

ORIGINAL PAPER

Copies of *c***⁰ in the space of Pettis integrable functions revisited**

M. Legua · L. M. Sánchez Ruiz

Received: 8 August 2014 / Accepted: 19 November 2014 / Published online: 27 November 2014 © Springer-Verlag Italia 2014

Abstract If (Ω, Σ, μ) is a finite measure space and *X* a Banach space whose dual has a countable norming set we provide a proof of the fact that the space of all weakly μ -measurable (classes of scalarly equivalent) Pettis integrable functions $f: \Omega \to X$ of finite variation, equipped with the variation norm, contains a copy of c_0 if and only if X does.

Keywords Pettis integrable \cdot Countably additive vector measure \cdot Copy of c_0

Mathematics Subject Classification 28B05 · 46B03

1 Preliminaries

Throughout this paper *X* will stand for a Banach space over the real or complex field K, X^* for its dual space and (Ω, Σ, μ) for a finite measure space. As usual *ca* (Σ, X) will denote the Banach space over K of all X-valued countably additive measures F on Σ equipped with the semivariation norm $\|F\|$ whereas *bvca* (Σ , X) will stand for the Banach space of all *X*-valued countably additive measures *F* of bounded variation on Σ equipped with the variation norm |*F*|.

Let us recall that a weakly μ -measurable function $f: \Omega \to X$ is said to be Dunford integrable if $x^* f \in L_1(\mu)$ for every $x^* \in X^*$. If *f* is Dunford integrable and $E \in \Sigma$, the map $x^* \mapsto \int_E x^* f d\mu$, usually denoted by *(D)* $\int_E f d\mu$, is a continuous linear form on *X*^{*}. If (D) $\int_E f d\mu \in X$ for each $E \in \Sigma$ then *f* is said to be Pettis integrable and we write $(P) \int_E f d\mu$ instead of $(D) \int_E f d\mu$. The Pettis space of all weakly measurable

M. Legua

L. M. Sánchez Ruiz (⊠)

EINA-Departamento Matemática Aplicada, Universidad de Zaragoza, 50015 Zaragoza, Spain e-mail: mlegua@unizar.es

ETSID-Departamento Matemática Aplicada and CITG, Universitat Politècnica de València, 46022 Valencia, Spain e-mail: lmsr@mat.upv.es

(classes of scalarly equivalent) Pettis integrable functions $f: \Omega \to X$ is denoted by $\mathcal{P}_1(\mu, X)$ whereas the subspace of all those strongly measurable (classes of) functions is represented by $P_1(\mu, X)$. We will consider these two spaces $P_1(\mu, X)$ and $P_1(\mu, X)$ endowed with the semivariation norm

$$
\|f\|_{\mathcal{P}_1(\mu,X)}=\sup\left\{\int_{\Omega}|x^*f(\omega)|d\mu(\omega):x^*\in X^*,\; \|x^*\|\leq 1\right\}.
$$

By a result of Pettis, if $f: \Omega \to X$ is weakly measurable and Pettis integrable, the map $F: \Sigma \to X$ defined by $F(E) = (P) \int_E f d\mu$ is a μ -continuous countably additive *X*-valued measure and the linear operator *S*: $\mathcal{P}_1(\mu, X) \to ca(\Sigma, X)$ defined by $Sf = F$ is a linear isometry from $\mathcal{P}_1(\mu, X)$ into $ca(\Sigma, X)$, that is, it holds that $||Sf|| = ||f||_{\mathcal{P}_1(\mu, X)}$. If in addition f is strongly measurable, then $Sf(\Sigma)$ is a relatively compact subset of X [\[5,](#page-3-0) Chapter VIII].

We also recall that a subspace *M* of *X*∗ is said to be norming over a subspace *Y* of *X* if for some $c > 0$ it holds that for all $y \in Y$, $\sup_{f \in S(M)} |f(y)| \ge c ||y||$ where $S(M)$ denotes the unit sphere of *M*. For short *M* is said to be norming when *M* happens to be norming on *X*.

The existence of copies of c_0 in the Pettis space $P_1(\mu, X)$ has been studied by a number of authors, e.g. Freniche [\[10,](#page-3-1)[11](#page-3-2)] showed that $P_1(\mu, X)$ contains a copy of c_0 if and only if *X* does (see also [\[7](#page-3-3)]). In [\[9](#page-3-4), Theorem 1.2] we find that if *X*[∗] contains a norming sequence and *X* has the weak Radon-Nikodým property (WRNP) with respect to each positive and finite measure defined on Σ , then the space *bvca* (Σ , *X*) contains a copy of c_0 if and only if *X* does. Recently, Ferrando [\[8](#page-3-5), Theorem 2.2] has shown that the Musiał space $\mathcal{M}(\mu, X)$ formed by all those functions $f: \Omega \to X$ of $\mathcal{P}_1(\mu, X)$ whose associated measure *Sf* has bounded variation, endowed with the variation norm of the integral, enjoys the property that if each $f \in \mathcal{M}(\mu, X)$ has a Pettis integral with separable range, then $\mathcal{M}(\mu, X)$ contains a copy of c_0 if and only if *X* does. This happens in a number of situations, for instance if: (A) (Ω, Σ, μ) is a perfect space; (B) *X* has the weak^{**} Radon-Nikodým property (W^{**}RNP); or (C) *X* is weakly compactly generated (WCG).

