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Abstract We prove Local Uniformization for arbitrary excellent hypersurface threefolds
of multiplicity smaller than the residue characteristic. This article is part of the authors’
Resolution of Singularities program for arithmetic varieties of dimension three. The proof
builds upon Hironaka’s characteristic polyhedron and invariants.
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1 Introduction

This article is part of the authors’ program whose purpose is to prove the following conjecture
on Resolution of Singularities of threefolds in mixed characteristic. The conjecture is a special
case of Grothendieck’s Resolution conjecture for quasi-excellent schemes.

Conjecture 1.1 Let C be an integral regular excellent curve with function field F. Let S/F
be a reduced algebraic projective surface and X be a flat projective C-scheme with generic
fiber XF = S. There exists a birational projective C-morphism π : Y → X such that

(i) Y is everywhere regular.
(ii) π−1(RegX )→ RegX is an isomorphism.

Let us point out that the equicharacteristic techniques designed in [12] extend to the
situation described in the above conjecture. In particular, [12] theorem 3.3 extends and reduces
Conjecture 1.1 to the following variant:
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Conjecture 1.2 Let A be an excellent DVR with quotient field F and residue characteristic
p > 0. Let (S, M, k) be a regular local ring of dimension three dominating A, essentially of
finite type over A with K := Q F(S) of transcendence degree two over F. Let finally L/K
be a finite field extension and v be a valuation of L. Assume:

(i) L/K is cyclic Galois or purely inseparable of degree p.
(ii) v has rank one and is centered in S.

Then there exists a regular local ring T essentially of finite type over A with Q F(T ) = L
such that v is centered in T .

Applying embedded resolution techniques for surfaces, it can be assumed that such a v is
centered in a local model of L of the form B = (S[X ]/(h))(M,X) with h monic of degree p;
more precisely, h = X p − g p−1 X − f , f, g ∈ M and (g = 0 if charA = 0). In particular
the Local Uniformization statement of Conjecture 1.2 only involves certain hypersurface
singularities (Spec B, x), of multiplicity m(x) ≤ p = chark, and embedded in an excellent
fourfold (Z = Spec S[X ], x). We prove here:

Main Theorem 1.3 Let (R, M, k = k(x) := R
M ) be an excellent regular local ring of

dimension four, (Z , x) := (SpecR, M) and (X, x) := (SpecR/(h), x) be a reduced hyper-
surface. Assume that the multiplicity m(x) of (X, x) satisfies m(x) < p := chark(x). Let v

be a valuation of K (X) centered at x. Then there exists a finite sequence of local blowing ups

(X, x) =: (X0, x0)←− (X1, x1)←− · · · ←− (Xn, xn),

where xi ∈ Xi , 0 ≤ i ≤ n is the center of v, each blowing up center Yi ⊂ Xi is permissible
at xi (in Hironaka’s sense), such that xn is regular.

The proof of theorem 1.3 builds upon classical Resolution of Singularities techniques. We
use systematically the Hironaka characteristic polyhedron and Hironaka’s invariants: the mul-
tiplicity m(x) and τ -number τ(x) for the hypersurface singularity (X, x) := (SpecR/(h), x).

Since we are working without any ground field (at least when R is not equicharacteris-
tic), the Tschirnhausen trick (killing the degree (m(x)− 1)-term in the equation) cannot be
directly applied even though m(x) < p. Rather, we use it for the initial face of the Hironaka
polyhedron (Theorem 3.5) to define well behaved invariants. The pair (m(x), τ (x)) is then
further on completed to a 6-tuple ι(x) defined in 5.2.

The main technical part is concentrated in Sect. 7. We consider projections to a two
dimensional space to define a refined invariant in Sects. 7.3 and 7.4.1. Controlling the trans-
formation law for this refined invariant under blowing up is much harder but leads essentially
to the same formulæ as for the characteristic polygon of a surface singularity. The proof of
the Main Theorem follows rather easily from these computations (Sect. 7.4.5).

It is worth pointing out that these techniques are global in nature and it is to be expected that
Theorem 1.3 can be extended to a global version, i.e. without referring to a given valuation
v and using global blowing up centers. We use the valuation only at a few specific places
(mostly in Sect. 6) to make the argument quicker.

This article is organized as follows: Sect. 2 states the reduction of the Main Theorem to the
case τ(x) = 1, immediate from [11]. This means that the initial form inx (h) can be written

inx (h) = λY m(x), λ ∈ k(x), λ �= 0, y a regular parameter of R, Y := inx (y).

