
RACSAM (2016) 110:585–600
DOI 10.1007/s13398-015-0251-5

ORIGINAL PAPER

Fixed point results in b-metric spaces approach to the
existence of a solution for nonlinear integral equations

Wutiphol Sintunavarat1

Received: 4 February 2015 / Accepted: 9 September 2015 / Published online: 5 October 2015
© Springer-Verlag Italia 2015

Abstract The purpose of this work is to introduce new nonlinear mappings in setup of b-
metric spaces and prove fixed point theorems for such mappings. Examples are provided in
order to distinguish these results from the known ones. At the end of paper, we apply our
fixed point result to prove the existence of a solution for the following nonlinear integral
equation:

x(c) = �(φ(c), c) + K (c, c, φ(c)) +
b∫

a

K (c, r, x(r))dr, (0.1)

where a, b ∈ R with a < b, x ∈ C[a, b] (the set of all continuous real functions defined on
[a, b]), φ : [a, b] → R, � : R × [a, b] → R and K : [a, b] × [a, b] × R → R are given
mappings.

Keywords α-Admissible mappings · α-Regularity · b-metric spaces · Hölder inequality ·
Nonlinear integral equations

Mathematics Subject Classification 47H09 · 47H10

1 Introduction and preliminaries

Throughout this paper, we denote by N, R+ and R the sets of positive integers, non-negative
real numbers and real numbers, respectively.

In the recent year, several mathematicians improved and extended the famous Banach
contraction mappings principle by many directions as follows:

• How to find generalizations or other types of contractive conditions?
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• How to extend Banach contraction mappings principle in metric spaces to other spaces?
• How to extend Banach contraction mappings principle to multi-valued mappings?

One of the most interested generalization is extension of contractive condition in to case
of weak contractive condition which was first introduced by Alber et al. [2] in the framework
of Hilbert spaces. Afterward, Rhoades [22] showed that the result of Alber et al. [2] is
also valid in complete metric spaces. Fixed point theorems involving mappings satisfying
weak contractive type inequalities have been considered in [7,8,12,13,17,26] and references
therein.

In 1984, Khan et al. [15] introduced the useful function called an altering distance function
as follows:

Definition 1.1 ([15]) The function ϕ : [0,∞) → [0,∞) is called an altering distance
function, if the following properties hold:

1. ϕ is continuous and non-decreasing;
2. ϕ(t) = 0 if and only if t = 0.

Here, we give some examples of altering distance function.

Example 1.2 Let ϕi : [0,∞) → [0,∞), where i ∈ {1, 2, . . . , 5}, be defined by
(ϕ1) ϕ1(t) = kt , where k > 0,
(ϕ2) ϕ2(t) = tk , where k > 0,

(ϕ3) ϕ3(t) =
{ t

3 , t ∈ [0, 1],
t − 2

3 , t ∈ (1,∞),

(ϕ4) ϕ4(t) = sinh−1 t ,
(ϕ5) ϕ5(t) = cosh(t) − 1.

Then ϕi is altering distance function for all i ∈ {1, 2, . . . , 5}.
By using the concept of an altering distance, Choudhury et al. [9] generalized the concept

of weak contraction mappings and proved fixed point theorem for such mappings.
On the other hand, in 1993, Czerwik [10] introduced the concept of a b-metric spaces as

follows:

Definition 1.3 ([10]) Let X be a nonempty set and s ≥ 1 be a given real number. Suppose
that the mapping d : X × X → R+ satisfies the following conditions:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x) for all x, y ∈ X ;
(B3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z,∈ X .

Then (X, d) is called a b-metric space with coefficient s.

Any metric space is a b-metric space with s = 1 and so the class of b-metric spaces is
larger than the class of metric spaces. In general a b-metric space does not necessarily need
to be a metric space. Some known examples of b-metric which show that b-metric space is
real generalization of metric space are the following.

Example 1.4 Let (X, d) be a metric space and σd : X × X → R+ defined by

σd(x, y) = [d(x, y)]p for all x, y ∈ X,
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where p > 1 is a fixed real number. Then σd is a b-metric with s = 2p−1. Indeed, conditions
(B1) and (B2) in Definition 1.3 are satisfied and thus we only to show that condition (B3)
holds for σd .

It is easy to see that if 1 < p < ∞, then the convexity of the function f (x) = x p , where
x ≥ 0, implies (

a + c

2

)p

≤ 1

2
(a p + cp),

and hence

(a + c)p ≤ 2p−1(a p + cp).

