dx : ∫
RN |u|2∗∗

dx = 1
}
, x j ∈

R
N , δx j are Dirac measures at x j and μ j , ν j are constants.

Lemma 3.2 Let (V ) and (H) be satisfied. Let {un} ⊂ E be a (PS)c-sequence. Thus, c ≥ 0
and there exists a constant M(c) which is independent of λ ≥ 0 such that

lim sup
n→∞

‖un‖2λ ≤ M(c).

Proof Let {un} be a sequence in E such that

c + o(1) = Jλ(un) = 1

2
‖un‖2λ − λ

2∗∗

∫
RN

|un |2∗∗
dx − λ

∫
RN

H(x, un)dx, (3.1)

o(1) = 〈J ′
λ(un), v〉 =

∫
RN

(�un · �v + λV (x)unv) dx

− λ

∫
RN

|un |2∗∗−2unvdx − λ

∫
RN

h(x, un)vdx . (3.2)

By (3.1) and (3.2) we have

Jλ(un) − 1

μ
J ′
λ(un)un =

(
1

2
− 1

μ

) ∫
RN

(|�un |2 + λV (x)|un |2)dx

+
(
1

μ
− 1

2∗∗

)
λ

∫
RN

|un |2∗∗
dx

+ λ

∫
RN

(
1

μ
h(x, un)un − H(x, un)

)
dx . (3.3)

On the other hand, condition (h3) implies that

1

μ
h(x, un)un − H(x, un) ≥ 0.

Thus, it follows from (3.3) that(
1

2
− 1

μ

)
‖un‖2λ ≤ c + o(1) + εn‖un‖λ,

thus ‖un‖λ is bounded as n → ∞. Passing to the limit in the last inequality, it follows that
c ≥ 0. This completes the proof of Lemma 3.2. ��

Lemma 3.3 Suppose that (V ) and (H ) hold. For any λ ≥ 1, Jλ satisfies (PS)c condition,

for all c ∈
(
0, α0λ

1− N
4

)
, where α0 =

(
1
μ

− 1
2∗∗

)
S

N
4 , that is any (PS)c-sequence (un) ⊂ E

has a strongly convergent subsequence in E.
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Proof Let {un} be a (PS)c sequence, by Lemma 3.2, {un} is bounded in E . Hence, up to a
subsequence, we may assume that

un ⇀ u weakly in E,

un → u a.e. in R
N ,

un → u in Ls
loc(R

N ), 1 ≤ s < 2∗∗,
|�un |2 ⇀ μ (weak*-sense of measures ),

|un |2∗∗
⇀ ν (weak*-sense of measures), (3.4)

where μ and ν are a nonnegative bounded measures on R
N . Let x j be a singular point of

the measures μ and ν. We define a function φ j (x) ∈ C∞
0 (RN ) such that φ j (x) = 1 in

B(x j , ε), φ j (x) = 0 in R
N\B(x j , 2ε), |∇φ j | ≤ 2/ε and |�φ j | ≤ 2/ε2 in R

N . Obviously,
〈J ′

λ(un), unφ j 〉 → 0, i.e.∫
RN

|�un |2φ j dx = −
∫
RN

�un�φ j undx − 2
∫
RN

�un∇un∇φ j dx

−
∫
RN

λV (x)|un |2φ j dx + λ

∫
RN

h(x, un)unφ j dx

+ λ

∫
RN

|un |2∗∗
φ j dx + o(1). (3.5)

On the other hand, by Hölder’s inequality we obtain

lim sup
n→∞

∣∣∣∣
∫
RN

�un�φ j undx

∣∣∣∣
≤ lim sup

n→∞

( ∫
RN

|�un |2dx
)1/2( ∫

RN
|un�φ j |2dx

)1/2

≤ lim sup
n→∞

C1

( ∫
B(x j ,2ε)

|un |2|�φ j |2dx
)1/2

≤ C1

( ∫
B(x j ,2ε)

|�φ j |N/2dx

)2/N( ∫
B(x j ,2ε)

|u|2∗∗
dx

)1/2∗∗

≤ C2

( ∫
B(x j ,2ε)

|u|2∗∗
dx

)1/2∗∗

→ 0 as ε → 0. (3.6)

Similarly, it follows from the definition of φ and (3.4) that

lim
ε→0

lim
n→∞

∫
RN

�un∇un∇φ j dx = 0 (3.7)

and

lim
ε→0

lim
n→∞

∫
RN

h(x, un)unφ j dx = 0. (3.8)

Consequently, using (3.4) and (3.6)–(3.8), we can let n → ∞ in (3.5) to obtain∫
RN

φ j dμ ≤ λ

∫
RN

φ j dν.
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Letting ε → 0, we obtain μ j ≤ λν j . Combining this with Lemma 3.1(iii), we obtain

ν j ≥ λ−1Sν
2

2∗∗
j . This result implies that

(I) ν j = 0 or (II) ν j ≥ (
λ−1S

) N
4 .