Section 3 first recollects known material from [16,17] about characteristic polyhedra and
associated invariants (Definition 3.2). Special coordinates (z, u) := (z, u1, u2, u3) on R are
said to be fully prepared if they compute the Hironaka characteristic polyhedron �(h; u) and
if the δ-initial inδ(h) of h is Tschirnhausen transformed, i.e. has no term of degree m(x)− 1
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(Theorem 3.5 and Definition 3.5.3). The form inδ(h) is defined in 3.2(iii) and is the sum
of the initial forms of all those terms in h contributing to the face of minimal order at x of
�(h; u). In such special coordinates, invariants d1, d2, d3, ε(x) (each of them is a nonnega-
tive rational number) can be computed from the polyhedron �(h; u) and the δ-initial inδ(h)

(Definition 3.7). Theorem 3.9 proves the Main Theorem when ε(x) = 0, in which case only
combinatorial blowing ups are used.

When ε(x) > 0, some preparations are required in order to get the locus

	 := {y ∈ X : m(y) = m(x), τ (y) = τ(x), ε(y) > 0}
Zariski closed and of dimension at most one (Theorems 3.10 and 3.11). Section 4 prepares
SpecR and constructs an equicharacteristic p normal crossings divisor

E ⊆ div(u1u2u3) ⊂ Spec R

which contains 	 (E = En in Proposition 4.1).
Section 5 then provides some further invariants build up from the ideal of coefficients of

inδ(h) once this preparation is achieved: a refined directrix V ⊆ 〈U1, U2, U3〉 (Definition
5.1) and associated refined numerical invariant ι(x) (Definition 5.2):

ι(x) := (m(x),−τ(x), ε(x),−ρ(x),−t (x),−e(x)).

Section 6 introduces the notion of ε-permissible blowing up centers (Definition 6.1). For
curves, being ε-permissible is stronger than being Hironaka permissible (Proposition 6.2);
blowing up along an ε-permissible center does not increase the invariant ι(x) (Proposition
6.3). Furthermore, ι(x) can be decreased by blowing up along ε-permissible centers except
possibly when V = 〈U3〉 and (either div(u3) ⊆ E or E ⊆ div(u1u2)) (Propositions 6.4 and
6.5).

Section 7 proves the same result in these remaining cases (Theorem 7.1), thus con-
cluding the proof of the Main Theorem. We now project to the (u1, u2)-space and define
well prepared coordinates by minimizing the induced image of �(h; u) by this projection
(this requires choosing special coordinates (z, u3)). There are further associated invariants
β(u, z), C(u, z), γ (u, z) defined in 7.4.1. The behaviour of these invariants by blowing up
ε-permissible curves and closed points are studied respectively in Propositions 7.4.2 and
7.4.3. Section 7.4.5 contains the proof of theorem 7.1 and is basically a consequence of the
former computations.

The notation and assumption in the Main Theorem will be kept all along this article. The
proof will be made by induction on the multiplicity m(x) = ordx (h) of x ∈ X . Since it is
assumed that m(x) < p, (X, x) is already regular if p = 2, so we assume p ≥ 3 from now
on. The formal completion of R with respect to M is denoted by ̂R.

2 Basic invariants

Two basic invariants are attached to the hypersurface singularity (X, x) = ( SpecR/(h), x).
The first invariant is its multiplicity m(x) (or m for short) of (X, x). The second invariant is
τ(x) (or τ for short), which is the dimension of the smallest k(x)-vector subspace T of M

M2

such that inx (h) ∈ k(x)[T ] [16], Ch.2, Lemma 10. This vector space is called the directrix
of inx (h).

Proving the Main Theorem in the cases dim(Z)− τ(x) ∈ {0, 1, 2}, i.e. τ(x) ∈ {2, 3, 4} is
done in [11]. So from now on, we assume that τ(x) = 1. Equivalently:

inx (h) = λY m, λ ∈ k(x), λ �= 0, y a regular parameter of R, Y := inx (y).
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3 Characteristic polyhedron

Definition 3.1 (i) An F-subset � ⊂ R
d+ is a closed complex subset of R

d+ such that v ∈ �

implies v + R
d+ ⊂ �.

(ii) A point v ∈ � is called a vertex if there is a positive linear form L on R
d (i.e. has strictly

positive coefficients) such that

{v} = � ∩ {A ∈ R
d |L(A) = 1}.

(iii) The essential boundary ∂� of an F-subset � is the subset of � consisting of those
v ∈ � such that v �∈ v′ + R

d+ with v′ ∈ � unless v′ = v. We write �+ = �− ∂�.

For the next definition and proposition, we will forget the hypothesis dim(R) = 4: we
will have to use the notions defined there for different regular rings of dimension at most
three. Given a r.s.p. (y, u1, u2, . . . , ud) =: (y, u) of a regular local ring R and f ∈ R, there
exists a finite sum expansion

f =
∑

A,b

CA,b ybu A, b ∈ N, A ∈ N
d . (1)

where each CA,b is a unit in R. This follows easily from the facts that R is Noetherian and
the map R ⊆ ̂R faithfully flat. We regard u as “fixed” parameters and y as “varying”, which
is reflected in the indexing below. Assume furthermore that

h ∈M, h �∈ (u1, . . . , ud). (2)

We let R := R/(u1, . . . , ud), h ∈ R be the image of h and “ord” be the valuation of the
discrete valuation ring R. We extend our conventions by letting now

m := ordh ≥ 1. (3)

Assumption (2) and notation (3) are maintained all along this article. Our original concern
is for τ(x) = 1, say inx (h) = λY m , 0 �= λ ∈ k(x) which fits into these conventions provided
Y = inx (y).