Therefore, for each x, y, z ∈ X , we get

σd(x, y) = [d(x, y)]p
≤ [d(x, z) + d(z, y)]p
≤ 2p−1([d(x, z))p + (d(z, y)]p)
= 2p−1[σd(x, z) + σd(z, y)].

So condition (B3) inDefinition 1.3 holds and then σd is a b-metric coefficient s=2p−1>1.

Example 1.5 The set l p(R) with 0 < p < 1, where

l p(R) :=
{

{xn} ⊆ R |
∞∑
n=1

|xn |p < ∞
}

,

together with the mapping d : l p(R) × l p(R) → R+ defined by

d(x, y) =
( ∞∑
n=1

|xn − yn |p
) 1

p

for each x = {xn}, y = {yn} ∈ l p(R), is a b-metric space with coefficient s = 2
1
p > 1. The

above result also holds for the general case l p(X) with 0 < p < 1, where X is a Banach
space.

Example 1.6 Let p be a given real number in the interval (0, 1). The space L p[0, 1] of

all functions x : [0, 1] → R such that
∫ 1
0 |x(t)|pdt < 1, together with the mapping d :

L p[0, 1] × L p[0, 1] → R+ defined by

d(x, y) :=
⎛
⎝

1∫

0

|x(t) − y(t)|pdt
⎞
⎠

1/p

, for each x, y ∈ L p[0, 1],

is a b-metric space with constant s = 2
1
p > 1.

Example 1.7 Let X = {0, 1, 2} and the mapping d : X × X → R+ defined by

d(0, 0) = d(1, 1) = d(2, 2) = 0,

d(0, 1) = d(1, 0) = d(1, 2) = d(2, 1) = 1

and

d(2, 0) = d(0, 2) = m,
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where m is given real number such that m ≥ 2. It is easy to see that

d(x, y) ≤ m

2
[d(x, z) + d(z, y)],

for all x, y, z ∈ X . Therefore, (X, d) is a b-metric space with coefficient s = m/2.We obtain
that the ordinary triangle inequality does not hold if m > 2 and then (X, d) is not a metric
space.

Next, we give the concepts of convergence, Cauchy sequence, b-continuity and b-
completeness in a b-metric space.

Definition 1.8 ([4]) Let (X, d) be a b-metric space. Then a sequence {xn} in X is called:

1. b-convergent if there exists x ∈ X such that d(xn, x) → 0 as n → ∞. In this case, we
write limn→∞ xn = x .

2. A b-Cauchy sequence if d(xn, xm) → 0 as n,m → ∞.

Proposition 1.9 ([4]) In a b-metric space (X, d), the following assertions hold:

(p1) A b-convergent sequence has a unique limit.
(p2) Each b-convergent sequence is a b-Cauchy sequence.
(p3) In general, a b-metric is not continuous.

From the fact that in (p3), we need the following lemmaas regards b-convergent sequences
in the proof of our results.

Lemma 1.10 ([1]) Let (X, d) be a b-metric space with coefficient s ≥ 1 and let {xn} and
{yn} be b-convergent to points x, y ∈ X, respectively. Then we have

1

s2
d(x, y) ≤ lim inf

n→∞ d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X,
we have

1

s
d(x, z) ≤ lim inf

n→∞ d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

Definition 1.11 ([4]) Let (X, dX ) and (Y, dY ) be two b-metric spaces.

1. The space (X, dX ) is b-complete if every b-Cauchy sequence in X b-converges.
2. A function f : X → Y is b-continuous at a point x ∈ X if it is b-sequentially continuous

at x , that is, whenever {xn} is b-convergent to x , { f xn} is b-convergent to f x .

Many researchers studied fixed point results in b-metric spaces (see also [5,11,16,19–
21,24] and references therein).

Recently, Samet et al. [23] was first introduced the following popular concept.

Definition 1.12 ([23]) Let X be a nonempty set and α : X × X → [0,∞) be a given
mapping. A mapping f : X → X is said to be α-admissible if the following condition
holds:

x, y ∈ X with α(x, y) ≥ 1 �⇒ α( f x, f y) ≥ 1.
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Example 1.13 Let X = [0,∞). Define f : X → X and α : X × X → [0,∞) by

f (x) =
⎧⎨
⎩

x2 + 2x + 2

5
, x ∈ [0, 1],

| sin(x2 + 1)|, x ∈ (1,∞)

and

α(x, y) =
⎧⎨
⎩
1 + | sin(x + y)|, x, y ∈ [0, 1]

1

1 + max{x, y}, otherwise.

Then, f is α-admissible.