In this note, by making a timing use of $[13,$ Proposition 3.2], under which the existence of a norming sequence in X^* provides that each $f \in \mathcal{M}(\mu, X)$ satisfies that $|| f(\cdot) || \in L_1(\mu)$ although it may happen that $f \notin L_1(\mu)$ as *f* is not strongly measurable in general, we provide a proof of the fact that in the particular case that *X*∗ contains a norming sequence, then the space $M(\mu, X)$ contains a copy of c_0 if and only if *X* does. This result is not included in those covered by [\[8,](#page-3-5) Theorem 2.2] as we will provide examples of some Banach spaces with a norming sequence that fail to have the W∗∗RNP and are not WCG.

2 Copies of c_0 in $\mathcal{M}(\mu, X)$

Our main theorem reads as follows,

Theorem 2.1 Assuming that X^* has a norming sequence, then the normed space $\mathcal{M}(\mu, X)$ *contains a copy of c*⁰ *if and only if X does.*

Proof Let *S* be the isometric embedding map of $M(\mu, X)$ in *bvca* (Σ , *X*) defined by

$$
Sf(E) = (P) \int_{E} f(\omega) d\mu(\omega), E \in \Sigma.
$$

Since $Sf \in b\nu$ *ca* (Σ , *X*) for each $f \in \mathcal{M}(\mu, X)$, by [\[13,](#page-3-6) Proposition 3.2] the fact that X^* has a norming sequence implies that the function $\omega \mapsto |f(\omega)|$ belongs to $L_1(\mu)$ and

$$
|Sf| = \int_{\Omega} ||f(\omega)|| d\mu(\omega).
$$
 (2.1)

Let $J: c_0 \to M(\mu, X)$ be an isomorphism from c_0 into $M(\mu, X)$. Set $f_n := Je_n$ and

$$
F_n(E) := (P) \int_E J e_n d\mu
$$

for each $n \in \mathbb{N}$, so that $F_n = (S \circ J) e_n$ for each $n \in \mathbb{N}$.

Since the series $\sum_{n=1}^{\infty} F_n$ in *bvca* (Σ , X) is weakly unconditionally Cauchy (wuC), there is $C > 0$ such that $\left| \sum_{i=1}^{n} \varepsilon_i F_i \right| < C$ for all finite set of signs ε_i . Using the fact that *S* is a linear map onto its range, then

$$
\sum_{i=1}^{n} \varepsilon_i F_i = \sum_{i=1}^{n} \varepsilon_i S f_i = S \left(\sum_{i=1}^{n} \varepsilon_i f_i \right)
$$
 (2.2)

for each $n \in \mathbb{N}$. Then Eqs. [\(2.1\)](#page-2-0) and [\(2.2\)](#page-2-1) provide

$$
\int_{\Omega} \left\| \sum_{i=1}^{n} \varepsilon_{i} f_{i} \left(\omega \right) \right\| d\mu \left(\omega \right) = \left| \sum_{i=1}^{n} \varepsilon_{i} F_{i} \right| < C \tag{2.3}
$$

for each $\varepsilon_i \in \{-1, 1\}, 1 \le i \le n$ and $n \in \mathbb{N}$.

The rest of the proof follows a similar argument to that of $[8,$ $[8,$ Theorem 2.2], but working with norms instead of seminorms by properly using Rosenthal's disjointification lemma [\[5\]](#page-3-0) and Bourgain averaging theorem [\[1](#page-3-7)] in order to provide a basic sequence in *X* equivalent to the unit vector basis of c_0 .

With the aim of providing some example concerning the Theorem [2.1](#page-1-0) hypothesis, let us recall that for a dual Banach space X^* , the complementarity of X^* in X^{***} guarantees that *X*∗ has the W∗∗RNP if and only if *X*∗ has the WRNP [\[14\]](#page-3-8).

Example 2.1 A Banach space with a norming sequence that fails to have the W∗∗ *RNP and is not WCG*. The dual unit vector sequence $(e_n^*)_n$ of e_{∞}^* is norming for e_{∞} , the latter failing to have the WRNP, see [\[16](#page-3-9), Example 5.13]. The space ℓ_{∞} is not WCG either as every weakly compact set in ℓ_{∞} is norm separable.