Definition 3.2 (i) The polyhedron �(h; u; y) ⊂ R
d≥0 is defined as the smallest F-subset

containing all points of

S(h) :=
{

v = A

m − b
|0 ≤ b < m

}

.

The characteristic polyhedron �(h; u) ⊂ R
d≥0 is defined by the formula

�(h; u) :=
⋂

(ŷ,u1,...,ud )

�(h; u; ŷ), (4)

where the intersection runs over all r.s.p’s of ̂R of the form (ŷ, u1, . . . , ud).

(ii) For v ∈ ∂�(h; u; y), the v-initial of h is defined as

inv(h) :=
∑

A,b

CA,bY bU A ∈ k[U, Y ] = k[U1, U2, . . . , Ud , Y ],

where CA,b ∈ k is the residue of CA,b and the sum ranges over such (A, b) that

CA,b �= 0, (b ≤ m, A = 0) or

(

b < m and v = A

m − b

)

.
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(iii) For A ∈ N
d , let |A| := a1 + · · · + ad . We put

δ(h, u, y) := min

{ |A|
m − b

: CA,b �= 0, b < m

}

.

This is in fact an invariant of the polyhedron �(h; u; y) since

δ(h, u, y) = min{|v| : v ∈ �(h; u; y)}.
The δ-initial of h is defined as

inδ,u,y(h) :=
∑

A,b

CA,bY bU A ∈ k(x)[U, Y ] = k(x)[U1, U2, . . . , Ud , Y ],

where the sum ranges over such (A, b) that

CA,b �= 0, (b ≤ m, A = 0) or

(

b < m and
|A|

m − b
= δ(h, u, y)

)

.

(iv) More generally, let

L : (x1, x2, . . . , xd) �→ L(x1, x2, . . . , xd) = λ1x1 + λ2x2 + · · · + λd xd , λ1, λ2, . . . ,

λd ∈ Q≥0,

be a nonzero nonnegative linear form on R
d . We define

l(h, u, y) := min{L(A)|A ∈ �(h; u; y)} ≥ 0.

We define a monomial valuation vL ,h,u,y on R by setting

Iλ := ({ybu A|l(h, u, y)b + L(A) ≥ λ}) ⊆ R,

for λ ≥ 0 and vL ,h,u,y(g) := min{λ ∈ Q|g ∈ Iλ} for any nonzero g ∈ R.

Proposition 3.3 Let L be a nonzero nonnegative linear form as above, and let

I := {i |λi > 0}, I ′ := {i |λi = 0} = {1, . . . , d}\I.
The graded algebra grvL ,h,u,y

(R) of R w.r.t. vL ,h,u,y is given by

(i) if l(h, u, y) �= 0, then

grvL ,h,u,y
(R) = R

(y, {ui }i∈I )
[Y, {Ui }i∈I ];

(ii) if l(h, u, y) = 0, then

grvL ,h,u,y
(R) = R

({ui }i∈I )
[{Ui }i∈I ].

In particular, we have grvL ,h,u,y
(R) � k[Y, U1, U2, . . . , Ud ] whenever L is positive.

The above proposition is obvious. One also checks easily the following:

Remark 3.3.1 Let v be a vertex of �(h, u, y). We have:

(i) inv(h) is independent of the presentation 3.1 (1),
(ii) inv(h) �= inx (h),
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(iii) L being a positive linear form L on R
d such that {v} = � ∩ {A ∈ R

d |L(A) = 1}, (cf.
3.1(ii)), then

inv(h) = invL ,h,u,y (h) ∈ grvL ,h,u,y
(R) = k(x)[U1, U2, . . . , Ud , Y ].

When there is no ambiguity, we will write grδ(R) and inδ(h) ∈ grδ(R) instead of respec-
tively grvL ,h,u,y

(R) and invL ,h,u,y (h), where L(x1, x2, . . . , xd) = x1 + x2 + · · · + xd .

Remark 3.4 With notations as above, we have: δ(h, u, y) ∈ 1
m!N and δ(h, u, y) > 1 if

(m = ordx (h) and 〈inx (h)〉 = 〈(inx (y))m〉).
Assumption 3.4.1 We now apply these constructions to the case R := OZ ,x , dim(R) = 4;
the element h ∈ R verifies assumptions 3.1(2)(3) with m = ordx (h) < p = chark(x) and
〈inx (h)〉 = 〈Y m〉. In addition, X = Spec(R/(h)) is reduced.