Samet et al. [23] established fixed point theorems for some type of generalized contraction
mapping by using the concept of α-admissible mapping. Also, they applied these results to
derive fixed point theorems in partially ordered metric spaces.

In recently, the author [25] gave the new concepts of weak α-admissible mappings as
follows:

Definition 1.14 ([25]) Let X be a nonempty set and α : X × X → [0,∞) be a given
mapping. A mapping f : X → X is said to be weak α-admissible if the following condition
holds:

x ∈ X with α(x, f x) ≥ 1 �⇒ α( f x, f f x) ≥ 1.

Unless otherwise specified, for fixed a nonempty set X and a mapping α : X × X →
[0,∞), we useA(X, α) andWA(X, α) stand for the collection of all α-admissible mappings
on X and the collection of all weak α-admissible mappings on X , that is,

A(X, α) := { f : X → X | f is an α-admissible mapping}
and

WA(X, α) := { f : X → X | f is a weak α-admissible mapping}.
Remark 1.15 It is easy to see that α-admissibility implies weak α-admissibility, that is,
A(X, α) ⊆ WA(X, α).

By using the concept of weak α-admissibility, we prove some fixed point theorems satis-
fying generalized weak contractive condition by using altering distance function in setting of
b-metric spaces. Examples are provided in order to distinguish these results from the known
ones. Our main result extends and improves many well-known fixed point results in setup of
metric spaces and b-metric spaces. We pointed out that many fixed point results in b-metric
spaces endowed with partially ordered (or arbitrary binary relation or graph) and fixed point
results for cyclic mappings can be concluded from our results. Also, fixed point results for
nonlinear mappings satisfying some Lebesgue integral conditions can be obtained by our
main results. At the last section, we apply our result to prove the existence of a solution for
the nonlinear integral equation as follows:

x(c) = �(φ(c), c) + K (c, c, φ(c)) +
b∫

a

K (c, r, x(r))dr, (1.1)

where a, b ∈ R with a < b, x ∈ C[a, b] (the set of all continuous real functions defined on
[a, b]), φ : [a, b] → R, � : R × [a, b] → R and K : [a, b] × [a, b] × R → R are given
mappings.
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2 Main results

Unless otherwise stated, Fix( f ) stands for the set of all fixed points of self mapping f on a
nonempty set X , that is,

Fix( f ) := {x ∈ X | f x = x}.
Let (X, d) be a b-metric space with coefficient s ≥ 1. For each elements x and y, let

Ms(x, y) := max

{
d(x, y), d(x, f x), d(y, f y),

d(x, f y) + d(y, f x)

2s

}
,

and

N (x, y) := min{d(x, f x), d(y, f x)}.
We also write M(x, y) instead Ms(x, y) when s = 1, that is,

M(x, y) := max

{
d(x, y), d(x, f x), d(y, f y),

d(x, f y) + d(y, f x)

2

}
.

Definition 2.1 Let (X, d) be a b-metric space with coefficient s ≥ 1, α : X × X → [0,∞)

and ψ, ϕ : [0,∞) → [0,∞) be given mappings. We say that a mapping f : X → X is
an almost generalized (α, ψ, ϕ)s-contractive mapping if there exists L ≥ 0 such that the
following condition holds:

x, y ∈ X with α(x, y) ≥ 1 �⇒ ψ(s3d( f x, f y))

≤ ψ(Ms(x, y)) − ϕ(Ms(x, y)) + Lψ(N (x, y)). (2.1)

We denote with �s(X, α, ψ, ϕ) the collection of all almost generalized (α, ψ, ϕ)s-
contractive mappings.

Theorem 2.2 Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1, ψ, ϕ :
[0,∞) → [0,∞) be altering distance functions and α : X × X → [0,∞) and f : X → X
be given mappings. Suppose that the following conditions hold:

(AS1) f ∈ �s(X, α, ψ, ϕ) ∩ WA(X, α);
(AS2) there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
(AS3) α has transitive property, that is, for x, y, z ∈ X

α(x, y) ≥ 1 and α(y, z) ≥ 1 �⇒ α(x, z) ≥ 1;
(AS4) f is b-continuous.

