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1 Introduction

In 1952 Michael [6] posed the following two problems:

(a) If A is a commutative Fréchet algebra, is every complex homomorphism on A necessarily
continuous?

(b) If A is a complete commutative locally m-convex algebra, is every complex homomor-
phism on A necessarily bounded?

Clearly a positive solution to the second problem implies a positive solution to the first
problem, and in 1972 Dixon and Fremlin [3] proved that the reverse implication is also true.

Clayton [1], Schottenloher [9] and Mujica [8] have reduced the study of the Michael
problem to certain specific algebras of holomorphic functions on infinite dimensional spaces.
In this note we establish a general theorem that yields as special cases the aforementioned
results of Clayton [1], Schottenloher [9] and Mujica [8].
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2 The main results

Let E and F denote locally convex spaces, always assumed complex and Hausdorff, and let
cs(E) denote the set of all continuous seminorms on E . Let E ′

b (resp. E ′
c) denote the dual

E ′ of E , with the topology of uniform convergence on the bounded (resp. compact) subsets
of E . Let L(E; F) denote the space of all continuous linear mappings from E into F , and
let τc denote the topology of uniform convergence on the compact subsets of E .

We recall that a sequence (en)∞n=1 ⊂ E is said to be a basis if every x ∈ E admits a unique
representation as a series x = ∑∞

j=1 ξ j e j = limn→∞
∑n

j=1 ξ j e j , with (ξ j )
∞
j=1 ⊂ C. The

linear functionals φ j : x ∈ E → ξ j ∈ C are called coordinate functionals, and the linear
mappings Tn : x ∈ E → ∑n

j=1 ξ j e j are called canonical projections. A basis (en)∞n=1 is said
to be a Schauder basis if the coordinate functionals are continuous. A Schauder basis (en)∞n=1
is said to be an equicontinuous Schauder basis if the sequence of canonical projections is
equicontinuous. A Schauder basis (en)∞n=1 is said to be a compactly convergent Schauder
basis if the sequence of canonical projections converges to the identity uniformly on the
compact subsets of E . Every basis in a Fréchet space is a Schauder basis (see [5, p. 249]).
Clearly every Schauder basis in a barrelled space is an equicontinuous Schauder basis. And
clearly every equicontinuous Schauder basis is a compactly convergent Schauder basis.

Let H(E) denote the algebra of all complex-valued holomorphic functions on E , and let
τc denote the topology of uniform convergence on the compact subsets of E . Let Hb(E)

denote the subalgebra of all f ∈ H(E) which are bounded on the bounded subsets of E , and
let τb denote the topology of uniform convergence on the bounded subsets of E .

We recall that A is said to be a topological algebra if A is a complex algebra and a topo-
logical vector space such that ring multiplication is continuous. We require that complex
algebras have a unit element, and if A and B are complex algebras, we require that a homo-
morphism T : A → B map the unit element of A onto the unit element of B. A topological
algebra A is said to be locally m-convex if its topology is defined by a family of continuous
seminorms q such that q(xy) ≤ q(x)q(y) for all x, y ∈ A. A complete metrizable locally
m-convex algebra is called a Fréchet algebra.

Theorem 2.1 Let E be a sequentially complete infinite dimensional locally convex space
with a compactly convergent Schauder basis (en)∞n=1. Let (φn)∞n=1 denote the sequence of
coordinate functionals, and assume that (en)∞n=1 is bounded in E. Let A be a sequentially
complete commutative locally m-convex algebra. If (an)∞n=1 is a sequence in A such that

∞∑

n=1

√
q(an) < ∞ for every q ∈ cs(A),

then there exists a continuous homomorphism T : (H(E), τc) → A such that T φn = an for
every n ∈ N.

Proof The proof is a straightforward adaptation of the proof of [8, Theorem 33.3], which is
reproduced here for the convenience of the reader, with the corresponding modifications
in our more general situation. Let f ∈ H(E), and let (Tn)∞n=1 denote the sequence of
canonical projections. Since the sequence (Tn)∞n=1 converges to the identity in (L(E; E), τc),
it follows that the sequence ( f ◦ Tn)∞n=1 converges to f in (H(E), τc). For each multi-index
α = (α1, . . . , αn) ∈ N

n
0 let

cα f = (2π i)−n
∫

|ζ1|=R1,...,|ζn |=Rn

f (ζ1e1 + · · · + ζnen)

ζ
α1+1
1 . . . ζ

αn+1
n

dζ1 . . . dζn, (1)
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with R1 > 0, . . . , Rn > 0. Then each cα f is independent from the choice of R1, . . . , Rn ,
and the multiple series

∑
α∈Nn

0
cα f φ

α1
1 . . . φ

αn
n converges to f ◦ Tn in (H(E), τc). It follows

that

f = lim
n→∞ f ◦ Tn = lim

n→∞
∑

α∈Nn
0

cα f φ
α1
1 . . . φαn

n ,

with uniform convergence on the compact subsets of E (see [8, Corollary 7.8] or [2, p. 237]).
The topology of A is given by a family Q of continuous seminorms q satisfying the

condition q(xy) ≤ q(x)q(y) for all x, y ∈ A. Given q ∈ Q we have by hypothesis that∑∞
n=1