Theorem 3.5 Given (y, u1, u2, u3) =: (y, u) as above, there exists z ∈ R, z ≡ y
mod(u1, u2, u3) such that

�(h, u, z) = �(h, u) �= ∅, (5)

inδ,u,z(h) =
∑

A,b,b �=m(x)−1

CA,bzbU A. (6)

Proof Suppose �(h, u) = ∅, then, in ̂R, we should have h = γ zm , γ invertible in ̂R and
z ∈ ̂R a local parameter: h should be nonreduced in ̂R. By excellence, h should be nonreduced
in R, in contradiction with the hypothesis X reduced.

Since �(h, u) �= ∅,�(h, u) may be defined by a finite number n of inequalities
Li (x1, x2, x3) ≥ 1, 1 ≤ i ≤ n, with Li (x1, x2, x3) = ai,1x1+ai,2x2+ai,3x3, ai,1, ai,2, ai,3 ∈
Q≥0, Li �= 0. In a few words:

�(h, u) = {(x1, x2, x3)|Li (x1, x2, x3) ≥ 1, 1 ≤ i ≤ n}.
We choose L1(x1, x2, x3) = 1

δ(h,u)
(x1 + x2 + x3), with δ(h, u) := min{|v| : v ∈ �(h, u)}.

Suppose (5) does not hold for (y, u). Then, with notations as in 3.2(iv), some Li , 1 ≤ i ≤ n
satisfies

Li (�(h, u, y)) = [li (h, u, y),∞[�⊂ [1,+∞[ ⇔ li (h, u, y) < 1.

We skip the index i of Li and of li (h, u, y) to simplify the notations. Following 3.2(iv), we
define the initial form of h with respect to L , u, y: in the case l(h, u, y) > 0

inL ,u,y(h) :=
∑

A,b

CA,bY bU A ∈ grL ,u,y(R), (7)

with bl(h, u, y) + L(A) = ml(h, u, y), CA,b ∈ R
(ui )ai >0+(y)

. In the case l(h, u, y) = 0, we

have

inL ,u,y(h) :=
∑

A,b

CA,b ybU A ∈ grL ,u,y(R), L(A) = 0, CA,b yb ∈ R

(ui )ai >0
. (8)

Claim 3.5.1 In (7) (resp. (8)), there exists A with CA,m−1 �= 0 ∈ R
(ui )ai >0

(resp.

CA,m−1 ym−1 �= 0 ∈ R
(ui )ai >0

).
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Indeed, in the face with equation L(x1, x2, x3) = l(h, u, y) of �(h, u, y) there is at least a
vertex v which is solvable [17, (3.8)]. Then inv(h) is collinear to an mth-power: Cv,m−1 �∈M

since m < p and the claim is proved. Take A = v and let

y1 = y + 1

m
C−1

0,m

∑

A

CA,m−1u A ∈ R. (9)

Note that, for any A with CA,m−1 �= 0, A ∈ �(h, u, y). So, for any i, 1 ≤ i ≤ n, and any A
with CA,m−1 �= 0, L(A) ≥ l(h, u, y). So if in the expansion of 3.2(1) we set

y = y1 − 1

m
C−1

0,m

∑

A

CA,m−1u A,

we get a new expansion

h =
∑

A,b

DA,b yb
1 u A, DA,b ∈ R× ∪ {0}, b ∈ N, A ∈ N

3, (10)

and DA,b �= 0 ⇒ L(A)+ bli (h, u, y) ≥ m. So

l(h, u, y1) ≥ l(h, u, y), 1 ≤ i ≤ n.

Suppose l(h, u, y1) = l(h, u, y). Then vL ,u,y1(y) = vL ,u,y1(y1) = l(h, u, y),

Y := inL ,u,y1(y) = Y1 − inL ,u,y1

(

1

m
C−1

0,m

∑

A

CA,m−1u A

)

, Y1 := inL ,u,y1(y1),

inL ,u,y1(h) =
∑

A,b,L(A)+l(h,u,y)b=l(h,u,y)m

inL ,u,y1(DA,b)Y
b
1 ( inL ,u,y1(u

A)), (11)

inL ,u,y1(h) =
∑

A,b,L(A)+l(h,u,y)b=l(h,u,y)m

inL ,u,y1(CA,b)

(

Y1 − inL ,u,y1

(

1

m
C−1

0,m

∑

A

CA,m−1u A

))b

, (12)

where (11) is the expansion of (12). In (11), the terms with b = m − 1 are all zero; in (10),
DA,m−1 �= 0 implies L(A) + l(h, u, y1)b > ml(h, u, y1). By the claim, l(h, u, y1) = 1: a
contradiction, hence

l(h, u, y1) > l(h, u, y).

Note that (9) is independent of the linear form L , so

li (h, u, y1) > li (h, u, y), for all i 1 ≤ i ≤ n.

By induction on the li (h, u, y)’s, we get (5). If (5) holds but not (6) for h, u, y, we make the
change of variable (7) and get (6).