Then Fix( f ) �= ∅.
Proof Starting from a point x0 ∈ X in condition (AS2), we get α(x0, f x0) ≥ 1. We will
construct the Picard iterative sequence {xn} in X , that is,

xn+1 = f xn

for all n ∈ N ∪ {0}. If xñ = xñ+1 for some ñ ∈ N ∪ {0}, then a point xñ is a fixed point of f .
So we have noting to proof. Now we will assume that xn �= xn+1 for all n ∈ N ∪ {0}, that is,
d(xn, xn+1) > 0 for all n ∈ N ∪ {0}. First, we will show that

lim
n→∞ d(xn, xn+1) = 0. (2.2)
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Since f ∈ WA(X, α) and α(x0, f x0) ≥ 1, we have

α(x1, x2) = α( f x0, f f x0) ≥ 1. (2.3)

By continuous this process, we have

α(xn, xn+1) ≥ 1 (2.4)

for all n ∈ N ∪ {0}. It follows from f ∈ �s(X, α, ψ, ϕ) that inequality (2.4) implies that

ψ(d( f xn, f xn+1)) ≤ ψ(s3d( f xn, f xn+1))

≤ ψ(Ms(xn, xn+1)) − ϕ(Ms(xn, xn+1)) + Lψ(N (xn, xn+1))

(2.5)

for all n ∈ N ∪ {0}. Note that for each n ∈ N ∪ {0}, we have
Ms(xn, xn+1)

= max

{
d(xn, xn+1), d(xn, f xn), d(xn+1, f xn+1),

d(xn, f xn+1) + d(xn+1, f xn)

2s

}

= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s

}

= max {d(xn, xn+1), d(xn+1, xn+2)}
and

N (xn, xn+1) = min{d(xn, f xn), d(xn+1, f xn)}
= min{d(xn, xn+1), d(xn+1, xn+1)}
= min{d(xn, xn+1), 0}
= 0.

If Ms(xn∗ , xn∗+1) = d(xn∗+1, xn∗+2) for some n∗ ∈ N∪{0}, then inequality (2.5) implies
that

ψ(d( f xn∗ , f xn∗+1)) ≤ ψ(d(xn∗+1, xn∗+2)) − ϕ(d(xn∗+1, xn∗+2)) + Lψ(0)

< ψ(d(xn∗+1, xn∗+2)),

which is a contradiction. Therefore, Ms(xn, xn+1) = d(xn, xn+1) for all n ∈ N ∪ {0}. From
(2.5), we have

ψ(d(xn+1, xn+2)) = ψ(d( f xn, f xn+1))

≤ ψ(d(xn, xn+1)) − ϕ(d(xn, xn+1)) + Lψ(0)

< ψ(d(xn, xn+1)), (2.6)

for all n ∈ N∪{0}. Since ψ is a non-decreasing mapping, we get {d(xn, xn+1)} is decreasing
sequence in R and then there exists r ≥ 0 such that

lim
n→∞ d(xn, xn+1) = r.

Taking limit as n → ∞ in (2.6), we get

ψ(r) ≤ ψ(r) − ϕ(r) ≤ ψ(r)
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and thus ϕ(r) = 0. This implies that r = 0, that is,

lim
n→∞ d(xn, xn+1) = 0. (2.7)

This claims that (2.2) holds.
Next, we will prove that {xn} is a b-Cauchy sequence in X . Assume this to contrary that

there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that
n(k) > m(k) ≥ k and

d(xm(k), xn(k)) ≥ ε (2.8)

and n(k) is the smallest number such that (2.8) holds. From (2.8), we have

d(xm(k), xn(k)−1) < ε. (2.9)

By (B3), (2.8) and (2.9), we get

ε ≤ d(xm(k), xn(k))

≤ s[d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))]
< s[ε + d(xn(k)−1, xn(k))]. (2.10)

Taking limit supremum as k → ∞ in (2.10), by using (2.7) we get

ε ≤ lim sup
k→∞

d(xm(k), xn(k)) ≤ sε. (2.11)

Again, by using (B3), we obtain that

d(xm(k), xn(k)) ≤ s[d(xm(k), xn(k)+1) + d(xn(k)+1, xn(k))] (2.12)

and
d(xm(k), xn(k)+1) ≤ s[d(xm(k), xn(k)) + d(xn(k), xn(k)+1)]. (2.13)

Taking limit supremum as k → ∞ in (2.12) and (2.13), from (2.7) and (2.11), we get

ε ≤ s

(
lim sup
k→∞

d(xm(k), xn(k)+1)

)
. (2.14)

and
lim sup
k→∞

d(xm(k), xn(k)+1) ≤ s2ε. (2.15)

From (2.14) and (2.15), we have

ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)+1) ≤ s2ε. (2.16)

Similarly, we can show that

ε

s
≤ lim sup

k→∞
d(xm(k)+1, xn(k)) ≤ s2ε. (2.17)

Finally, we obtain that

d(xm(k)+1, xn(k)+1) ≤ s[d(xm(k)+1, xm(k)) + d(xm(k), xn(k)+1)]
≤ sd(xm(k)+1, xm(k)) + s2[d(xm(k), xn(k)) + d(xn(k), xn(k)+1)].

