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Abstract Using the critical point theory, we obtain the existence of a nontrivial homo-
clinic orbit for second order p-Laplacian difference equations containing both advance and
retardation. The proof is based on the Mountain Pass Lemma in combination with periodic
approximations. One of our results generalizes and improves the results in the literature.
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1 Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real numbers respec-
tively. For any a, b ∈ Z, define Z(a) = {a, a + 1, . . .}, Z(a, b) = {a, a + 1, . . . , b} when
a ≤ b. l p denotes the space of all real functions whose pth powers are summable on Z.

In this paper, we consider the following difference equation

�
(
ϕp (�un−1)

)− qnϕp (un) + f (n, un+M , un, un−M ) = 0, n ∈ Z, (1.1)
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containing both advance and retardation, where � is the forward difference operator �un =
un+1 − un , �2un = �(�un), ϕp(s) is the p-Laplacian operator ϕp(s) = |s|p−2s(1 < p <

∞), {qn} is a real sequence, M is a given nonnegative integer, f ∈ C(Z × R3,R), qn and
f (n, v1, v2, v3) are T -periodic in n for a given positive integer T . We mention that (1.1) is a
kind of difference equation containing both advance and retardation. This kind of difference
equation has many applications both in theory and practice [1–4,27].

Equation (1.1) can be considered as a discrete analogue of the following second-order
functional differential equation

(
ϕp(u

′)
)′ + q(t)ϕp (u(t)) + f (t, u(t + M), u(t), u(t − M)) = 0, t ∈ R. (1.2)

Equation (1.2) includes the following equation
(
p(t)ψ(u′)

)′ + f (t, u(t)) = 0, t ∈ R,

which has arose in the study of fluid dynamics, combustion theory, gas diffusion through
porous media, thermal self-ignition of a chemically active mixture of gases in a vessel,
catalysis theory, chemically reacting systems, and adiabatic reactor [9,18]. Equations similar
in structure to (1.2) arise in the study of homoclinic orbits [12,14–16] of functional differential
equations.

In the theory of differential equations, the trajectories which are asymptotic to a constant
state as the time variable |t | → ∞ are called homoclinic orbits (or homoclinic solutions).
Such orbits have been found in various models of continuous dynamical systems and fre-
quently have tremendous effects on the dynamics of such nonlinear systems. So homoclinic
orbits have been extensively studied since the time of Poincaré, see [11–16,24] and the ref-
erences therein. Recently, Ma and Guo [21,22] have found that the trajectories which are
asymptotic to a constant state as the time variable |n| → ∞ also exist in discrete dynamical
systems [3–8,10,19–22]. These trajectories are also called homoclinic orbits (or homoclinic
solutions).

If qn ≡ 0 and M = 1, Chen and Fang [2] have obtained a sufficient condition for the
existence of periodic solutions of the second-order p-Laplacian difference equation (1.1).

In 2011, Chen and Tang [3] established some existence criteria to guarantee the following
fourth-order difference equation

�4un−2 − qnun = f (n, un+1, un, un−1) , n ∈ Z, (1.3)

containing both advance and retardation has infinitely many homoclinic orbits.
In some recent papers [2,5–8,19,21,22], the authors studied the existence of periodic

solutions and homoclinic orbits of some special forms of (1.1) by using the critical point
theory. These papers show that the the critical point theory is an effective approach to study of
periodic solutions and homoclinic orbits for difference equations. Ma and Guo [21] (without
periodicity assumption) and [22] (with periodicity assumption) applied variational methods
to prove the existence of homoclinic orbits for the special form of (1.1) (with p = 2 and
M = 0)

�(�un−1) − qnun + f (n, un) = 0, n ∈ Z. (1.4)

A crucial role that the Ambrosetti-Rabinowitz condition plays is to ensure the boundedness
of Palais-Smale sequences. This is very crucial in applying the critical point theory.

The boundary value problems, periodic solutions and homoclinic orbits of difference
equations has been a very active area of research in the last decade, and for surveys of
recent results, we refer the reader to the monographs and papers by Agarwal et al. [1–
8,10,17,19–22,26,27]. However, to the best of our knowledge, the results on homoclinic
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orbits of p-Laplacian difference equations are scarce in the literature. Furthermore, since
(1.1) contains both advance and retardation, there are very few manuscripts dealing with this
subject. Themain purpose of this paper is to develop a newapproach to above problemwithout
the classical Ambrosetti-Rabinowitz condition. Particularly, one of our results generalizes
and improves the results in the literature. In fact, one can see the following Remarks 1.2 and
1.3 for details. The motivation for the present work stems from the recent papers [2,6,11].