To obtain the possible concentration of mass at infinity, similarly, we define a cut off
function φR ∈ C∞(RN ) such that φR(x) = 0 on |x | < R and φR(x) = 1 on |x | > R + 1.
Note that 〈J ′

λ(un), unφR〉 → 0, this fact imply that∫
RN

|�un |2φRdx = −
∫
RN

�un�φRundx − 2
∫
RN

�un∇un∇φRdx

−
∫
RN

λV (x)|un |2φRdx + λ

∫
RN

h(x, un)unφRdx

+ λ

∫
RN

|un |2∗∗
φRdx + on(1). (3.9)

It is easy to prove that

lim
R→∞ lim

n→∞

∫
RN

�un�φRundx = 0

and

lim
R→∞ lim

n→∞

∫
RN

�un∇un∇φRdx = 0.

Letting R → ∞, we obtain μ∞ ≤ λν∞. Thus ν∞ ≥ λ−1Sν
2

2∗∗
∞ . This result implies that

(III) ν∞ = 0 or (IV) ν∞ ≥ (
λ−1S

) N
4 .

Next, we claim that (II) and (IV) cannot occur. If the case (IV) holds, then by condition
(H), we have that

c = lim
n→∞

(
Jλ(un) − 1

μ
〈J ′

λ(un), un〉
)

= lim
n→∞

{(
1

2
− 1

μ

) ∫
RN

(|�un |2 + λV (x)|un |2)dx +
(
1

μ
− 1

2∗∗

)
λ

∫
RN

|un |2∗∗
dx

+ λ

∫
RN

(
1

μ
h(x, un)un − H(x, un)

)
dx

}

≥ lim
n→∞

(
1

μ
− 1

2∗∗

)
λ

∫
RN

|un |2∗∗
dx ≥ lim

n→∞

(
1

μ
− 1

2∗∗

)
λ

∫
RN

|un |2∗∗
φRdx .

Hence, by condition (I V ) we obtain(
1

μ
− 1

2∗∗

)
λν∞ ≥ α0λ

1− N
4 ,

where α0 =
(
1
μ

− 1
2∗∗

)
S

N
4 .

This is impossible. Consequently, ν∞ = 0. Similarly, we can prove that (II) cannot occur.
Thus ∫

RN
|un |2∗∗

dx →
∫
RN

|u|2∗∗
dx . (3.10)
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Thus, from Brezis-Lieb Lemma [11], we have

‖un‖λ = 〈J ′
λ(un), un〉 = ‖un‖2λ − λ

∫
RN

|un |2∗∗
dx − λ

∫
RN

h(x, un)undx

= ‖un − u‖2λ + ‖u‖2λ − λ

∫
RN

|un |2∗∗
dx − λ

∫
RN

h(x, un)undx

= ‖un − u‖2λ + ‖un‖λ,

here we use J ′
λ(u) = 0. Thus we prove that {un} strongly converges to u in E . This completes

the proof of Lemma 3.3. ��

4 Proofs of Theorem 2.1

In the following, we always consider λ ≥ 1. By the assumptions (V ) and (H), one can see
that Jλ(u) has mountain pass geometry.

Lemma 4.1 Assume (V ) and (H) hold. There exist αλ, ρλ > 0 such that Jλ(u) > 0 if
u ∈ Bρλ\{0} and Jλ(u) ≥ αλ if u ∈ ∂Bρλ , where Bρλ = {u ∈ E : ‖u‖λ ≤ ρλ}.
Proof By conditions (h1) and (h2), for any δ > 0 small enough there is Cδ > 0 such that

1

2∗∗

∫
RN

|u|2∗∗
dx +

∫
RN

H(x, u)dx ≤ δ|u|22 + Cδ|u|2∗∗
2∗∗ .

So, choosing δ ≤ (4λc22)
−1, from condition (V ) it follows that

Jλ(u) ≥ 1

2
‖u‖2λ − λδ|u|22 − λCδ|u|2∗∗

2∗∗

≥ 1

4
‖u‖2λ − λCδ|u|2∗∗

2∗∗ .

Because 2 < 2∗∗, we know that the conclusion of Lemma 4.1 holds. This completes the
proof of Lemma 4.1. ��
Lemma 4.2 Under the assumption of Lemma 4.1, for any finite dimensional subspace F ⊂
E,

Jλ(u) → −∞ as u ∈ F, ‖u‖λ → ∞.