Proposition 3.5.2 With notations as above, assume furthermore that (z, u)and (z′, u′) satisfy
(5) of the previous theorem. Then δ(h, u, z) = δ(h, u′, z′).

Proof This is obvious if ui = u′i , 1 ≤ i ≤ 3. On the other hand, the condition

inδ(h) �= λ(Z −�(U1, U2, U3))
m for every � ∈ k(x)[U1, U2, U3] (13)
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is preserved if z = z′ since δ(h, u, z) > 1 (Remark 3.4). In particular we have

δ(h, u, z) = δ(h, u′, z) ≤ δ(h, u′, z′)

and we conclude by symmetry that δ(h, u, z) = δ(h, u′, z′).

Definition 3.5.3 When z ∈ R is such that (5) (resp. (6) holds), we say that (z, u)

is prepared (resp. δ-prepared). If both of (5) and (6) hold for z ∈ R, we say that (z, u)

is fully prepared. If there is no ambiguity on u = (u1, u2, u3), we simply say that z is
prepared, δ-prepared, or fully-prepared.

If (z, u) is prepared, the invariant δ(h, u, z) will be henceforth denoted by δ(x).

Theorem 3.6 Let (y, u1, u2, u3) =: (y, u) be as before and E be a normal crossings divisor
E ⊆div(u1u2u3) ⊂ Spec(R). For a component div(ui ) of E, we define

di (u, y) := in f {xi |(x1, x2, x3) ∈ �(h, u, y)},

di (u) := in f {xi |(x1, x2, x3) ∈ �(h, u)}.
(i) Let z ∈ R be such that (z, u) = (z, u1, u2, u3) is prepared. Then

di (u) ≥ 1⇔ V (z, ui ) is a permissible blowing up center of Spec(R/(h)). (14)

(ii) We have di (u) > 0 if and only if Yi := V (h, ui )red is a regular surface.

(iii) Assume that di (u) > 0. Then di (u) = δ(ηi ), where ηi ∈ Z is the generic point
of Yi = V (h, ui )red as above; in particular, di (u) is independent of the choice of a
prepared (z, u) = (z, u1, u2, u3) containing ui .

Proof of (ii). Take z ∈ R such that �(h, u) = �(h, u, z), so h = zmmod(ui ) iff di (u) > 0
iff Y := V (z, ui ) = V (h, ui )red . We get

di (u) > 0⇔ (V (h, ui ))red is regular at x .

Proof of (i). In that hypersurface case, Y := V (z, ui ) ∈ SpecR permissible means
h ∈ (z, ui )

m which is equivalent to di (u) ≥ 1.
Proof of (iii). Let η be the generic point of Y = V (h, ui )red = V (z, ui ). The following

equivalence is straightforward

di (u) = 1⇔ V (z, ui ) is a permissible center of Spec(R/(h)) and τ(η) = 2.

If 0 < di (u) < 1, we obviously have di (u) = di (u, y) for every r.s.p. (y, u1, u2, u3)

(with 〈inx (h)〉 = 〈Y m〉).
We turn to the case:

di (u) > 1⇔ V (z, ui ) is a permissible center of Spec(R/(h)) and τ(ηi ) = 1.

We claim that di (u) = δ(ηi ). As V (z, ui ) = V (h, ui )red, this will prove the invariance of
di (u). We take i = 1 and write η for η1 in the following lemma.

Lemma 3.6.1 Let (y, u1, u2, u3) be as above and assume that d1(u, y) > 1. Then

d1(u, y) = δ(h, u1, y), (15)

where the right hand side is computed w.r.t. the datum (h) ⊂ R(y,u1). If furthermore (y, u)

is prepared, then

d1(u) = δ(η). (16)
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Proof By 3.1 (1), we have a finite expansion

h =
∑

A,b

CA,b ybu A, CA,b ∈ R×, b ∈ N, A ∈ N
3

that we rewrite as:

h =
∑

a1,b

(

∑

a2,a3

CA,bua2
2 ua3

3

)

ybua1
1 , A = (a1, a2, a3) ∈ N

3.

As d1(u, y) > 1, we have b + a1 > m for all b < m. Note that every
∑

a2,a3
CA,bua2

2 ua3
3 is

invertible in R(y,u1) = OZ ,η. Then δ(h, u1, y) = inf{ a1
m−b |b < m} = d1(u, y): this is (15).

Now suppose that y, u1, u2, u3 is prepared. We claim that y, u1 is prepared w.r.t. the datum
(h) ⊂ R(y,u1). If not, then

inδ(h) =
∑

a1+bd1=d1m

(

∑

a2,a3

CA,bua2
2 ua3

3

)

Y bua1
1 ∈ grδ

(

R(y,u1)

)

,

is proportional to an mth-power. So there exists some a1 with

a1 + (m − 1)d1 = d1m, and
∑

a2,a3

CA,bua2
2 ua3

3 �= 0,

so there exists some A with a1+ (m− 1)d1 = d1m and CA,m−1 �= 0. Then, as in 3.5 (9), we
change the variable y by y1 = y + 1

m C−1
0,m

∑

A CA,m−1u A ∈ R, we get a new expansion

h =
∑

A,b

DA,b yb
1 u A, DA,b ∈ R× ∪ {0}, b ∈ N, A ∈ N

3.