For the basic knowledge of variational methods, the reader is referred to [23,25].
Let

q = min
n∈Z(1,T )

{qn}, q̄ = max
n∈Z(1,T )

{qn}.

Our main results are as follows.

Theorem 1.1 Assume that the following hypotheses are satisfied:

(F1) there exists a functional F(n, v1, v2) ∈ C1(Z × R2,R) with F(n + T, v1, v2) =
F(n, v1, v2) and it satisfies

∂F(n − M, v2, v3)

∂v2
+ ∂F(n, v1, v2)

∂v2
= f (n, v1, v2, v3);

(F2) there exist positive constants � and a <
q
2p

(
κ1
κ2

)p
such that

|F(n, v1, v2)| ≤ a
(|v1|p + |v2|p

)
for all n ∈ Z and

√
v21 + v22 ≤ �;

(F3) there exist constants ρ, c > 1
2p

(
κ2
κ1

)p
(2p + q̄) and b such that

F(n, v1, v2) ≥ c
(|v1|p + |v2|p

)+ b for all n ∈ Z and
√

v21 + v22 ≥ ρ;
(F4)

∂F(n,v1,v2)
∂v1

v1+ ∂F(n,v1,v2)
∂v2

v2− pF(n, v1, v2) > 0, for all (n, v1, v2) ∈ Z×R2\{(0, 0)};
(F5)

∂F(n,v1,v2)
∂v1

v1 + ∂F(n,v1,v2)
∂v2

v2 − pF(n, v1, v2) → +∞ as
√

v21 + v22 → +∞.

Then (1.1) has a nontrivial homoclinic orbit.

Remark 1.1 By (F3), it is easy to see that there exists a constant ζ > 0 such that

(F ′
3) F(n, v1, v2) ≥ c

(|v1|p + |v2|p
)+ b − ζ, ∀(n, v1, v2) ∈ Z × R2.

As a matter of fact, let ζ = max

{ ∣∣F(n, v1, v2) − c
(|v1|p + |v2|p

)− b
∣∣ : n ∈

Z,

√
v21 + v22 ≤ ρ

}
, we can easily get the desired result.

Remark 1.2 Theorem 1.1 extends Theorem 1.1 in [22] which is the special case of our
Theorem 1.1 by letting p = 2 and M = 0.

Remark 1.3 In many studies (see e.g. [2,17,21,22]) of second order difference equations,
the following classical Ambrosetti-Rabinowitz condition is assumed.

(AR) there exists a constant β > 2 such that

0 < βF(n, u) ≤ u f (n, u) for all n ∈ Z and u ∈ R\0.
Note that (F3)− (F5) are much weaker than (AR). Thus our result improves that the existing
ones.
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Theorem 1.2 Assume that (F1) − (F5) and the following hypothesis are satisfied:

(F6) q−n = qn, F(−n, v1, v2) = F(n, v1, v2).

Then (1.1) has a nontrivial even homoclinic orbit.

2 Preliminaries

In order to apply the critical point theory, we shall establish the corresponding variational
framework for (1.1) and give some lemmas which will be of fundamental importance in
proving our results. We start by some basic notations.

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . .) = {un}+∞
n=−∞,

that is

S = {{un}|un ∈ R, n ∈ Z} .

For any u, v ∈ S, a, b ∈ R, au + bv is defined by

au + bv = {aun + bvn}+∞
n=−∞ .

Then S is a vector space.
For any given positive integers m and T , Em is defined as a subspace of S by

Em = {u ∈ S|un+2mT = un, ∀n ∈ Z}.
Clearly, Em is isomorphic to R2mT . Em can be equipped with the inner product

〈u, v〉 =
mT−1∑

j=−mT

u jv j , ∀u, v ∈ Em, (2.1)

by which the norm ‖ · ‖ can be induced by

‖u‖ =
⎛

⎝
mT−1∑

j=−mT

u2j

⎞

⎠

1
2

, ∀u ∈ Em . (2.2)

It is obvious that Em with the inner product (2.1) is a finite dimensional Hilbert space and
linearly homeomorphic to R2mT .

