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Abstract Some exponential probability inequalities for widely negative orthant dependent
(WNOD, in short) random variables are established, which can be treated as very impor-
tant roles to prove the strong law of large numbers among others in probability theory and
mathematical statistics. By using the exponential probability inequalities, we study the com-
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1 Introduction

It is well known that the exponential probability inequality plays an important role to prove
strong law of large numbers, strong convergence rate, complete convergence, consistency,
asymptotic normality, and so on. There are much literature studying exponential probability
inequalities for independent sequences and some dependent sequences, such as negatively
associated (NA, in short) sequence, positively associated (PA, in short) sequence, negatively
orthant dependent (NOD, in short) sequence, extended negatively dependent (END, in short)
sequence, and so on. There are very little literatures studying exponential probability inequal-
ities for widely negative orthant dependent (WNOD, short) sequence, which includes NA
sequence, NOD sequence, END sequence and some positive dependent sequences as special
cases. The main purpose of the paper is to provide some exponential probability inequalities
for WNOD sequence and give applications in complete convergence and complete moment
convergence.

The concept of widely negative dependence structure was introduced by Wang et al. [23]
as follows.

Definition 1.1 For the randomvariables {Xn, n ≥ 1}, if there exists a finite positive sequence
{gU (n), n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)

n∏

i=1

P(Xi > xi ), (1.1)

then we say that the random variables {Xn, n ≥ 1} are widely negative upper orthant depen-
dent (WNUOD, in short); if there exists a finite positive sequence {gL(n), n ≥ 1} satisfying
for each n ≥ 1 and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)

n∏

i=1

P(Xi ≤ xi ), (1.2)

then we say that the {Xn, n ≥ 1} are widely negative lower orthant dependent (WNLOD,
in short); if they are both WNUOD and WNLOD, then we say that the {Xn, n ≥ 1} are
widely negative orthant dependent (WNOD, in short), and gU (n), gL(n), n ≥ 1, are called
dominating coefficients.

An array {Xni , i ≥ 1, n ≥ 1} of random variables is called rowwise WNOD random
variables if for every n ≥ 1, {Xni , i ≥ 1} is a sequence of WNOD random variables.

For examples of WNOD random variables with various dominating coefficients, we refer
the reader toWang et al. [23,33]. These examples show thatWNOD randomvariables contain
some common negatively dependent random variables, some positively dependent random
variables and some others.

Assume that gU (n) ≥ 1, gL(n) ≥ 1. It is easily seen that if both (1.1) and (1.2) hold for
gL(n) = gU (n) = M for any n ≥ 1,whereM is a positive constant, then the randomvariables
{Xn, n ≥ 1} are called extended negatively dependent (END, in short). This is the definition
of END sequences. For the details about the concept and the probability limit theory of END
sequence, one can refer to Liu [9], Chen et al. [3], Shen [17], Wang and Chen [34], Wang and
Wang [24], Wang et al. [28,29,32], Qiu et al. [13], and so forth. If both (1.1) and (1.2) hold
for gL(n) = gU (n) = 1 for any n ≥ 1, then the random variables {Xn, n ≥ 1} are called
negatively orthant dependent (NOD, in short). For more details about NOD sequence, one
can refer to Fakoor and Azarnoosh [6], Asadian et al. [1], Wang et al. [26,27], Wu [37,38],
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Wu and Jiang [39], Sung [21], Nili Sani et al. [11], Li et al. [8], Shen [16,18,20], and so
on. It is well known that NA random variables are NOD random variables. Hu [7] pointed
out that negatively superadditive dependent (NSD, in short) random variables are NOD.
Hence, the class of WNOD random variables includes independent sequence, NA sequence,
NSD sequence, NOD sequence and END sequence as special cases. Studying the probability
inequalities, moment inequalities and convergence theorem of WNOD random variables are
of great interest.

There are only some literatures studying the probability limiting behavior of WNOD
random variables, such as Wang et al. [23], Wang and Cheng [34], Wang et al. [35], Liu et
al. [10], Chen et al. [4], Shen [19], Qiu and Chen [12], Qiu and Hu [14], Wang et al. [31],
Yang et al. [43], and so on. In these literatures, Wang et al. [31] made great contribution to
the probability limit theory and statistical large sample theory for WNOD random variables;
they established some general results on complete convergence for weighted sums of arrays
of rowwise WNOD random variables and presented some sufficient conditions to prove the
complete consistency for the estimator of nonparametric regression model based on WNOD
errors. In this work, we will provide some exponential probability inequalities for WNOD
random variables. As applications, we will study the complete convergence and complete
moment convergence for WNOD random variables by using the exponential probability
inequalities that we established.

Throughout the paper, let {Xn, n ≥ 1} be a sequence of WNOD random variables with
dominating coefficients gU (n), gL(n), n ≥ 1. Let {Xni , i ≥ 1, n ≥ 1} be an array of
rowwise WOD random variables with dominating coefficients gU (n), gL(n), n ≥ 1 in each
row. Denote g(n) = max{gU (n), gL(n)}, x ∨ y = max{x, y}, Sn = ∑n

i=1 Xi and Mt,n =∑n
i=1 E |Xi |t for some t > 0 and each n ≥ 1. Let C denote a positive constant, which can

be different in various places.
The organization of the paper is as follows: Some useful lemmas are presented in Sect. 2.