(2.18)
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Taking limit supremum as k → ∞ in (2.18), we have

lim sup
k→∞

d(xm(k)+1, xn(k)+1) ≤ s3ε. (2.19)

Using (B3) again, we have

d(xm(k), xn(k)) ≤ s[d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k))]
≤ sd(xm(k), xm(k)+1) + s2[d(xm(k)+1, xn(k)+1) + d(xn(k)+1, xn(k))].

(2.20)

Taking limit supremum as k → ∞ and using (2.7) and (2.11), we have,
ε

s2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1). (2.21)

From (2.19) and (2.21), we get,
ε

s2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1) ≤ s3ε. (2.22)

By using transitivity property of α, we get

α(xm(k), xn(k)) ≥ 1.

Since f ∈ �s(X, α, ψ, ϕ), we have

ψ(s3d(xm(k)+1, xn(k)+1)) = ψ(s3d( f xm(k), f xn(k))) ≤ ψ(Ms(xm(k), xn(k)))

−ϕ(Ms(xm(k), xn(k))) + Lψ(N (xm(k), xn(k))), (2.23)

where

Ms(xm(k), xn(k))

= max

{
d(xm(k), xn(k)), d(xm(k), f xm(k)), d(xn(k), f xn(k)),

×d(xm(k), f xn(k)) + d(xn(k), f xm(k))

2s

}

= max

{
d(xm(k), xn(k)), d(xm(k), xm(k)+1), d(xn(k), xn(k)+1),

×d(xm(k), xn(k)+1) + d(xn(k), xm(k)+1)

2s

}
(2.24)

and

N (xm(k), xn(k)) = min{d(xm(k), f xm(k)), d(xn(k), f xm(k))}
= min{d(xm(k), xm(k)+1), d(xn(k), xm(k)+1)}. (2.25)

Taking limit supremum as k → ∞ in Eqs. (2.24) and (2.25) and using (2.7), (2.11), (2.16)
and (2.17), we have

ε = max

{
ε,

ε
s + ε

s

2s

}
≤ lim sup

k→∞
Ms(xm(k), xn(k)) ≤ max

{
sε,

s2ε + s2ε

2s

}
= sε

and

lim sup
k→∞

N (xm(k), xn(k)) = 0.
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Similarly, we can show that

ε = max

{
ε,

ε
s + ε

s

2s

}
≤ lim inf

k→∞ Ms(xm(k), xn(k)) ≤ max

{
sε,

s2ε + s2ε

2s

}
= sε.

Taking limit as k → ∞ in (2.23), we have

ψ(sε) = ψ
(
s3

( ε

s2

))

≤ ψ

(
s3lim sup

k→∞
d(xm(k)+1, xn(k)+1)

)

≤ ψ

(
lim sup
k→∞

Ms(xm(k), xn(k))

)
− ϕ

(
lim inf
k→∞ Ms(xm(k), xn(k))

)

+Lψ

(
lim sup
k→∞

N (xm(k), xn(k))

)

≤ ψ(sε) − ϕ(ε) + Lψ(0). (2.26)

This implies that ϕ(ε) = 0 and hence ε = 0, which is a contradiction. Therefore, {xn} is
a b-Cauchy sequence. By the b-completeness of b-metric space X , there exists x ∈ X such
that

lim
n→∞d(xn, x) = 0.

By b-continuity of f , we get

lim
n→∞d( f xn, f x) = 0.

From the triangle inequality, we have

d(x, f x) ≤ s[d(x, f xn) + d( f xn, f x)] (2.27)

for all n ∈ N ∪ {0}. Taking limit as n → ∞ in above inequality, we obtain that

d(x, f x) = 0

and then f x = x . This shows that Fix( f ) �= ∅. ��
Example 2.3 Let X = R and d : X × X → [0,∞) be defined by

d(x, y) = |x − y|2

for all x, y ∈ X . Then (X, d) is a b-complete b-metric space with coefficient s = 2. Define
mappings f : X → X and α : X × X → [0,∞) by

f x =
{
sinh−1 x

6
, x ∈ [0, 8];

ln(2x − 13), x ∈ (8,∞)

and

α(x, y) =
{
x + cosh(2x + y), x, y ∈ [0, 8];
tanh(x − y), otherwise .