Now DA,b �= 0 implies Li (A)
li (h,u,y)

+ b ≥ m for each linear form Li such that

�(h, u) = {(x1, x2, x3)|Li (x1, x2, x3) ≥ 1, 1 ≤ i ≤ n}.
This holds in particular for the linear form L(x1, x2, x3) = 1

d1
x1. Since y is supposed to

be nonprepared for u1, the unique vertex d1(u1, y) of �(h, u1, y) ⊂ R
+ does not belong to

�(h, u1, y1). We get d1(u1, y1) > d1(u, y), a contradiction with the fact that �(h, u, y) was
minimal.

Definition and Notation 3.7 Given (y, u1, u2, u3) =: (y, u), h reduced, with assumptions
3.1(2)(3) and a normal crossings divisor E ⊂ div(u1u2u3) ⊂ Spec(R), we let di := di (u)

for each irreducible component div(ui ) of E. We let di := 0 whenever div(ui ) is not an
irreducible component of E.

We define ε(x, E) ∈ Q≥0 (or ε(x) for short) by:

ε(x, E) = δ(x)−
∑

div(ui )⊂E

di .

These invariants appear in [13] Ch.1 (II.3.3) in an equal characteristic context. The fol-
lowing remarks are obvious from the definitions.

Remark 3.8 We have

(i) ε(x, E) ∈ 1
m!N,

(ii) if ε(x, E) = 0, �(h, u) has only one vertex: the point v = (d1, d2, d3).
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Theorem 3.9 Given (y, u1, u2, u3) =: (y, u) and a divisor E ⊂ div(u1u2u3) ⊂ Spec(R)

as above, assume that ε(x, E) = 0. There exists a finite sequence of local blowing ups

(X, x) =: (X0, x0)←− (X1, x1)←− · · · ←− (Xn, xn),

where x0 = x, xi ∈ Xi , 0 ≤ i ≤ n is the center of v, each blowing up center Yi ⊂ Xi is
permissible in Hironaka’s sense, such that m(xn) < m(x).

Proof See the connection with [13, Ch.1 (II.4.6)]. Let z ∈ R be such that �(h, u, z) =
�(h, u). Then δ(x) =∑

1≤i≤3 di . Let I ⊂ {1, 2, 3} satisfy the two following conditions:
P (for permissibility):

∑

i∈I di ≥ 1,
M (for maximality): |I| minimal for P, i.e. the dimension of V(z, 〈ui , i ∈ I〉) is maximal

for P.
Note that I ⊂ {1, 2, 3} is not unique in general. Then we choose I with PM and we blow

up Z along V(z, 〈ui , i ∈ I〉). Let e : Z ′ −→ Z denote this blowing up, X ′ be the strict
transform of X, x ′ ∈ X ′ be a point above x , E ′ ⊂ Z ′ be the reduced inverse image of E .

We claim that for either (m(x ′),−τ(x ′)) <lex (m(x),−τ(x)) or
(

(m(x ′), τ (x ′)) = (m(x), τ (x)) = (m(x), 1) and ε(x ′) = 0 and δ(x ′) < δ(x)
)

.

Since δ(h, u, y) ∈ 1
m!N, a descending induction on δ(x) reduces to m(x ′) < m(x) or

(m(x ′) = m(x), τ (x ′) ≥ 2). As stated in Sect. 2, this completes the proof.
Proof of Claim We only treat the case I = {1, 2, 3}, the other cases being similar, if

somewhat simpler. By PM, I = {1, 2, 3} means

di > 0, di + d j < 1 when i �= j, 1 ≤ i, j ≤ 3. (17)

By [18, thm. 3, p. 331], if m(x ′) = m(x), then x ′ lies on the strict transform of z = 0.
The variables u1, u2, u3 play symmetric roles; so after reordering, it can be assumed that x ′
belongs to the affine chart SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′. Let

(z′, u′1, u′2, u′3) := (z/u1, u1, u2/u1, u3/u1).

Let

h = C0,m zm +
∑

|A|
δ(x)
+b≥m

CA,bzbua1
1 u2

a2 u3
a3 ,

be an expansion 3.1(1) of h with (z, u) fully prepared (Theorem 3.5 and Definition 3.5.3),

h′ := h/um
1 = C0,m z′m +

∑

|A|
δ(x)
+b=m

CA,bz′bu(m−b)(δ(x)−1)
1 u′2

a2 u′3
a3 + h′1 (18)

where h′1 ∈ I ′δ(x)
+ := (z′m+1

, z′bu(m−b)(δ(x)−1)+1
1 , 0 ≤ b ≤ m).