The exponential probability inequalities for WNOD random variables are established in
Sect. 3. The complete convergence and complete moment convergence for arrays of rowwise
WNOD random variables are obtained in Sects. 4 and 5, respectively.

2 Preliminaries

In this section, we will present some important lemmas, which will be used to prove the main
results of this work. The first one is a basic property for WNOD random variables, which
can be found in Wang et al. [23].

Lemma 2.1 (i) Let {Xn, n ≥ 1} be WNLOD (WNUOD) with dominating coefficients
gL(n), n ≥ 1 (gU (n), n ≥ 1). If { fn(·), n ≥ 1} are nondecreasing, then { fn(Xn), n ≥ 1}
are still WNLOD (WNUOD) with dominating coefficients gL(n), n ≥ 1 (gU (n), n ≥ 1);
if { fn(·), n ≥ 1} are nonincreasing, then { fn(Xn), n ≥ 1} are WNUOD (WNLOD) with
dominating coefficients gL(n), n ≥ 1 (gU (n), n ≥ 1).

(ii) If {Xn, n ≥ 1} are nonnegative and WNUOD with dominating coefficients gU (n), n ≥ 1,
then for each n ≥ 1,

E
n∏

i=1

Xi ≤ gU (n)

n∏

i=1

EXi . (2.1)

In particular, if {Xn, n ≥ 1} are WNUOD with dominating coefficients gU (n), n ≥ 1,
then for each n ≥ 1 and any s > 0,
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E exp

{
s

n∑

i=1

Xi

}
≤ gU (n)

n∏

i=1

E exp{sXi }. (2.2)

By Lemma 2.1, we can get the following corollary immediately, which has been obtained
by Shen [19].

Corollary 2.1 (i) Let {Xn, n ≥ 1} be WNOD. If { fn(·), n ≥ 1} are nondecreasing (or
nonincreasing), then { fn(Xn), n ≥ 1} are still WNOD.

(ii) If {Xn, n ≥ 1} are WNOD, then for each n ≥ 1 and any s ∈ R,

E exp

{
s

n∑

i=1

Xi

}
≤ g(n)

n∏

i=1

E exp{sXi }. (2.3)

The following one is a very important property for stochastic domination. For the details
of the proof, one can refer to Wu [36], or Wang et al. [30].

Lemma 2.2 Assume that the random variable Y is stochastically dominated by an nonneg-
ative random variable X. That is to say, there exists a positive constant C such that

P(|Y | > x) ≤ CP(X > x)

for all x ≥ 0. Then the following two statements

E |Y |α I (|Y | ≤ b) ≤ C
[
EXα I (X ≤ b) + bαP (X > b)

]
(2.4)

and
E |Y |α I (|Y | > b) ≤ CEXα I (X > b) (2.5)

hold for all α > 0 and b > 0.

Lemma 2.3 (cf. Shao [15]) For any x ≥ 0,

ln(1 + x) ≥ x

1 + x
+ x2

2(1 + x)2

[
1 + 2

3
ln(1 + x)

]
.

3 Exponential probability inequalities for WNOD random variables

In this section, we establish the exponential probability inequalities for WNOD random vari-
ables, which can be applied to establish the probability limit theorem for WNOD random
variables, such as weak convergence, Lr convergence, strong convergence, complete con-
vergence, complete moment convergence, consistency, asymptotic normality, and so on. The
proofs of the exponential probability inequalities for WNOD random variables are mainly
inspired by Fakoor and Azarnoosh [6] and Asadian et al. [1]. Our main results on exponential
probability inequalities are as follows.

Theorem 3.1 Let 0 < t ≤ 2 and {Xn, n ≥ 1} be a sequence of WNOD random variables
with E |Xn |t < ∞ for each n ≥ 1. Assume further that E Xn = 0 for each n ≥ 1 when
1 < t ≤ 2. Then for all x > 0 and y > 0,

P(|Sn | ≥ x) ≤ P

(
max
1≤i≤n

|Xi | ≥ y

)
+ 2g(n) exp

{
x

y
− x

y
ln

(
1 + xyt−1

Mt,n

)}
. (3.1)
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If xyt−1 > Mt,n, then

P(|Sn| ≥ x) ≤ P

(
max
1≤i≤n

|Xi | ≥ y

)
+ 2g(n) exp

{
x

y
− Mt,n

yt
− x

y
ln

(
xyt−1

Mt,n

)}
. (3.2)

Proof For y > 0, denote Yi = min(Xi , y), i = 1, 2, . . . , n and S′
n = ∑n

i=1 Yi , n ≥ 1. It is
easily seen that for any h > 0,

P(Sn ≥ x) ≤ P

(
max
1≤i≤n

Xi ≥ y

)
+ e−hx EehS

′
n . (3.3)