This given example contains a copy of c_0 and so does $\mathcal{M}(\mu, \ell_{\infty})$ under this note's setting. Next example does not contain a copy of $c₀$ and keeps all the other characteristics of the aforementioned example. It is worth while recalling that according to [\[2](#page-3-10), Corollary 6.8] a normed space *X* has got a norming sequence if and only if *X* is isometric to a subspace of ∞, and, according to [\[16\]](#page-3-9), every dual Banach space *X*[∗] failing the WRNP, consequently the W^{**}RNP, must enjoy ℓ_{∞} as a quotient or, equivalently, *X* must contain a copy of ℓ_1 .

Example 2.2 A Banach space, not containing a copy of c₀, with a norming sequence that fails to have the W^{∗∗}RNP and is not WCG. Let *X* be the Banach space *C*[0, 1] of realvalued continuous functions defined on the closed unit interval [0, 1] of $\mathbb R$ equipped with the supremum norm. Since $C[0, 1]$ is separable, X^* is topologically isomorphic to a (weakly closed) linear subspace of ℓ_{∞} , see [\[12,](#page-3-11) 22.4.(4)]. Hence, the isomorphic copy *E* of X^* in ℓ_{∞} has a norming sequence. On the other hand, since the compact set [0, 1] is not scattered, a classic result of Pełczyńsky and Semadeni (see [\[3](#page-3-12), Theorem 3.1.1]) guarantees that *X* has a copy of ℓ_1 . According to the previous considerations, this fact ensures that the dual Banach space *E* does not have the W^{**} RNP. Furthermore, a result of Saab and Saab [\[15\]](#page-3-13), (see [\[3,](#page-3-12) Theorem 3.1.4]) prevents any copy of ℓ_1 in *X* to be complemented, which implies that X^* , hence *E*, does not contain a copy of c_0 , see [\[4](#page-3-14), Chapter V, Theorem 10]. Finally, since *E* has a quotient isomorphic to the non WCG Banach space ℓ_{∞} and the class of WCG Banach spaces is stable under quotients, it follows that *E* is not WCG. Consequently the space *E* fulfills the stated properties. As a consequence of Theorem [2.1,](#page-1-0) $\mathcal{M}(\mu, E)$ does not contain a copy of c_0 .

Acknowledgments The authors are very grateful to the referee for his/her useful comments that improved the layout of this note.

References

- 1. Bourgain, J.: An averaging result for c_0 -sequences. Bull. Soc. Math. Belg. 30, 83–87 (1978)
- 2. Carothers, N.L.: A Short Course in Banach Space Theory. Cambridge University Press, Cambridge (2005)
- 3. Cembranos, P., Mendoza, J.: Banach Spaces of Continuous Vector-Valued Functions, Lecture Notes in Math. 1676. Springer, Berlin (1997)
- 4. Diestel, J.: Sequences and Series in Banach Spaces, Graduated Texts in Math. 92. Springer, New York, Berlin (1984)
- 5. Diestel, J., Uhl, J.: Vector measures, Math Surveys 15. Amer. Math. Soc, Providence (1977)
- 6. Dunford, N., Schwartz, J.T.: Linear Operators Part I. General Theory. Wiley, New York (1988)
- 7. Ferrando, J.C.: On sums of Pettis integrable random elements. Quaest. Math. **25**, 311–316 (2002)
- 8. Ferrando, J.C.: Copies of *c*0 in the space of Pettis integrable functions with integrals of finite variation. Acta Math. Hungar. **135**, 24–30 (2012)
- 9. Ferrando, J.C., Sánchez Ruiz, L.M.: Embedding c_0 in *bvca* (Σ , *X*). Czech. Math. J. 57, 679–688 (2007)
- 10. Freniche, F.J.: Embedding *c*0 in the space of Pettis integrable functions. Quaest. Math. **21**, 261–267 (1998)
- 11. Freniche, F.J.: Correction to the paper 'Embedding c0 in the space of Pettis integrable functions'. Quaest. Math. **29**, 133–134 (2006)
- 12. Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1983)
- 13. Legua, M., Sánchez Ruiz, L.M.: Evaluating norms of Pettis integrable functions. Proc. Roy. Soc. Edinb. **139A**, 1255–1259 (2009)
- 14. Musiał, K.: Pettis Integral, in Handbook of Measure Theory. Elsevier, Amsterdam (2012)
- 15. Saab, E., Saab, P.: A dual geometric characterization of Banach spaces not containing ℓ_1 . Pacif. J. Math. **105**, 415–425 (1983)
- 16. van Dulst D.: Characterizations of Banach spaces not containing ℓ_1 , CWI. Tract **59** (1989)