Since ε(x) = 0, CA,b invertible in (18) implies a2 = (m−b)d2, a3 = (m−b)d3. Note also
that δ(x)−1 = d1+d2+d3−1 < d1 by (17). As d1+d2 < 1 and d1+d3 < 1, m(x ′) = m(x)

implies x ′ = (z′, u′1, u′2, u′3). The coordinate change (z, u1, u2, u3) �→ (z′, u′1, u′2, u′3) is a
monomial substitution, so �(h′, u′, z′) is again minimal. With natural notations, we get
(d ′1, d ′2, d ′3) = (δ(x)− 1, d2, d3), ε(x ′) = 0 and

δ(x ′) = d ′1 + d ′2 + d ′3 = δ(x)− 1+ d2 + d3 < δ(x)

provided 〈inx ′(h′)〉 = 〈Z ′2〉, i.e. τ(x ′) = τ(x) = 1.
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Theorem 3.10 Given (y, u1, u2, u3) =: (y, u) and a divisor E ⊂ div(u1u2u3) ⊂ Spec(R)

as above, assume that E is equicharacteristic p = chark(x) and

Singm(x)(X) ⊂ E .

Then the set {y ∈ X |m(y) = m(x), ε(y) > 0 and τ(y) = 1} is locally closed.

Proof It is well known that the set

{y ∈ X |m(y) = m(x), τ (y) ≥ 2} ⊆ E

is locally closed. Suppose ε(x) = 0 for some closed point x ∈ E . We choose a r.s.p.
(z, u1, u2, u3) of R at x which is fully prepared. There is a finite expansion

h = C0,m zm +
∑

|A|
δ(x)
≥b

CA,bzm−bua1
1 u2

a2 u3
a3 (19)

with each CA,b invertible in R and ai ≥ bdi , i = 1, 2, 3. Since ε(x) = 0, there exists CA,b

such that ai = bdi , i = 1, 2, 3, with b ≥ 2 by full preparedness. Then the locus

{y ∈ X |m(y) = m(x), ε(y) = 0 or τ(y) ≥ 2}
contains the intersection of Singm(x)(X) with the complement of the hypersurface V (CA,b).

Theorem 3.11 With assumptions as in 3.10, assume furthermore ε(x) > 0 and let F be an
irreducible component of E with x ∈ F. Then

dim({y ∈ X |m(y) = m(x), ε(y) > 0 and τ(y) = 1} ∩ F) ≤ 1.

Proof Say div(u1) is the given component. If d1 < 1, then dim({y ∈ X |m(y) = m(x)} ∩
F) ≤ 1 and the result is clear.

Assume now d1 > 1 and pick a fully prepared (y, u1) w.r.t. to datum h ⊂ Ry,u1 . There
exists a nonempty Zariski open set � ⊆ F such that for y ∈ � there is an expansion

h = γ0zm +
∑

1≤i≤m

γi z
m−i uai

1 ,

with ai ≥ id1, γi ∈ OX,y for i ≥ 1. By definition of d1, some i ≥ 2 satisfies (ai = id1 and
γi �∈ (u1)). By full preparedness, we have γ1 ∈ (u1) if a1 = d1. Let �′ be the intersection of
� with complement of the proper closed subset V (γi ), so

�′ ⊆ {y ∈ X |m(y) = m(x), ε(y) = 0}.
Assume finally d1 = 1. The same construction now yields

�′ ⊆ {y ∈ X |m(y) = m(x), τ (y) ≥ 2}.

4 Construction of the divisor E

In this section, we reach the assumptions of 3.10. We show they are stable under a class of
local permissible blowing ups which we will prove ahead are sufficient to prove Theorem
1.3. We stick to Assumptions 3.4.1.
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Proposition 4.1 With assumptions as above, there exists a finite sequence of local blowing
ups

(Z , x) =: (Z0, x0)←− (Z1, x1)←− · · · ←− (Zn, xn),

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 ≤ i ≤ n, is the center of
v, each blowing up center Yi ⊂ Xi is permissible for Xi in Hironaka’s sense, such that one
the following properties holds:

(i) (m(xn),−τ(xn)) <lex (m(x),−τ(x)), or
(ii) (m(xn),−τ(xn)) = (m(x),−τ(x)) and there exists a (reduced) normal crossings divi-

sor En ⊂ (Zn, xn) of equicharacteristic p = chark(xn) = chark(x) such that

Cxn (En)⊥Cxn (Xn)red , (20)

Sn := Singm(xn) ⊂ En, (21)

where Cxn denotes the tangent cone and Singm(xn)(Xn) is the stalk at xn of the set of multi-
plicity m(x).

Proof We begin with the following lemma.