It follows by (3.3) and Corollary 2.1 that

P(Sn ≥ x) ≤ P

(
max
1≤i≤n

Xi ≥ y

)
+ g(n)e−hx

n∏

i=1

EehYi . (3.4)

For 0 < t ≤ 1, the function (ehu − 1)/ut is increasing on u > 0. Thus,

EehYi ≤
∫ y

0
(ehu − 1)dFi (u) +

∫ ∞

y
(ehy − 1)dFi (u) + 1

≤ ehy − 1

yt

∫ y

0
utdFi (u) + ehy − 1

yt

∫ ∞

y
utdFi (u) + 1

≤ 1 + ehy − 1

yt
E |Xi |t ≤ exp

{
ehy − 1

yt
E |Xi |t

}
.

Combining the inequality above and (3.4), we can get that

P(Sn ≥ x) ≤ P

(
max
1≤i≤n

Xi ≥ y

)
+ g(n) exp

{
ehy − 1

yt
Mt,n − hx

}
. (3.5)

Replacing Xi by −Xi in (3.5), we have

P(−Sn ≥ x) ≤ P

(
max
1≤i≤n

(−Xi ) ≥ y

)
+ g(n) exp

{
ehy − 1

yt
Mt,n − hx

}
. (3.6)

It follows by (3.5) and (3.6) that

P(|Sn | ≥ x) ≤ P

(
max
1≤i≤n

|Xi | ≥ y

)
+ 2g(n) exp

{
ehy − 1

yt
Mt,n − hx

}
. (3.7)

Taking h = 1
y ln

(
1 + xyt−1

Mt,n

)
in the right-hand side of (3.7), we can get (3.1) immediately.

For 1 < t ≤ 2, we can still get (3.1) by the similar process of Theorem 3 in Fakoor and
Azarnoosh [6] and Theorem 2.2 in Asadian et al. [1]. The details are omitted.

If xyt−1 > Mt,n , then the right-hand side of (3.7) attains a minimum value when h =
1
y ln

(
xyt−1

Mt,n

)
. Substitute this value of h to the right-hand side of (3.7), we can get (3.2)

immediately. This completes the proof of the theorem. �	

For t = 2, we have the following more precise exponential probability inequality than
(3.1).
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Theorem 3.2 Let {Xn, n ≥ 1} be a sequence of WNOD random variables with EXn = 0
and EX2

n < ∞ for each n ≥ 1. Then for any h, x, y > 0,

P(|Sn | ≥ x) ≤ P

(
max
1≤i≤n

|Xi | ≥ y

)
+ 2g(n) exp

{
ehy − 1 − hy

y2
M2,n − hx

}
. (3.8)

If we take h = 1
y ln

(
1 + xy

M2,n

)
, then

P(|Sn | ≥ x) ≤ P

(
max
1≤i≤n

|Xi | ≥ y

)
+ 2g(n) exp

{
x

y
− xy + M2,n

y2
ln

(
1 + xy

M2,n

)}

(3.9)
and

P(|Sn | ≥ x)≤ P

(
max
1≤i≤n |Xi | ≥ y

)
+2g(n) exp

{
− x2

2(xy + M2,n)

[
1 + 2

3
ln

(
1+ xy

M2,n

)]}
.

(3.10)

Proof We use the same notations as those in Theorem 3.1. Similar to the proofs of Theo-
rem 3.1 in the paper and Lemma 2.4 in Shen [20], we have

P(Sn ≥ x) ≤ P

(
max
1≤i≤n

Xi ≥ y

)
+ g(n) exp

{
ehy − 1 − hy

y2
M2,n − hx

}
. (3.11)

Replacing Xi by −Xi in the inequality above, we have

P(−Sn ≥ x) ≤ P

(
max
1≤i≤n

(−Xi ) ≥ y

)
+ g(n) exp

{
ehy − 1 − hy

y2
M2,n − hx

}
. (3.12)

Therefore, the desired result (3.8) follows from (3.11) and (3.12) immediately.

Equation (3.9) can be easily obtained by taking h = 1
y ln

(
1 + xy

M2,n

)
in (3.8).

By Lemma 2.3, we have that

x

y
− xy + M2,n

y2
ln

(
1 + xy

M2,n

)
≤ − x2

2(xy + M2,n)

[
1 + 2

3
ln

(
1 + xy

M2,n

)]
. (3.13)

Hence, the desired result (3.10) follows from (3.9) and (3.13) immediately. This completes
the proof of the theorem. �	

Remark 3.1 Under the conditions of Theorem 3.1, Wang et al. [31] obtained the following
inequality:

P(|Sn| ≥ x) ≤
n∑

i=1

P (|Xi | ≥ y) + 2g(n) exp

{
x

y
− x

y
ln

(
1 + xyt−1

Mt,n

)}
. (3.14)

Noting that

P

(
max
1≤i≤n

|Xi | ≥ y

)
≤

n∑

i=1

P (|Xi | ≥ y) ,

we can see that (3.1) is more precise than (3.14). Additionally, we also get (3.2), which is
not obtained in Wang et al. [31].
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4 Complete convergence for arrays of rowwise WNOD random variables

In the previous section, we established some exponential probability inequalities for WNOD
random variables. In this section, we will study the complete convergence for weighted
sums of arrays of rowwise WNOD random variables by using the exponential probability
inequalities that we established. The main ideas are inspired by Chen et al. [2] and Wu et
al. [40].