Proof Using conditions (V ) and(h3), we can get

Jλ(u) ≤ 1

2
‖u‖2λ − λa0|u|pp

for all u ∈ E . Since all norms in a finite-dimensional space are equivalent and p > 2, this
completes the proof of Lemma 4.2. ��

Since Jλ(u) does not satisfy (PS)c condition for all c > 0, thus, in the following we will
find special finite-dimensional subspaces by which we construct sufficiently small minimax
levels.

Recall that the assumption (V ) implies there is x0 ∈ R
N such that V (x0) =

minx∈RN V (x) = 0. Without loss of generality we assume from now on that x0 = 0.
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Observe that, by condition (h3), we have

λ

2∗∗

∫
RN

|u|2∗∗
dx + λ

∫
RN

H(x, u)dx ≥ a0λ
∫
RN

|u|pdx .

Define the function Iλ ∈ C1(E,R) by

Iλ(u) := 1

2

∫
RN

(|�u|2 + λV (x)|u|2)dx − a0λ
∫
RN

|u|pdx .

Then Jλ(u) ≤ Iλ(u) for all u ∈ E and it suffices to construct small minimax levels for Iλ.
Note that

inf

{∫
RN

|�φ|2dx : φ ∈ C∞
0 (RN ), |φ|2 = 1

}
= 0.

For any δ > 0 one can choose φδ ∈ C∞
0 (RN ) with |φδ|p = 1 and suppφδ ⊂ Brδ (0) so

that |�φδ|pp < δ. Set

fλ(x) = φδ(λ
1
4 x), (4.1)

then

supp fλ ⊂ B
λ

− 1
4 rδ

(0).

Thus, for t ≥ 0,

Iλ(t fλ) = t2

2

∫
RN

(|� fλ|2 + λV (x)| fλ|2)dx − t pa0λ
∫
RN

| fλ|pdx

= λ1−
N
4

(
t2

2

∫
RN

(
|�φδ|2 + V

(
λ− 1

4 x
)

|φδ|2
)
dx − t pa0

∫
RN

|φδ|pdx
)

= λ1−
N
4 �λ(tφδ),

where �λ ∈ C1(E,R) defined by

�λ(u) := 1

2

∫
RN

(
|�u|2 + V

(
λ− 1

4 x
)

|u|2
)
dx − a0

∫
RN

|u|pdx .

Obviously,

max
t≥0

�λ(tφδ) = p − 2

2p(pa0)
2

p−2

[∫
RN

(
|�φδ|2 + V

(
λ− 1

4 x
)

|φδ|2
)
dx

] p
p−2

.

On the one hand, since V (0) = 0 and suppφδ ⊂ Brδ (0), there is 	δ > 0 such that

V
(
λ− 1

4 x
)

≤ δ

|φδ|22
, for all |x | ≤ rδ and λ ≥ 	δ.

Then

max
t≥0

�λ(tφδ) ≤ p − 2

2p(pa0)
2

p−2

(2δ)
p

p−2 . (4.2)

Therefore, for all λ ≥ 	δ ,

max
t≥0

Jλ(tφδ) ≤ p − 2

2p(pa0)
2

p−2

(2δ)
p

p−2 λ1−
N
4 . (4.3)
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Thus we have the following lemma.

Lemma 4.3 Under the assumption of Lemma 4.1, for any σ > 0 there exists 	σ > 0 such
that for each λ ≥ 	σ , there is f̂λ ∈ E with ‖ f̂λ‖λ > ρλ, Jλ( f̂λ) ≤ 0 and

max
t∈[0,1] Jλ(t f̂λ) ≤ σλ1−

N
4 . (4.4)

Proof Choose δ > 0 so small that

p − 2

2p(pa0)
2

p−2

(2δ)
p

p−2 ≤ σ

and let fλ ∈ E be the function defined by (4.1). Taking 	σ = 	δ . Let t̂λ > 0 be such that
t̂λ‖ fλ‖λ > ρλ and Jλ(t fλ) ≤ 0 for all t ≥ t̂λ. By (4.3), setting f̂λ = t̂λ fλ, we know that the
conclusion of Lemma 4.3 holds. ��

For any m∗ ∈ N , one can choose m∗ functions φi
δ ∈ C∞

0 (RN ) such that suppφi
δ∩

suppφk
δ = ∅, i �= k, |φi

δ|p = 1 and |�φi
δ|22 < δ. Let rm

∗
δ > 0 be such that suppφi

δ ⊂ Bi
rm

∗
δ

(0)

for i = 1, 2, . . . ,m∗. Set

f iλ(x) = φi
δ(λ

1
4 x), for j = 1, 2, . . . ,m∗

and

Hm∗
λδ = span{ f 1λ , f 2λ , · · · , f m

∗
λ }.