On the other hand, we define the norm ‖ · ‖s on Em as follows:

‖u‖s =
⎛

⎝
mT−1∑

j=−mT

|u j |s
⎞

⎠

1
s

, (2.3)

for all u ∈ Em and s > 1.
Since ‖u‖s and ‖u‖2 are equivalent, there exist constants κ1, κ2 such that κ2 ≥ κ1 > 0,

and
κ1‖u‖2 ≤ ‖u‖s ≤ κ2‖u‖2, ∀u ∈ Em . (2.4)

Clearly, ‖u‖ = ‖u‖2. For all u ∈ Em , define the functional J on Em as follows:

J (u) = 1

p

mT−1∑

n=−mT

|�un−1|p + 1

p

mT−1∑

n=−mT

qn |un |p −
mT−1∑

n=−mT

F(n, un+M , un). (2.5)
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Clearly, J ∈ C1(Em,R) and for any u = {un}n∈Z ∈ Em , by the periodicity of {un}n∈Z, we
can compute the partial derivative as

∂ J

∂un
= −�

(
ϕp (�un−1)

)+qnϕp(un)− f (n, un+M , un, un−M ) , ∀n ∈ Z(−mT,mT −1).

(2.6)
Thus, u is a critical point of J on Em if and only if

�
(
ϕp(�un−1)

)− qnϕp(un) + f (n, un+M , un, un−M ) = 0, ∀n ∈ Z(−mT,mT − 1).

Due to the periodicity of u = {un}n∈Z ∈ Em and f (n, v1, v2, v3) in the first variable n, we
reduce the existence of periodic solutions of (1.1) to the existence of critical points of J on
Em . That is, the functional J is just the variational framework of (1.1).

In what follows, we define a norm ‖ · ‖∞ in Em by

‖u‖∞ = max
j∈Z(−mT,mT−1)

∣
∣u j
∣
∣ , ∀u ∈ Em .

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E . J is said to satisfy the Palais-Smale condition (P.S.
condition for short) if any sequence {un} ⊂ E for which {J (un)} is bounded and J ′ (un) → 0
(n → ∞) possesses a convergent subsequence in E .

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its boundary.

Lemma 2.1 (Mountain Pass Lemma [25]). Let E be a real Banach space and J ∈ C1(E,R)

satisfy the P.S. condition. If J (0) = 0 and

(J1) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α, and
(J2) there exists e ∈ E\Bρ such that J (e) ≤ 0.

Then J possesses a critical value c ≥ α given by

c = inf
g∈�

max
s∈[0,1] J (g(s)), (2.7)

where
� = {g ∈ C ([0, 1], E) |g(0) = 0, g(1) = e} . (2.8)

Lemma 2.2 The following inequality is true:

1

p

mT−1∑

n=−mT

|�un−1|p ≤ κ
p
2 2

p

p
‖u‖p. (2.9)

Proof

1

p

mT−1∑

n=−mT

|�un−1|p = 1

p

⎡

⎢
⎣

(
mT−1∑

n=−mT

|�un |p
) 1

p

⎤

⎥
⎦

p

≤ 1

p

⎡

⎢
⎣κ2

(
mT−1∑

n=−mT

|�un |2
) 1

2

⎤

⎥
⎦

p
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≤ 1

p
κ
p
2

[
mT−1∑

n=−mT

2
(
u2n+1 + u2n

)
] p

2

= κ
p
2 2

p

p
‖u‖p.

��

3 Proof of theorems

In this section, we shall prove the main results stated in Sect. 1 by using the critical point
method.

Lemma 3.1 Assume that (F1) − (F5) are satisfied. Then J satisfies the P.S. condition.