Our main results on complete convergence for WNOD random variables are as follows.
The first one (Theorem 4.1) is a very general result on complete convergence for weighted
sums ofWNOD randomvariables, which can be applied to establish other results on complete
convergence and strong convergence. The proof is similar to Shen [20].

Theorem 4.1 Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise WNOD random variables
with finite second moments and {ani , i ≥ 1, n ≥ 1} be an array of constants. Let {cn, n ≥ 1}
be a sequence of positive constants. Suppose that the following two conditions hold:

(i) for every ε > 0,
∞∑

n=1

cng(n)

n∑

i=1

P (|ani Xni | > ε) < ∞;

(ii) for some δ > 0 and J ≥ 1,

∞∑

n=1

cng(n)

[
n∑

i=1

Ea2ni X
2
ni I (|ani Xni | ≤ δ)

]J

< ∞.

Then
∞∑

n=1

cn P

(∣∣∣∣∣

n∑

i=1

[ani Xni − Eani Xni I (|ani Xni | ≤ δ)]

∣∣∣∣∣ > ε

)
< ∞ for any ε > 0.

(4.1)

Proof Without loss of generality, we assume that ani ≥ 0 for all i ≥ 1 and n ≥ 1 (Otherwise,
we use a+

ni and a
−
ni instead of ani , respectively and note that ani = a+

ni − a−
ni ). Denote

Yni = −δ I (ani Xni < −δ) + ani Xni I (|ani Xni | ≤ δ) + δ I (ani Xni > δ) , i ≥ 1, n ≥ 1.

It is easy to check that {Yni − EYni , i ≥ 1, n ≥ 1} is an array of rowwise WNOD random
variables by Corollary 2.1 (i).

For fixed n ≥ 1, denote

Tn =
n∑

i=1

Yni , Sn =
n∑

i=1

ani Xni , S
′
n =

n∑

i=1

ani Xni I (|ani Xni | ≤ δ)

Zn =
n∑

i=1

[δ I (ani Xni < −δ) − δ I (ani Xni > δ)] = S
′
n − Tn .

Thus,

P
(
|Sn − ES

′
n | > ε

)
≤ P

(
|S′

n − ES
′
n | > ε

)
+

n∑

i=1

P (|ani Xni | > δ)

≤ C
n∑

i=1

P (|ani Xni | > δ) + P
(
|Tn − ETn | >

ε

2

)
.
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By condition (i) and noting that g(n) ≥ 1, to prove (4.1), it suffices to show that for any
ε > 0,

∞∑

n=1

cn P (|Tn − ETn | > ε) < ∞. (4.2)

Let B2
n = ∑n

i=1 Var(Yni ). For any ε > 0 and a > 0, denote d = min
{
1, aε

6δ2
, a
12δ

}
,

N1 = {
n : B2

n > aε
}
, N2 =

{
n :

n∑

i=1

P
(
|ani Xni | > min

{
δ,

a

3

})
> d

}
,

N3 =
{
n :

n∑

i=1

Var (ani Xni I (|ani Xni | ≤ δ)) >
aε

2

}
, N4 = N −

(
N2

⋃
N3

)
,

where N is the set of positive integers.
It is easily seen that

Var (δ I (ani Xni > δ) − δ I (ani Xni < −δ)) ≤ δ2P (|ani Xni | > δ)

and

Cov (ani Xni I (|ani Xni | ≤ δ) , δ I (ani Xni > δ) − δ I (ani Xni < −δ)) ≤ δ2P (|ani Xni | > δ).

Therefore,

B2
n ≤

n∑

i=1

Var (ani Xni I (|ani Xni | ≤ δ)) + 3δ2
n∑

i=1

P (|ani Xni | > δ),

which implies that N1 ⊂ N2
⋃

N3.
Note that

∑

n∈N2
⋃

N3

cn P (|Tn − ETn | > ε) ≤ 1

d

∞∑

n=1

cn

n∑

i=1

P
(
|ani Xni | > min

{
δ,

a

3

})

+ 2J

(aε)J

∞∑

n=1

cn

[
n∑

i=1

Var (ani Xni I (|ani Xni | ≤ δ))

]J

< ∞.