Observe that for each u =
m∗∑
i=1

ci f
i
λ ∈ Hm∗

λδ ,

∫
RN

|�u|2dx =
m∗∑
i=1

|ci |2
∫
RN

|� f iλ |2dx,

∫
RN

V (x)|u|2dx =
m∗∑
i=1

|ci |2
∫
RN

V (x)| f iλ |2dx,

1

2∗∗

∫
RN

|u|2∗∗
dx = 1

2∗∗
m∗∑
i=1

|ci |2∗∗
∫
RN

|u|2∗∗
dx

and ∫
RN

H(x, u)dx =
m∗∑
i=1

∫
RN

H(x, ci f
i
λ)dx .

Thus

Jλ(u) =
m∗∑
i=1

Jλ(ci f
i
λ)

and as before

Jλ(ci f
i
λ) ≤ λ1−

N
4 �λ(|ci | f iλ).
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Set

βδ := max{|φi
δ|22 : i = 1, 2, . . . ,m∗}

and choose 	m∗δ > 0 so that

V (λ− 1
4 x) ≤ δ

βδ

for all |x | ≤ rm
∗

δ and λ ≥ 	m∗δ.

As before, we can obtain the following

max
u∈Hm∗

λδ

Jλ(u) ≤ m∗(p − 2)

2p(pa0)
2

p−2

(2δ)
p

p−2 λ− 1
4 (4.5)

for all λ ≥ 	m∗δ .
Using this estimate we have the following.

Lemma 4.4 Under the assumption of Lemma 4.1, for any m∗ ∈ N and σ > 0 there exists
	m∗σ > 0 such that for each λ ≥ 	m∗σ , there exists an m∗-dimensional subspace Fλm∗
satisfying

max
u∈Fλδ

Jλ(u) ≤ σλ1−
N
4 .

Proof Choose δ > 0 so small that

m∗(p − 2)

2p(pa0)
2

p−2

(2δ)
p

p−2 ≤ σ

and take Fλm∗ = Hm∗
λδ . By (4.5), we know that the conclusion of Lemma 4.4 holds. ��

We now establish the existence and multiplicity results.

Proof of Theorem 2.1. Using Lemma 4.3, we choose 	σ > 0 and define for λ ≥ 	σ , the
minimax value

cλ := inf
γ∈�λ

max
t∈[0,1] Jλ(t f̂λ)

where

�λ := {γ ∈ C([0, 1], E) : γ (0) = 0 and γ (1) = f̂λ}.
By Lemma 4.1, we have αλ ≤ cλ ≤ σλ1− N

4 . In virtue of Lemma 3.3, we know that Jλ
satisfies the (PS)cλ condition, there is uλ ∈ E such that J ′

λ(uλ) = 0 and Jλ(uλ) = cλ, hence
the existence is proved. Moreover, fixing ν > 0, it results

σλ1−
N
4 ≥ Jλ(uλ) = Jλ(uλ) − 1

ν
J ′
λ(uλ)uλ

≥
(
1

2
− 1

ν

) ∫
RN

(|�uλ|2 + λV (x)|uλ|2)dx +
(
1

ν
− 1

2∗∗

)
λ

∫
RN

|uλ|2∗∗
dx

+ λ
(μ

ν
− 1

) ∫
RN

H(x, uλ)dx,

where μ is the constant in condition (H). Taking ν = 2, we obtain the estimates (2.3) and
taking ν = μ we obtain the estimate (2.4).
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Denote the set of all symmetric (in the sense that −Z = Z ) and closed subsets of E by
�. For each Z ∈ �, let gen(Z) be the Krasnoselski genus and

i(Z) := min
h∈�m∗

gen(h(Z) ∩ ∂Bρλ),

where �m∗ is the set of all odd homeomorphisms h ∈ C(E, E) and ρλ is the number from
Lemma 4.1. Then i is a version of Benci’s pseudoindex [9]. Let

cλi := inf
i(Z)≥i

sup
u∈Z

Jλ(u), 1 ≤ i ≤ m∗.

Since Jλ(u) ≥ αλ for all u ∈ ∂Bρλ and since i(Fλm∗) = dim Fλm∗ = m∗,

αλ ≤ cλ1 ≤ · · · ≤ cλm∗ ≤ sup
u∈Fλm∗

Jλ(u) ≤ σλ1−
N
4 .

It follows from Lemma 3.3 that Jλ satisfies the (PS)cλ condition at all levels cλi . By the
usual critical point theory, all ci are critical levels and Jλ has at least m∗ pairs of nontrivial
critical points. We see that these solutions satisfy the estimate (2.3) and (2.4). ��
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