Proof Assume that
{
u(i)

}
i∈N in Em is a sequence such that

{
J
(
u(i)

)}
i∈N is bounded. Then

there exists a constant K > 0 such that −K ≤ J
(
u(i)

)
. By (2.9) and (F ′

3), we have

−K ≤ J
(
u(i)

)
≤ κ

p
2 2

p

p

∥∥∥u(i)
∥∥∥
p + q̄

p

⎡

⎢
⎣

(
mT−1∑

n=−mT

∣∣∣u(i)
n

∣∣∣
p
) 1

p

⎤

⎥
⎦

p

−
mT−1∑

n=−mT

[
c
(∣∣∣u(i)

n+M

∣∣∣
p +

∣∣∣u(i)
n

∣∣∣
p)+ b − ζ

]

≤
(

κ
p
2 2

p

p
+ q̄κ

p
2

p
− 2cκ p

1

)∥∥∥u(i)
∥∥∥
p + 2mT (ζ − b) .

Therefore, (

2cκ p
1 − κ

p
2 2

p

p
− q̄κ

p
2

p

)∥∥∥u(i)
∥∥∥
p ≤ 2mT (ζ − b) + K . (3.1)

Since c > 1
2p

(
κ2
κ1

)p
(2p + q̄), (3.1) implies that

{
u(i)

}
i∈N is bounded in Em . Thus,

{
u(i)

}
i∈N

possesses a convergence subsequence in Em . The desired result follows. ��
Lemma 3.2 Assume that (F1) − (F5) are satisfied. Then for any given positive integer m,
(1.1) possesses a 2mT -periodic solution u(m) ∈ Em.

Proof In our case, it is clear that J (0) = 0. By Lemma 3.1, J satisfies the P.S. condition. By
(F2), we have

J (u) ≥ 1

p

mT−1∑

n=−mT

|�un |p + q

p

mT−1∑

n=−mT

|un |p − a
mT−1∑

n=−mT

(|un+M |p + |un |p
)

≥ q̄κ
p
1

p
‖u‖p − 2aκ

p
2 ‖u‖p

=
(
q̄κ

p
1

p
− 2aκ

p
2

)

‖u‖p.
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Taking α =
(

q̄κ
p
1
p − 2aκ

p
2

)
�p > 0, we obtain

J (u)|∂B� ≥ α > 0,

which implies that J satisfies the condition (J1) of the Mountain Pass Lemma.
Next, we shall verify the condition (J2).
There exists a sufficiently large number ε > max{�, ρ} such that

(

2cκ p
1 − κ

p
2 2

p

p
− q̄κ

p
2

p

)

ε p ≥ |b|. (3.2)

Let e ∈ Em and

en =
{

ε, if n = 0,
0, if n ∈ { j ∈ Z : −mT ≤ j ≤ mT − 1 and j �= 0},

en+M =
{

ε, if n = 0,
0, if n ∈ { j ∈ Z : −mT ≤ j ≤ mT − 1 and j �= 0}.

Then

F (n, en+M , en) =
{
F(0, ε, ε), if n = 0
0, if n ∈ { j ∈ Z : −mT ≤ j ≤ mT − 1 and j �= 0}.

With (3.2) and (F3), we have

J (e) = 1

p

mT−1∑

n=−mT

(�en−1)
p + 1

p

mT−1∑

n=−mT

qne
p
n −

mT−1∑

n=−mT

F (n, en+M , en)

≤ κ
p
2 2

p

p
‖e‖p + q̄κ

p
2

p
‖e‖p − 2cκ p

1 ‖e‖p − b

= −
(

2cκ p
1 − κ

p
2 2

p

p
− q̄κ

p
2

p

)

εδ+1 − b ≤ 0. (3.3)

All the assumptions of the Mountain Pass Lemma have been verified. Consequently, J
possesses a critical value cm given by (2.7) and (2.8) with E = Em and � = �m , where
�m = {gm ∈ C([0, 1], Em)|gm(0) = 0, gm(1) = e, e ∈ Em\Bε} . Let u(m) denote the cor-
responding critical point of J on Em . Note that

∥∥u(m)
∥∥ �= 0 since cm > 0. ��

Lemma 3.3 Assume that (F1)− (F5) are satisfied. Then there exist positive constants � and
η independent of m such that

� ≤
∥∥∥u(m)

∥∥∥∞ ≤ η. (3.4)

Proof The continuity of F(0, v1, v2) with respect to the second and third variables implies

that there exists a constant τ > 0 such that |F(0, v1, v2)| ≤ τ for
√

v21 + v22 ≤ �. It is clear
that

J
(
u(m)