Therefore, in order to prove (4.2), we need only to show that

∑

n∈N4

cn P (|Tn − ETn | > ε) < ∞. (4.3)

By Theorem 3.2, we can see that

∑

n∈N4

cn P (|Tn − ETn | > ε) ≤
∑

n∈N4

cn P

(
max
1≤i≤n

|Yni − EYni | > a

)

+ 2
∑

n∈N4

cng(n) exp

{
− ε2

2(aε+B2
n )

[
1+ 2

3
ln

(
1 + aε

B2
n

)]}
.
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Firstly, we will show that for any n ∈ N4, max1≤i≤n |EYni | ≤ a
2 . Actually, for any n ∈ N4,

max
1≤i≤n

|EYni | ≤ max
1≤i≤n

E |Yni |

≤ max
1≤i≤n

[
δP (|ani Xni | > δ) + E |ani Xni | I

(
|ani Xni | ≤ a

3

)

+ E |ani Xni | I
(a
3

< |ani Xni | ≤ δ
)]

≤ 2δ
n∑

i=1

P
(
|ani Xni | > min

{
δ,

a

3

})
+ a

3
≤ 2δd + a

3
≤ a

2
,

which implies that
∑

n∈N4

cn P

(
max
1≤i≤n

|Yni − EYni | > a

)
≤

∞∑

n=1

cn P

(
max
1≤i≤n

|Yni | >
a

2

)

≤
∞∑

n=1

cn

n∑

i=1

P
(
|ani Xni | > min

{
δ,

a

2

})

< ∞.

It is easy to check that B2
n ≤ aε and

∑n
i=1 P (|ani Xni | > δ) ≤ d when n ∈ N4. Set a = ε

6J .
We have by conditions (i) and (i i) that

∑

n∈N4

cng(n) exp

{
− ε2

2(aε + B2
n )

[
1 + 2

3
ln

(
1 + aε

B2
n

)]}

≤ C
∑

n∈N4

cng(n)

(
B2
n

B2
n + aε

)J

≤ C
∑

n∈N4

cng(n)
(
B2
n

)J

≤ C
∑

n∈N4

cng(n)

⎧
⎨

⎩

[
n∑

i=1

Var (ani Xni I (|ani Xni | ≤ δ))

]J

+ (
3δ2

)J
[

n∑

i=1

P (|ani Xni | > δ)

]J
⎫
⎬

⎭ < ∞.

This completes the proof of the theorem. �	
By Theorem 4.1, we can get the following corollaries.

Corollary 4.1 Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise WNOD random variables
with finite second moments and {ani , i ≥ 1, n ≥ 1} be an array of constants. Let {cn, n ≥ 1}
be a sequence of positive constants such that conditions (i) and (i i) of Theorem 4.1 hold for
every ε > 0 and some δ > 0, J ≥ 1. Assume further that

n∑

i=1

Eani Xni I (|ani Xni | ≤ δ) → 0 as n → ∞. (4.4)

Then ∞∑

n=1

cn P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > ε

)
< ∞ for any ε > 0. (4.5)

Corollary 4.2 Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise WNOD random variables
with mean zero and finite second moments, and {ani , i ≥ 1, n ≥ 1} be an array of constants.
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Let {cn, n ≥ 1} be a sequence of positive constants such that conditions (i) and (i i) of
Theorem 4.1 hold for every ε > 0 and some δ > 0, J ≥ 1. Assume further that

n∑

i=1

Eani Xni I (|ani Xni | > δ) → 0 as n → ∞. (4.6)

Then (4.5) holds for any ε > 0.

If we take cn ≡ 1 and ani ≡ n−1/p for i ≥ 1 and n ≥ 1 in Corollary 4.2, then we can get
the following corollary by Corollary 4.2.

Corollary 4.3 Let p > 0 and {Xni , i ≥ 1, n ≥ 1} be an array of rowwise WNOD random
variables with mean zero and finite second moments. Suppose that the following conditions
hold:

(i) for every ε > 0
∞∑

n=1

g(n)

n∑

i=1

P
(|Xni | > n1/pε

)
< ∞, (4.7)

(ii) for some δ > 0 and J ≥ 1,

∞∑

n=1

g(n)

[
n−2/p

n∑

i=1

EX2
ni I

(|Xni | ≤ n1/pδ
)
]J

< ∞, (4.8)

(iii)

n−1/p
n∑

i=1

EXni I
(|Xni | > n1/pδ

) → 0 as n → ∞. (4.9)

Then ∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ > n1/pε

)
< ∞ f or any ε > 0, (4.10)

and n−1/p ∑n
i=1 Xni → 0 a.s.

As an application of Corollary 4.3, we can get the following complete convergence result
andMarcinkiewicz–Zygmund type strong lawof large numbers forWNODrandomvariables.

Corollary 4.4 Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise WNOD random variables
satisfying

P(|Xni | > x) ≤ CP(X > x) (4.11)

for all x ≥ 0, i ≥ 1 and n ≥ 1, where X is some nonnegative random variable. Assume that
E Xni = 0 and g(n) = O(nλ) for some λ > 0. If E X (2+λ)p < ∞ for some 1 ≤ p < 2, then
(4.10) holds for any ε > 0 and n−1/p ∑n

i=1 Xni → 0 a.s.