√
q(an) < ∞. Choose 0 < ε < 1 such that ε

∑∞
n=1

√
q(an) < 1, and set rn =

ε
√

q(an), Rn = ε−1√q(an) for every n.
We assert that the set

Lq =
{ ∞∑

n=1

ζnen : ζn ∈ C, |ζn | ≤ Rn for every n

}

is a compact subset of E . Indeed consider the set

Kq =
{
(ζn)∞n=1 ∈ C

N : |ζn | ≤ Rn for every n
}
.

By the Tychonoff theorem Kq is a compact subset ofCN. Consider themappings S : Kq → E
and SN : Kq → E defined by

S
(
(ζn)∞n=1

) =
∞∑

n=1

ζnen, SN
(
(ζn)∞n=1

) =
N∑

n=1

ζnen .

Clearly each SN is continuous. To show that S is continuous we show that the sequence
(SN )∞N=1 converges to S absolutely and uniformly on Kq . Indeed for each p ∈ cs(E), let
cp = supn p(en). Then

sup
((ζn)∞n=1)∈Kq

∞∑

n=1

p (ζnen) ≤ cp

∞∑

n=1

Rn < ∞

and

sup
((ζn)∞n=1)∈Kq

p
(
(S − SN )((ζn)∞n=1)

) ≤ cp

∞∑

n=N+1

Rn .

Thus S is continuous and Lq = S(Kq) is compact, as asserted.
It follows from (1) that

|cα f | ≤ (
Rα1
1 . . . Rαn

n

)−1 sup
Lq

| f |

for every α ∈ N
n
0. Since q(an) = Rnrn for every n, it follows that

∑

α∈Nn
0

q
(
cα f aα1

1 . . . aαn
n

) ≤
∑

α∈Nn
0

|cα f |q(a1)
α1 . . . q(an)αn

=
∑

α∈Nn
0

|cα f |Rα1
1 . . . Rαn

n rα1
1 . . . rαn

n ≤ sup
Lq

| f | (1 − r1)
−1 . . . (1 − rn)−1.
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Since
∑∞

n=1 rn = θ < 1, it follows that

∞∑

n=1

rn

1 − rn
≤

∞∑

n=1

rn

1 − θ
= θ

1 − θ
< ∞.

Hence it follows that the infinite product

∞∏

n=1

(1 − rn)−1 =
∞∏

n=1

(

1 + rn

1 − rn

)

converges. Hence there exists a constant dq > 0 such that
∑

α∈Nn
0

q
(
cα f aα1

1 . . . aαn
n

) ≤ dq sup
Lq

| f |

for every f ∈ H(E) and n ∈ N. Since A is sequentially complete, it follows that the multiple
series

∑

α∈N(N)
0

cα f aα =
∞∑

n=1

∑

α∈Nn
0

cα f aα1
1 . . . aαn

n

converges absolutely in A for every f ∈ H(E). Let T : (H(E), τc) → A be defined by

T f =
∑

α∈N(N)
0

cα f aα.

Then T φ j = a j for every j , and we can readily verify that T is a homomorphism. Since

q(T f ) ≤ dq sup
Lq

| f |

for every f ∈ H(E), it follows that T is continuous.

Theorem 2.2 let E be a sequentially complete infinite dimensional locally convex space
with a compactly convergent Schauder basis (en)∞n=1. Let (φn)∞n=1 denote the sequence of
coordinate functionals, and assume that:

(i) (en)∞n=1 is bounded in E;
(ii) there exists a sequence (λn)∞n=1 of strictly positive numbers such that (λnφn)∞n=1 is

bounded in E ′
b.

Let A be a sequentially complete commutative locally m-convex algebra. If there exists an
unbounded complex homomorphism on A, then there exists a complex homomorphism on
H(E) whose restriction to E ′

b is unbounded. In particular there exists an unbounded complex
homomorphism on (H(E), τc) whose restriction to (Hb(E), τb) is unbounded as well.

Proof Let ψ : A → C be an unbounded homomorphism. Then there is a bounded sequence
(bn)∞n=1 in A such that |ψ(bn)| > 8n/λn for every n ∈ N. Let an = 4−nbn for every n ∈ N.
Then for each q ∈ cs(A) there is a constant c > 0 such that q(bn) ≤ c for every n. Hence it
follows that q(an) ≤ 4−nc for every n, and therefore

∑∞
n=1

√
q(an) < ∞. By Theorem 2.1

there exists a continuous homomorphism T : (H(E), τc) → A such that T φn = an for every
n. Since

|ψ ◦ T (λnφn) | = |ψ (λnan) | > 2n
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for every n, it follows that the homomorphism ψ ◦ T : H(E) → C is unbounded on E ′
b, as

asserted.