)
≤ max

0≤s≤1

{
1

p

mT−1∑

n=−mT

[|�(se)n−1|p+qn |(se)n |p
]−

mT−1∑

n=−mT

F (n, (se)n+M , (se)n)

}

≤ κ
p
2 2

p + q̄κ
p
2

p
‖e‖p + τ

= κ
p
2 2

p + q̄κ
p
2

p
ε p + τ.
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Let ξ = κ
p
2 2

p+q̄κ
p
2

p ε p + τ , we have that J
(
u(m)

) ≤ ξ , which is independent of m. From
(2.5) and (2.6), we have

J
(
u(m)

)
= 1

p

mT−1∑

n=−mT

⎡

⎣
∂F

(
n − M, u(m)

n , u(m)
n−M

)

∂v2
u(m)
n +

∂F
(
n, u(m)

n+M , u(m)
n

)

∂v2
u(m)
n

⎤

⎦

−
mT−1∑

n=−mT

F
(
n, u(m)

n+M , u(m)
n

)

= 1

p

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1
u(m)
n+M +

∂F
(
n, u(m)

n+M , u(m)
n

)

∂v2
u(m)
n

⎤

⎦

−
mT−1∑

n=−mT

F
(
n, u(m)

n+M , u(m)
n

)

≤ ξ.

By (F4) and (F5), there exists a constant η > 0 such that
1
p

(
∂F(n,v1,v2)

∂v1
v1 + ∂F(n,v1,v2)

∂v2
v2

)
− F (n, v1, v2) > ξ, for all n ∈ Z and

√
v21 + v22 ≥ η,

which implies that
∣∣∣u(m)

n

∣∣∣ ≤ η for all n ∈ Z, that is
∥∥u(m)

∥∥∞ ≤ η.

From the definition of J , we have

0 =
〈
J ′(u(m)), u(m)

〉

≥ q
mT−1∑

n=−mT

∣∣
∣u(m)

n

∣∣
∣
p −

mT−1∑

n=−mT

⎡

⎣
∂F

(
n − M, u(m)

n , u(m)
n−M

)

∂v2
u(m)
n +

∂F
(
n, u(m)

n+M , u(m)
n

)

∂v2
u(m)
n

⎤

⎦

≥ qκ
p
1 ‖u(m)‖p −

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1
u(m)
n+M +

∂F
(
n, u(m)

n+M , u(m)
n

)

∂v2
u(m)
n

⎤

⎦ .

Therefore, combined with (F2), we get

qκ
p
1 ‖u(m)‖p ≤

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1
u(m)
n+M +

∂F
(
n, u(m)

n+M , u(m)
n

)

∂v2
u(m)
n

⎤

⎦

≤

⎧
⎪⎨

⎪⎩

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

‖u(m)‖p

+

⎧
⎪⎨

⎪⎩

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v2

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

‖u(m)‖p
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≤ κ2‖u(m)‖

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

+

⎧
⎪⎨

⎪⎩

mT−1∑

n=−mT

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v2

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

That is,

qκ
p
1

κ2
‖u(m)‖p−1 ≤

⎧
⎨

⎩

mT−1∑

n=−mT

[
∂F(n, u(m)

n+M , u(m)
n )

∂v1

] p
p−1
⎫
⎬

⎭

p−1
p

+
⎧
⎨

⎩

mT−1∑

n=−mT

[
∂F(n, u(m)

n+M , u(m)
n )

∂v2

] p
p−1
⎫
⎬

⎭

p−1
p

.

Thus,

q
p

p−1 κ

p2

p−1
1

κ

p
p−1
2

‖u(m)‖p ≤

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎨

⎩

mT−1∑

n=−mT

[
∂F(n, u(m)

n+M , u(m)
n )

∂v1

] p
p−1
⎫
⎬

⎭

p−1
p

+
⎧
⎨

⎩

mT−1∑

n=−mT

[
∂F(n, u(m)

n+M , u(m)
n )

∂v2

] p
p−1
⎫
⎬

⎭

p−1
p

⎫
⎪⎪⎬

⎪⎪⎭

p
p−1

. (3.5)

Combined with (F2), we get

q pκ

p2

p−1
1

κ

p
p−1
2

‖u(m)‖p ≤

⎧
⎪⎨

⎪⎩

{
mT−1∑

n=−mT

[
pa
∣∣∣u(m)

n+M

∣∣∣
p−1

] p
p−1
} p−1

p

+
{

mT−1∑

n=−mT

[
pa
∣∣∣u(m)

n

∣∣∣
p−1

] p
p−1
} p−1

p

⎫
⎪⎬

⎪⎭

p
p−1

≤ 2
p

p−1 (ap)
p

p−1 κ
p
2 ‖u(m)‖p.