Proof We only need to prove that conditions (i)–(i i i) of Corollary 4.3 hold true.
For any ε > 0,

∞∑

n=1

g(n)

n∑

i=1

P
(|Xni | > n1/pε

) ≤ C
∞∑

n=1

nλ+1P
(|X | > n1/pε

)

= C
∞∑

n=1

nλ+1
∞∑

i=n

P
(
i1/pε < |X | ≤ (i + 1)1/pε

)

≤ CE |X |(2+λ)p < ∞,

which implies (4.7).
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Taking J large enough such that J >
p(1+λ)
2−p , which implies that (1 − 2/p)J + λ < −1.

It follows by E |X |(2+λ)p < ∞ that EX2 < ∞. Note that EX2
ni ≤ CEX2 by Lemma 2.2,

we can get that

∞∑

n=1

g(n)

[
n−2/p

n∑

i=1

EX2
ni I

(|Xni | ≤ n1/pδ
)
]J

≤ C
∞∑

n=1

nλ

[
n−2/p

n∑

i=1

EX2
ni I

(|Xni | ≤ n1/pδ
)
]J

≤ C
(
EX2)J

∞∑

n=1

nλ+(1−2/p)J < ∞,

which implies (4.8).
Noting that E |X |2p < ∞, we have by Lemma 2.2 that

∣∣∣∣∣n
−1/p

n∑

i=1

EXni I
(|Xni | > n1/pδ

)
∣∣∣∣∣ ≤ n−1/p

n∑

i=1

E |Xni | I
(|Xni | > n1/pδ

)

≤ Cn1−1/pE |X | I (|X | > n1/pδ
)

≤ Cn−1E |X |2p I (|X | > n1/pδ
)

→ 0 as n → ∞,

which implies (4.9).
From the statements above and Corollary 4.3, we can get (4.10) immediately. This com-

pletes the proof of the corollary. �	
If we take cn ≡ 1 and ani = a−1

n , in Corollary 4.2, where {an, n ≥ 1} is a sequence of
positive constants, we can get another corollary by using Corollary 4.2 as follows.

Corollary 4.5 Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise mean zero WNOD random
variables with finite second moments and g(n) = O(1), and {an, n ≥ 1} be a sequence of
positive constants. Let {gi (t), i ≥ 1} be a sequence of nonnegative, even functions. Assume
that there exist some β ∈ (1, 2] and γ > 0 such that gi (t) ≥ γ tβ for 0 < t ≤ 1 and there
exists a γ > 0 such that gi (t) ≥ γ t for t > 1. If

∞∑

n=1

n∑

i=1

Egi

(
Xni

an

)
< ∞, (4.12)

then ∞∑

n=1

P

(
1

an

∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ > ε

)
< ∞ for any ε > 0. (4.13)

Proof We will prove that the conditions of Corollary 4.2 hold, where cn ≡ 1 and ani = a−1
n .

Without loss of generality, we assume that 0 < ε < 1. Note that gi (t) ≥ γ tβ for 0 < t ≤ 1
and gi (t) ≥ γ t for t > 1, we have by (4.12) that

∞∑

n=1

n∑

i=1

P

(∣∣∣∣
Xni

an

∣∣∣∣ > ε

)
=

∞∑

n=1

n∑

i=1

E I (|Xni | > an) +
∞∑

n=1

n∑

i=1

E I (εan < |Xni | ≤ an)
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≤
∞∑

n=1

n∑

i=1

E |Xni |
an

I (|Xni | > an) +
∞∑

n=1

n∑

i=1

E |Xni |β
εβaβ

n

I (εan < |Xni | ≤ an)

≤ 1

γ

∞∑

n=1

n∑

i=1

Egi

(
Xni

an

)
+ 1

γ εβ

∞∑

n=1

n∑

i=1

Egi

(
Xni

an

)

< ∞,

which implies that condition (i) in Theorem 4.1 holds.
For 0 < δ < 1 and J ≥ 1, we have by the assumptions on gi (t) and condition (4.12)

that

∞∑

n=1

[
a−2
n

n∑

i=1

EX2
ni I (|Xni | ≤ an)

]J

≤
∞∑

n=1

[
n∑

i=1

E |Xni |β
aβ
n

I (|Xni | ≤ an)

]J

≤ 1

γ J

∞∑

n=1

[
n∑

i=1

Egi

(
Xni

an

)]J

≤ 1

γ J

[ ∞∑

n=1

n∑

i=1

Egi

(
Xni

an

)]J

< ∞ (4.14)

and
n∑

i=1

E |Xni |
an

I (|Xni | > δan) =
n∑

i=1

E |Xni |
an

I (|Xni |>an)+
n∑

i=1

E |Xni |
an

I (δan < |Xni |≤an)

≤ 1

γ

n∑

i=1

Egi

(
Xni

an

)
+ δ1−β

n∑

i=1

E |Xni |β
aβ
n

I (δan < |Xni |≤an)

≤ 1

γ

n∑

i=1

Egi

(
Xni

an

)
+ δ1−β

γ

n∑

i=1

Egi

(
Xni

an

)

→ 0 as n → ∞. (4.15)

By (4.14) and (4.15), we can see that condition (i i) in Theorem 4.1 and (4.4) in Corollary 4.2
are satisfied. Hence, the desired result (4.13) follows by Corollary 4.2 immediately. This
completes the proof of the corollary. �	
Remark 4.1 It is easily seen that the conditions in Corollary 4.2 are weaker than those in
Corollary 4.5. In addition, the results of Corollary 4.5 for NOD random variables have been
obtained by Shen [16]. So our results of Theorem 4.1 and Corollary 4.2 generalize and
improve the corresponding ones of Shen [16].