Example 2.3 In [8, Theorem 33.5] Mujica reduces the study of the Michael problem to the
Fréchet algebra (Hb(E), τb), where E is any infinite dimensional Banach space with a nor-
malized Schauder basis (en)∞n=1. Every Schauder basis in aBanach space is an equicontinuous
Schauder basis. Since (en)∞n=1 is bounded in E , and (φn)∞n=1 is bounded in E ′

b, Theorem 2.2
applies to E , and therefore yields [8, Theorem 33.5] as a special case.

We recall that a (DFN)-space is the strong dual of a Fréchet-nuclear space. Then we have
the following example.

Example 2.4 In [9, Theorem 6] Schottenloher reduces the study of the Michael problem to
the Fréchet algebra (H(E), τc), where E is any infinite dimensional (DFN)-space with a
Schauder basis (en)∞n=1 wich satisfies a certain condition (B). The space E = s′ of slowly
increasing sequences, and the space E = H(0Cn ) of germs of holomorphic functions at
0 ∈ C

n , are examples of (DFN)-spaces which satisfy condition (B). Since E is a Montel
space, it is in particular quasi-complete. Since E is barrelled, the Schauder basis (en)∞n=1
is an equicontinuous Schauder basis. Condition (B) implies that (en)∞n=1 is bounded in E .
And since E ′

b is metrizable, the Mackey countability condition implies the existence of a
sequence (λn)∞n=1 of strictly positive numbers such that (λnφn)∞n=1 is bounded in E ′

b (see
[4, p. 116, Proposition 3]). Thus Theorem 2.2 applies to E and therefore yields [9, Theorem
6] as a special case.

Our next example rests on the following auxiliary result.

Proposition 2.5 Let F be a barrelled locally convex space, and let
(
( fn)∞n=1, ( f ′

n)∞n=1)
)

be
a biorthogonal sequence in F × F ′, that is f ′

n( fm) = δnm for all n, m. Then ( fn)∞n=1 is a
compactly convergent Schauder basis in F if and only if ( f ′

n)∞n=1 is a compactly convergent
Schauder basis in F ′

c.

Proof On the one hand the polars L◦ of the compact subsets L of F form a 0-neighborhood
base in F ′

c. On the other hand, since F is barrelled, the polars V ◦ of the 0-neighborhoods V in
F form a fundamental family of compact subsets of F ′

c. Consider the mapping Tn ∈ L(F; F)

and the dual mapping T ′
n ∈ L(F ′

c; F ′
c) given by

Tn y =
n∑

j=1

f ′
j (y) f j , T ′

n y′ =
n∑

j=1

y′ ( f j
)

f ′
j .

Then we can prove that the sequence (Tn)∞n=1 converges to IF in (L(F; F), τc) if and only if
the sequence (T ′

n)∞n=1 converges to IF ′ in (L(F ′
c; F ′

c), τc). Indeed if L is a convex balanced
compact set in F , and V is a closed convex balanced 0-neighborhood in F , then we can
readily verify that

(Tn − IF ) (L) ⊂ V if and only if
(
T ′

n − IF ′
) (

V ◦) ⊂ L◦.

We will say that E is a (DBC)-space if E = F ′
c for some Banach space F . Then we have

the following example.

Example 2.6 Let F be an infinite dimensional Banach space with a normalized Schauder
basis ( fn)∞n=1, and let ( f ′

n)∞n=1 denote the sequence of coordinate functionals. Then ( fn)∞n=1
is an equicontinuous Schauder basis of F . By the preceding proposition the sequence ( f ′

n)∞n=1



6 J. Mujica

is a compactly convergent Schauder basis of the (DBC)-space E = F ′
c. Moreover ( f ′

n)∞n=1 is
bounded in F ′

b, and therefore bounded in E = F ′
c, whereas ( fn)∞n=1 is bounded in F = E ′

b.
Moreover E is a semi-Montel space, in particular quasi-complete (see [7, Proposition 7.2]).
Thus Theorem 2.2 applies to E , and therefore reduces the study of the Michael problem to
the Fréchet algebra (H(E), τc). That (H(E), τc) is a Fréchet algebra follows from the fact
that E is a hemicompact k-space (see [7, Proposition 7.2] and [7, p. 513]).

Example 2.7 It is well known that

H(CN) =
∞⋃

n=1

{
fn ◦ πn : fn ∈ H(Cn)

}
,

where πn : C
N → C

n denotes the canonical projection (see [2, p. 66, Example 2.25]).
In [1, Theorem 9] Clayton reduces the study of the Michael problem to the Fréchet algebra A
which is defined as the completion of the algebraH(CN)with respect to uniform convergence
on the bounded subsets of ∞. In [9, Remark 7c] Schottenloher observes that A is isomorphic
to the Fréchet algebra (H(E), τc), where E = (1)

′
c. Thus Clayton’s example is a special

case of Example 2.6.
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