Thus, we have u(m) = 0. But this contradicts ‖u(m)‖ �= 0, which shows that

‖u(m)‖∞ ≥ �,

and the proof of Lemma 3.3 is finished. ��
Proof of Theorem 1.1 In the following, we shall give the existence of a nontrivial homoclinic
orbit.
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Consider the sequence
{
u(m)
n

}

n∈Z of 2mT -periodic solutions found in Lemma 3.2. First,

by (3.4), for any m ∈ N, there exists a constant nm ∈ Z independent of m such that
∣∣
∣u(m)

nm

∣∣
∣ ≥ �. (3.6)

Since qn and f (n, v1, v2, v3) are all T -periodic in n,
{
u(m)
n+ jT

}
(∀ j ∈ N) is also 2mT -

periodic solution of (1.1). Hence, making such shifts, we can assume that nm ∈ Z(0, T − 1)
in (3.6). Moreover, passing to a subsequence of ms, we can even assume that nm = n0 is
independent of m.

Next, we extract a subsequence, still denote by u(m), such that

u(m)
n → un, m → ∞, ∀n ∈ Z.

Inequality (3.6) implies that
∣
∣un0

∣
∣ ≥ ξ and, hence,u = {un} is a nonzero sequence.Moreover,

�
(
ϕp(�un−1)

)− qnϕp(un) + f (n, un+M , un, un−M )

= lim
n→∞

[
�
(
ϕp

(
�u(m)

n−1

))
− qnϕp

(
u(m)
n

)
+ f

(
n, u(m)

n+M , u(m)
n , u(m)

n−M

)]
= 0.

So u = {un} is a solution of (1.1).
Finally, we show that u ∈ l p . For um ∈ Em , let

Pm =
{

n ∈ Z :
∣∣∣u(m)

n

∣∣∣ <

√
2

2
�,−mT ≤ n ≤ mT − 1

}

,

Qm =
{

n ∈ Z :
∣∣∣u(m)

n

∣∣∣ ≥
√
2

2
�,−mT ≤ n ≤ mT − 1

}

.

Since F(n, v1, v2) ∈ C1(Z × R2,R), there exist constants ξ̄ > 0, ξ > 0 such that

max

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩

{
mT−1∑

n=−mT

[
∂F (n, v1, v2)

∂v1

] p
p−1
} p−1

p

+
{

mT−1∑

n=−mT

[
∂F (n, v1, v2)

∂v2

] p
p−1
} p−1

p

⎫
⎪⎬

⎪⎭

p
p−1

: � ≤
√

v21 + v22 ≤ η, n ∈ Z

⎫
⎪⎪⎬

⎪⎪⎭
≤ ξ̄ ,

min

{
1

p

[
∂F(n, v1, v2)

∂v1
v1 + ∂F(n, v1, v2)

∂v2
v2

]

−F(n, v1, v2) : � ≤
√

v21 + v22 ≤ η, n ∈ Z
}

≥ ξ .

For n ∈ Qm ,

⎧
⎪⎨

⎪⎩

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

+

⎧
⎪⎨

⎪⎩

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v2

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p
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≤ ξ̄

ξ

{
1

p

[
∂F(n, u(m)

n+M , u(m)
n )

∂v1
u(m)
n+M + ∂F(n, u(m)

n+M , u(m)
n )

∂v2
u(m)
n )

]

−F(n, u(m)
n+M , u(m)

n )

}

.