Also, define two altering distance functions ψ, ϕ : [0,∞) → [0,∞) by ψ(t) = r t and
ϕ(t) = (r − 1)t for all t ∈ [0,∞), where r ∈ (1, 4).
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Next, we show that f ∈ �s(X, α, ψ, ϕ). Assume thatα(x, y) ≥ 1 and hence x, y ∈ [0, 8].
By using the mean value theorem simultaneously for the inverse hyperbolic sine function we
get,

ψ(23d( f x, f y)) = 8r | f x − f y|2

= 8r

∣∣∣∣ sinh−1 x

6
− sinh−1 y

6

∣∣∣∣
2

≤ 8r

∣∣∣∣ x6 − y

6

∣∣∣∣
2

≤ |x − y|2
≤ Ms(x, y)

≤ ψ(Ms(x, y)) − ϕ(Ms(x, y)) + Lψ(N (x, y))

for each L ≥ 0. This implies that (2.1) holds and thus f ∈ �s(X, α, ψ, ϕ).
It is easy to see that f ∈ WA(X, α). Indeed, if x ∈ X such that α(x, f x) ≥ 1, then

x, f x ∈ [0, 8]. This implies that f f x ∈ [0, 8] and hence α( f x, f f x) ≥ 1. Also, we can see
that f is continuous and there is x0 = 1 such that

α(x0, f x0) = α(1, f 1) = α(1, sin−1 1/6) = 1 + cosh(2 + sin−1 1/6) ≥ 1.

Therefore, all the conditions of Theorem 2.2 are satisfied. Then we can conclude that
Fix( f ) �= ∅. In this example, it is easy to see that 0 ∈ Fix( f ).

Theorem 2.4 Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1, ψ, ϕ :
[0,∞) → [0,∞) be altering distance functions and α : X × X → [0,∞) and f : X → X
be two given mappings. Suppose that the following conditions hold:

(AS1) f ∈ �s(X, α, ψ, ϕ) ∩ WAs(X, α);
(AS2) there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
(AS3) α has transitive property;
(̃AS4) X is α-regular, that is, if {xn} is sequence in X such that α(xn, xn+1) ≥ 1 for all
n ∈ N and xn → x ∈ X as n → ∞, then α(xn, x) ≥ 1 for all n ∈ N.

Then Fix( f ) �= ∅.
Proof Following the proof of Theorem 2.2, we know that {xn} is a b-Cauchy sequence in the
b-complete b-metric space (X, d). Then, there exists x ∈ X such that

lim
n→∞d(xn, x) = 0, (2.28)

that is, xn → x as n → ∞. From α-regularity of X , we get

α(xn, x) ≥ 1

for all n ∈ N. Since f ∈ �s(X, α, ψ, ϕ), we have

ψ(s3d( f xn, f x)) ≤ ψ(Ms(xn, x)) − ϕ(Ms(xn, x)) + Lψ(N (xn, x)), (2.29)

where

Ms(xn, x) = max

{
d(xn, x), d(xn, f xn), d(x, f x),

d(xn, f x) + d(x, f xn)

2s

}
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and

N (xn, x) = min{d(xn, f xn), d(x, f xn)}.
Taking limit as n → ∞ in (2.29) and using Lemma 1.10, we obtain that

ψ(d(x, f x)) ≤ ψ(s2d(x, f x))

= ψ

(
s3

1

s
d(x, f x)

)

≤ ψ

(
lim sup
n→∞

s3d(xn+1, f x)

)

= ψ

(
lim sup
n→∞

s3d( f xn, f x)

)

≤ ψ

(
lim sup
n→∞

Ms(xn, x)

)
− ϕ

(
lim inf
n→∞ Ms(xn, x)

)

+Lψ

(
lim sup
n→∞

N (xn, x)

)

≤ ψ(d(x, f x)) − ϕ(d(x, f x)) + Lψ(0).

This implies that ϕ(d(x, f x)) = 0, equivalently, d(x, f x) = 0 and so x = f x . Therefore,
Fix( f ) �= ∅. This completes the proof. ��

From Remark 1.15, we get the following results for class A(X, α).

Corollary 2.5 Let (X, d) be a complete b-metric space with coefficient s ≥ 1, ψ, ϕ :
[0,∞) → [0,∞) be altering distance functions and α : X × X → [0,∞) and f : X → X
be two given mappings. Suppose that the following conditions hold:

(̃AS1) f ∈ �s(X, α, ψ, ϕ) ∩ A(X, α);
(AS2) there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
(AS3) α has transitive property;
(AS4) f is b-continuous.