5 Complete moment convergence for arrays of rowwise WNOD random
variables

In this section,wewill study the completemoment convergence for arrays of rowwiseWNOD
random variables by using the exponential probability inequalities and complete convergence
result that we obtained in Sects. 3 and 4. The main ideas are inspired by Wu et al. [40].
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The concept of complete moment convergence was introduced by Chow [5] as follows:
Let {Xn, n ≥ 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞∑

n=1

anE
{
b−1
n |Xn | − ε

}q
+ < ∞

for all ε > 0, then the above result was called the complete moment convergence. For more
details about complete moment convergence, one can refer to Wu and Zhu [41], Wang and
Hu [25], Yang et al. [42], Sung [22], and so on.

Our main results on complete moment convergence for arrays of rowwiseWNOD random
variables are as follows.

Theorem 5.1 Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise WNOD random variables
with mean zero and finite second moments, and {ani , i ≥ 1, n ≥ 1} be an array of constants.
Let {cn, n ≥ 1} be a sequence of positive constants such that conditions (i) and (i i) of
Theorem 4.1 hold for every ε > 0 and some δ > 0, J > 1. Assume further that

∞∑

n=1

(cn ∨ 1)
n∑

i=1

E |ani Xni |I (|ani Xni | > δ/(4J )) < ∞, (5.1)

∞∑

n=1

cng(n)

n∑

i=1

E |ani Xni |I (|ani Xni | > δ) < ∞. (5.2)

Then ∞∑

n=1

cn E

{∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ − ε

}

+
< ∞ f or any ε > 0. (5.3)

Proof Note that (5.1) implies

∞∑

n=1

cn

n∑

i=1

E |ani Xni |I (|ani Xni | > δ) < ∞, (5.4)

∞∑

n=1

n∑

i=1

E |ani Xni |I (|ani Xni | > δ) < ∞, (5.5)

and thus (4.4) holds true. It follows by Corollary 4.2 that (4.5) holds for any ε > 0. Further-
more, by (5.2) and (5.5), we have

∞∑

n=1

cng(n)

(
n∑

i=1

E |ani Xni |I (|ani Xni | > δ)

)J

< ∞. (5.6)
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Therefore,

∞∑

n=1

cn E

{∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ − ε

}

+
=

∞∑

n=1

cn

∫ ∞

0
P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ − ε > t

)
dt

=
∞∑

n=1

cn

[∫ δ

0
P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > ε + t

)
dt +

∫ ∞

δ

P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > ε + t

)
dt

]

≤ δ

∞∑

n=1

cn P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > ε

)
+

∞∑

n=1

cn

∫ ∞

δ

P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > t

)
dt

≤ C +
∞∑

n=1

cn

∫ ∞

δ

P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > t

)
dt.

In order to prove (5.3), we only need to prove that

H = :
∞∑

n=1

cn

∫ ∞

δ

P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > t

)
dt < ∞. (5.7)

For fixed t > 0, denote for i ≥ 1 and n ≥ 1 that

Yni = −t I (ani Xni < −t) + ani Xni I (|ani Xni | ≤ t) + t I (ani Xni > t),

Zni = ani Xni − Yni = (ani Xni + t) I (ani Xni < −t) + (ani Xni − t) I (ani Xni > t).

Note that this decomposition does depend on t .
It is easily seen that

P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > t

)
= P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > t,
n⋃

i=1

(|ani Xni | > t)

)

+ P

(∣∣∣∣∣

n∑

i=1

ani Xni

∣∣∣∣∣ > t,
n⋂

i=1

(|ani Xni | ≤ t)

)

≤
n∑

i=1

P (|ani Xni | > t) + P

(∣∣∣∣∣

n∑

i=1

Yni

∣∣∣∣∣ > t

)
,

which implies that

H ≤
∞∑

n=1

cn

n∑

i=1

∫ ∞

δ

P (|ani Xni | > t) dt +
∞∑

n=1

cn

∫ ∞

δ

P

(∣∣∣∣∣

n∑

i=1

Yni

∣∣∣∣∣ > t

)
dt

=: H1 + H2.

By (5.4), we can get that

H1 ≤ C
∞∑

n=1

cn

n∑

i=1

E |ani Xni | I (|ani Xni | > δ) < ∞.