By (3.5), we have

q
p

p−1 κ

p2

p−1
1

κ

p
p−1
2

‖u(m)‖p

≤

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎪⎨

⎪⎩

∑

n∈Pm

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p
p−1

+

⎧
⎪⎨

⎪⎩

∑

n∈Pm

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v2

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

p
p−1

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

∑

n∈Qm

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

+

⎧
⎪⎨

⎪⎩

∑

n∈Qm

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v2

⎤

⎦

p
p−1
⎫
⎪⎬

⎪⎭

p−1
p

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

p
p−1

≤

⎧
⎪⎨

⎪⎩

⎧
⎨

⎩

∑

n∈Pm

[
pa
∣∣∣u(m)

n+M

∣∣∣
p−1

] p
p−1

⎫
⎬

⎭

p−1
p

+
⎧
⎨

⎩

∑

n∈Pm

[
pa
∣∣∣u(m)

n

∣∣∣
p−1

] p
p−1

⎫
⎬

⎭

p−1
p

⎫
⎪⎬

⎪⎭

p
p−1

+ ξ̄

ξ

⎧
⎨

⎩
1

p

∑

n∈Qm

⎡

⎣
∂F

(
n, u(m)

n+M , u(m)
n

)

∂v1
u(m)
n+M +

∂F
(
n, u(m)

n+M , u(m)
n

)

∂v2
u(m)
n )

⎤

⎦

−F
(
n, u(m)

n+M , u(m)
n

)
⎫
⎬

⎭

≤ 2
p

p−1 (ap)
p

p−1 κ
p
2 ‖u(m)‖p + ξ̄ ξ

ξ
.

Thus,
∥∥∥u(m)

∥∥∥
p ≤ ξ̄ ξκ

p
p−1
2

ξ

{

q
p

p−1 κ

p2
p−1
1 − (2ap)

p
p−1 κ

p2
p−1
2

} .
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For any fixed D ∈ Z and m large enough, we have that

D∑

n=−D

∣
∣
∣u(m)

n

∣
∣
∣
p ≤ ‖u(m)‖p ≤ ξ̄ ξκ

p
p−1
2

ξ

{

q
p

p−1 κ

p2
p−1
1 − (2ap)

p
p−1 κ

p2
p−1
2

} .

Since ξ̄ , ξ , ξ, q, p, a, κ1 and κ2 are constants independent of m, passing to the limit, we
have that

D∑

n=−D

|un |p ≤ ξ̄ ξκ

p
p−1
2

ξ

{

q
p

p−1 κ

p2
p−1
1 − (2ap)

p
p−1 κ

p2
p−1
2

} .

Due to the arbitrariness of D, u ∈ l p . Therefore, u satisfies un → 0 as |n| → ∞. The
existence of a nontrivial homoclinic orbit is obtained. ��
Proof of Theorem 1.2 Consider the following boundary problem:
⎧
⎨

⎩

�
(
ϕp(�un−1)

)− qnϕp(un) + f (n, un+M , un, un−M ) = 0, n ∈ Z(−mT,mT ),

q−mT = qmT = 0,
q−n = qn, n ∈ Z(−mT,mT ).

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . .) = {un}+∞
n=−∞,

that is

S = {{un}|un ∈ R, n ∈ Z}.
For any u, v ∈ S, a, b ∈ R, au + bv is defined by

au + bv = {aun + bvn}+∞
n=−∞.

Then S is a vector space.
For any given positive integers m and T , Ẽm is defined as a subspace of S by

Ẽm = {u ∈ S|u−n = un, ∀n ∈ Z}.
Clearly, Ẽm is isomorphic to R2mT+1. Ẽm can be equipped with the inner product

〈u, v〉 =
mT∑

j=−mT

u jv j , ∀u, v ∈ Ẽm,

by which the norm ‖ · ‖ can be induced by

‖u‖ =
⎛

⎝
mT∑

j=−mT

u2j

⎞

⎠

1
2

, ∀u ∈ Ẽm .

It is obvious that Ẽm is Hilbert space with 2mT + 1-periodicity and linearly homeomorphic
to R2mT+1.

Similarly to the proof of Theorem 1.1, we can also prove Theorem 1.2. For simplicity, we
omit its proof. ��
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4 Example

In this section, we give an example to illustrate our results.

Example 4.1 Let

f (n, v1, v2, v3) = γ v2

(
v21 + v22

v21 + v22 + 1
+ v22 + v23

v22 + v23 + 1

)

and

F(n, v1, v2) = γ

2

[
v21 + v22 − ln

(
v21 + v22 + 1

)]
,

where γ > q̄. It is easy to verify all the assumptions of Theorem 1.1 are satisfied. Conse-
quently, a nontrivial homoclinic orbit is obtained.
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