Then Fix( f ) �= ∅.
Corollary 2.6 Let (X, d) be a complete b-metric space with coefficient s ≥ 1, ψ, ϕ :
[0,∞) → [0,∞) be altering distance functions and α : X × X → [0,∞) and f : X → X
be two given mappings. Suppose that the following conditions hold:

(̃AS1) f ∈ �s(X, α, ψ, ϕ) ∩ A(X, α);
(AS2) there exists x0 ∈ X such that α(x0, f x0) ≥ 1;
(AS3) α has transitive property;
(̃AS4) X is α-regular.

Then Fix( f ) �= ∅.
Theorems 2.2, 2.4, Corollaries 2.5 and 2.6 unify, extend and improve several fixed point

results in b-metric spaces. Also, since a b-metric is a metric when s = 1, so our results can
be viewed as a generalization and extension of the following results:

• The classicalBanach contractionprinciple [3],Kannan’sfixedpoint theorem [14],Chater-
jia’s fixed point theorem [6] in the framework of metric space;
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• Alber et al.’s fixed point theorem [2] in the setup of Hilbert spaces;
• Rhoades’s fixed point theorem [22];
• Dutta and Choudhury’s fixed point theorem [12].

Note that, it has been pointed out in some studies that the following fixed point results can
be concluded from the fixed point results related with α-admissible mappings:

• fixed point results in b-metric spaces endowed with partially ordered;
• fixed point results in b-metric spaces endowed with an arbitrary binary relation;
• fixed point results in b-metric spaces endowed with graph;
• fixed point results for cyclic mappings.

Next,we show that thefixedpoint results for nonlinearmappings satisfying someLebesgue
integral conditions can be obtained by our results.

Let 
 denote the set of all functions θ : [0,∞) → [0,∞) satisfying the following
conditions:

(θ1) θ is a Lebesgue integrable function on each compact subset of [0,∞);
(θ2) for each ε > 0, we have

∫ ε

0 θ(s)ds > 0.

Remark 2.7 It is an easy matter to check that the mapping ψ : [0,∞) → [0,∞) defined by

ψ(t) =
t∫

0

θ(s)ds

is an altering distance function.

From above remark, fixed point results for nonlinear mappings satisfying some Lebesgue
integral conditions can be obtained by our main results.

3 Applications to the existence of a solution for a nonlinear integral
equation

In this section,we prove the existence theorem for a solution of the following integral equation
by using our main result in Sect. 2:

x(c) = �(φ(c), c) + K (c, c, φ(c)) +
b∫

a

K (c, r, x(r))dr, (3.1)

where a, b ∈ R with a < b, x ∈ C[a, b] (the set of all continuous real functions defined on
[a, b]), φ : [a, b] → R, � : R × [a, b] → R and K : [a, b] × [a, b] × R → R are given
mappings.

Theorem 3.1 Consider the integral equation (3.1). Suppose that the following conditions
hold:

(♠1) K : [a, b]×[a, b]×R → R is continuous and non-decreasing in the third ordered;
(♠2) there exists p > 1 satisfies the following condition:
for each r, c ∈ [a, b] and x, y ∈ X with x(w) ≤ y(w) for all w ∈ [a, b], we have

|K (c, r, x(r)) − K (c, r, y(r))| ≤ ξ(c, r)(
(|x(r) − y(r)|p)),
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where ξ : [a, b] × [a, b] → [0,∞) is a continuous function satisfying

sup
c∈[a,b]

⎛
⎝

b∫

a

ξ(c, r)pdr

⎞
⎠ <

1

23p2−3p(b − a)p−1

and 
 : [0,∞) → [0,∞) is continuous non-decreasing and satisfying the following
condition:

(
1) 
(t) = 0 if and only if t = 0;
(
2) 
(t) < t and d

dt (
(t)) < 1 for all t > 0.

(♠3) there exists x0 ∈ X such that x0(c) ≤ �(φ(c), c) + K (c, c, φ(c)) +∫ b
a K (c, r, x0(r))dr for all c ∈ [a, b].

Then the integral equation (3.1) has a solution.

Proof Let X = C[a, b] and define a mapping f : X → X by

( f x)(c) = �(φ(c), c) + K (c, c, φ(c)) +
b∫

a

K (c, r, x(r))dr

for all x ∈ X and c ∈ [a, b]. Define a mapping d : X × X → R+ by

d(x, y) = sup
c∈[a,b]

|x(c) − y(c)|p

for all x, y ∈ X . Clearly, (X, d) is ab-completeb-metric spacewith coefficient s = 2p−1 > 1.
Next, we define a mapping α : X × X → [0,∞) by

α(x, y) =
{
1, x(c) ≤ y(c) for all c ∈ [a, b];
λ, otherwise,

where λ ∈ (0, 1). It is easy to see that α has a transitive property. It follows from K is
non-decreasing in the third ordered that f ∈ A(X, α). From (♠3), we get α(x0, f x0) ≥ 1.
In [18], we get condition (̃AS4) in Theorem 2.4 holds.