To prove (5.7), it suffices to show that H2 < ∞. Firstly, we will show that

max
t≥δ

t−1

∣∣∣∣∣

n∑

i=1

EYni

∣∣∣∣∣ → 0 as n → ∞. (5.8)
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Note that |Zni | ≤ |ani Xni |I (|ani Xni | > t). It follows by EXni = 0 and (5.5) that

max
t≥δ

t−1

∣∣∣∣∣

n∑

i=1

EYni

∣∣∣∣∣ = max
t≥δ

t−1

∣∣∣∣∣

n∑

i=1

EZni

∣∣∣∣∣

≤ δ−1
n∑

i=1

E |ani Xni |I (|ani Xni | > δ) → 0 as n → ∞,

which implies (5.8) and
∣∣∑n

i=1 EYni
∣∣ ≤ t/2 holds for any t ≥ δ and all n large enough.

Hence,

H2 ≤ C
∞∑

n=1

cn

∫ ∞

δ

P

(∣∣∣∣∣

n∑

i=1

(Yni − EYni )

∣∣∣∣∣ > t/2

)
dt. (5.9)

It follows by Corollary 2.1 that {Yni , i ≥ 1, n ≥ 1} is an array of rowwise WNOD random
variables. Denote B2

n = ∑n
i=1 E(Yni − EYni )2. Applying Theorem 3.1 with x = t/2 and

y = t/(2J ), we can get by (5.9) and Theorem 3.1 that

H2 ≤ C
∞∑

n=1

cn

n∑

i=1

∫ ∞

δ

P (|Yni − EYni | > t/(2J )) dt

+C
∞∑

n=1

cng(n)

∫ ∞

δ

(
B2
n

B2
n + t2/(4J )

)J

dt

=: H21 + H22.

Similar to the proof of (5.8), we can see that |EYni | ≤ t/(4J ) holds for any t ≥ δ and all n
large enough. Noting that |Yni | ≤ |ani Xni |, we have by (5.1) that

H21 ≤ C
∞∑

n=1

cn

n∑

i=1

∫ ∞

δ

P (|Yni | > t/(4J )) dt

≤ C
∞∑

n=1

cn

n∑

i=1

∫ ∞

δ

P (|ani Xni | > t/(4J )) dt

≤ C
∞∑

n=1

cn

n∑

i=1

E |ani Xni | I (|ani Xni | > δ/(4J ))

< ∞.

In the following, we will show that H22 < ∞.
By the notation of Yni , we can see that

B2
n ≤

n∑

i=1

EY 2
ni =

n∑

i=1

Ea2ni X
2
ni I (|ani Xni | ≤ t) +

n∑

i=1

t2P (|ani Xni | > t),

which together with Cr -inequality yield that

H22 ≤ C
∞∑

n=1

cng(n)

∫ ∞

δ

(
t−2B2

n

)J
dt

≤ C
∞∑

n=1

cng(n)

∫ ∞

δ

(
t−2

n∑

i=1

Ea2ni X
2
ni I (|ani Xni | ≤ t) +

n∑

i=1

P (|ani Xni | > t)

)J

dt
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≤ C
∞∑

n=1

cng(n)

∫ ∞

δ

(
t−2

n∑

i=1

Ea2ni X
2
ni I (|ani Xni | ≤ δ)

)J

dt

+C
∞∑

n=1

cng(n)

∫ ∞

δ

(
t−2

n∑

i=1

Ea2ni X
2
ni I (δ < |ani Xni | ≤ t)

)J

dt

+C
∞∑

n=1

cng(n)

∫ ∞

δ

(
n∑

i=1

P (|ani Xni | > t)

)J

dt

=: H221 + H222 + H223.

Since J > 1, it follows by condition (i i) of Theorem 4.1 and (5.6) that

H221 ≤ C
∞∑

n=1

cng(n)

(
n∑

i=1

Ea2ni X
2
ni I (|ani Xni | ≤ δ)

)J

< ∞,

and

H222 ≤ C
∞∑

n=1

cng(n)

∫ ∞

δ

(
t−1

n∑

i=1

E |ani Xni |I (δ < |ani Xni | ≤ t)

)J

dt

≤ C
∞∑

n=1

cng(n)

(
n∑

i=1

E |ani Xni |I (|ani Xni | > δ)

)J

< ∞.

For any t ≥ δ, it follows by (5.5) that

n∑

i=1

P (|ani Xni | > t) ≤ 1

δ

n∑

i=1

E |ani Xni | I (|ani Xni | > δ)

→ 0 as n → ∞,

which implies that
∑n

i=1 P (|ani Xni | > t) < 1 holds for any t ≥ δ and all n large enough.
Hence, we have by (5.2) that

H223 ≤ C
∞∑

n=1

cng(n)

∫ ∞

δ

n∑

i=1

P (|ani Xni | > t) dt

≤ C
∞∑

n=1

cng(n)

n∑

i=1

E |ani Xni | I (|ani Xni | > δ)

< ∞.

The desired result (5.3) follows from the statements above immediately. This completes the
proof of the theorem. �	
Acknowledgments The authors are most grateful to the Editor-in-Chief Manuel Lopez Pellicer and anony-
mous referee for careful reading of the manuscript and valuable suggestions which helped in improving an
earlier version of this paper.
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