Now define functions ψ, ϕ : [0,∞) → [0,∞) by ψ(t) = t p and ϕ(t) = t p − (
(t))p

for all t ∈ [0,∞). It is easy to see that ψ is altering distance function. By (
1) and (
2), we
can prove that ϕ is also altering distance.

Next, we show that f ∈ �s(X, α, ψ, ϕ). Choosing q ∈ R such that 1
p + 1

q = 1. Let
x, y ∈ X be such that α(x, y) ≥ 1, that is, x(c) ≤ y(c) for all c ∈ [a, b]. From (♠1), (♠2)

and and Hölder inequality, for each c ∈ [a, b] we get
(23p−3|( f x)(c) − ( f y)(c)|)p

≤ 23p
2−3p

⎛
⎝

b∫

a

|K (c, r, x(r)) − K (c, r, y(r))|dr
⎞
⎠

p

≤ 23p
2−3p

⎡
⎢⎢⎣

⎛
⎝

b∫

a

1qdr

⎞
⎠

1
q

⎛
⎝

b∫

a

|K (c, r, x(r)) − K (c, r, y(r))|pdr
⎞
⎠

1
p

⎤
⎥⎥⎦

p
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≤ 23p
2−3p(b − a)

p
q

⎛
⎝

b∫

a

ξ(c, r)p(
(|x(r) − y(r)|p))pdr
⎞
⎠

≤ 23p
2−3p(b − a)

p
q

⎛
⎝

b∫

a

ξ(c, r)p(
(d(x, y)))pdr

⎞
⎠

≤ 23p
2−3p(b − a)

p
q

⎛
⎝

b∫

a

ξ(c, r)p(
(Ms(x, y)))
pdr

⎞
⎠

= 23p
2−3p(b − a)p−1

⎛
⎝

b∫

a

ξ(c, r)pdr

⎞
⎠ (
(Ms(x, y)))

p

< (
(Ms(x, y)))
p

≤ Ms(x, y)
p − [Ms(x, y)

p − (
(Ms(x, y)))
p] + LN (x, y)p.

for each L ≥ 0. This implies that

ψ(s3d( f x, f y)) = (s3d( f x, f y))p

=
(
23p−3 sup

c∈[a,b]
|( f x)(c) − ( f y)(c)|

)p

≤ Ms(x, y)
p − [Ms(x, y)

p − (
(Ms(x, y)))
p] + LN (x, y)p

= ψ(Ms(x, y)) − ϕ(Ms(x, y)) + Lψ(N (x, y))

for all x, y ∈ X . This claims that f ∈ �s(X, α, ψ, ϕ).
Therefore, by using Theorem 2.4, we can conclude that Fix( f ) �= ∅, that is, there exists

x ∈ X such that x is a fixed point of f . This implies that x is a solution for (3.1) because
the existence of a solution of (3.1) is equivalent to the existence of a fixed point of f . This
completes the proof. ��

Under some setting function 
, we get the following result:

Corollary 3.2 Consider the integral equation (3.1). Suppose that the following conditions
hold:

(♠1) K : [a, b]× [a, b]×R → R is continuous and nondecreasing at the third ordered;
(♠′

2) there exists p > 1 satisfies the following condition:
for each r, c ∈ [a, b] and x, y ∈ X with x(w) ≤ y(w) for all w ∈ [a, b], we have

|K (c, r, x(r)) − K (c, r, y(r))| ≤ ξ(c, r)(ln (1 + |x(r) − y(r)|p)),
where a > 1 and ξ : [a, b] × [a, b] → [0,∞) is a continuous function satisfying

sup
c∈[a,b]

⎛
⎝

b∫

a

ξ(c, r)pdr

⎞
⎠ <

1

23p2−3p(b − a)p−1
.

(♠3) there exists x0 ∈ X such that x0(c) ≤ �(φ(c), c) + K (c, c, φ(c)) +∫ b
a K (c, r, x0(r))dr for each c ∈ [a, b].

Then the integral equation (3.1) has a solution.

Proof Follows from Theorem 3.1 by taking 
(t) = ln (1 + t), we get this result. ��
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