Lemma 4.2 With assumptions as above, assume furthermore that there exists a normal
crossings divisor E ⊂ (Z , x) such that

Cx (E)⊥Cx (X)red . (22)

Then for any local blowing up:

π : (Z ′, x ′) −→ (Z , x)

of center Y ⊂ X, permissible for (X, x) and at normal crossing with E, we have
(m(x ′), τ (x ′)) ≤ (m(x), τ (x)), where x ′ ∈ X ′ is the center of v; if equality holds, then

Cx ′(E ′)⊥Cx ′(X ′)red ,

where E ′ := π−1(E)red , X ′ the strict transform of X.

Proof The normal crossing assumption implies that we can choose a r.s.p. (v1, v2, v3, v4)

of R := OZ ,x such that Y = V (v1, . . . , ve) and E ⊆ div(v1 · · · v4). By permissibility,
we have h ∈ (v1, . . . , ve)

m(x). Assumption (22) means that 〈inx (h)〉 = 〈Zd〉, where Z �∈
〈inx (v j ), div(u j ) ⊆ E〉. Changing generators of the ideal of Y , we relabel parameters as
(z, u1, u2, u3) with

E= div(u1 · · · ud)⊂ div(u1u2u3), I (Y )=(z, {ui , i ∈ A}) for some A⊆{1, 2, 3}. (23)

If m(x ′) = m(x), x ′ belongs to the strict transform of div(z) by (22). Let i ∈ A such
that ui generates the ideal of the exceptional divisor of π in a neighbourhood of x ′ and let
z′ = z/ui . A local equation for (X ′, x ′) is h′ := h/um(x)

i , where

h′ ≡ γ z′m(x) mod (ui , {uk, k �∈ A}),
and

E ′ ⊂ div

⎛

⎝ui ×
∏

j �=i, j∈A

(u j

ui

)
∏

k �∈A

uk

⎞

⎠ ,

which proves the lemma.
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Proof of 4.1 If Singm(x)(X) = {x}, take E = div(u1u2u3) with coordinates as in (23) above.
If dim( Singm(x)(X)) ≥ 1, then any regular closed set Y ⊂ S := S0 is permissible for X .

In any case, we have (m(xn),−τ(xn)) ≤ (m(x),−τ(x)) since centers are permissible.
Let (C, x) be any curve contained in S. Since it is assumed that v has rank one, xn does

not belong to the strict transform Cn of C in Xn for n � 0 if we take Yi = {xi }, the center
of v in Xi for i ≥ 0. In particular, it can be assumed that the strict transform Sn of S in Xn

has pure dimension two. Take n = 0 in what follows.
We now apply classical embedded resolution theorems for S with dim(S) = 2 ([11] for

suitable generality). This involves blowing up closed points or regular curves on the successive
strict transforms of S. By blowing up finitely closed many points as before, it can be assumed
that every blown up curve is equicharacteristic p = chark(x). We reach the following
situation: the strict transform Sn of S at xn is empty or an irreducible surface with normal
crossings with the (equicharacteristic) reduced exceptional divisor En of (Zn, xn)→ (Z , x).
If S itself is equicharacteristic, enlarge En to En ∪ S. Otherwise, we blow up finitely many
times irreducible components of S ∩ En (i.e. equicharacteristic curves) to get xn �∈ Sn . This
is possible again because v has rank one.

5 Refined directrix, transverseness, encombrement

Assume that the conclusion of Proposition 4.1 (ii) holds. We will perform local blowing ups
which are permissible in Hironaka’s sense, with center Yn having normal crossing with En .
Take n = 0 in what follows, E = E0, and consider a local blowing up:

π : (Z ′, x ′) −→ (Z , x)

of center Y ⊂ X , permissible for (X, x) and at normal crossing with E . We assume that

(m(x ′), τ (x ′)) = (m(x), τ (x)),

where x ′ ∈ X ′ is the center of v. By Lemma 4.2, we have

Cx ′(E ′)⊥Cx ′(X ′)red ,

where E ′ := π−1(E)red , X ′ the strict transform of X in Z ′.

Definition and Notation 5.1 Let (z, u) be fully prepared with E ⊂div(u1u2u3) ⊂ Spec(R)

as above. Let

F := inδ(h) = Zm +
∑

2≤ j≤m

Zm− j Fj (U1, U2, U3) ∈ grδ(R) = k(x)[Z , U1, U2, U3],

where Z = inδ(z), Ui = inδ(ui ), 1 ≤ i ≤ 3 (notations of 3.3.1). Each Fj is zero or
homogeneous of degree jδ(x); we have Fj = 0 if jδ(x) �∈ N.

We define the refined tangent ideal of X at x as the ideal

Ix :=
⎛

⎝Z ,
∏

div(ui )⊂E

U−m!di
i F

m!
j

j , 1 ≤ j ≤ m

⎞

⎠ ⊂ k(x)[Z , U1, U2, U3].

We define the refined directrix of X at x as the smallest vector subspace V ⊆ 〈U1, U2, U3〉
such that {U−m!di

i F
m!
j

j | 1 ≤ j ≤ m, div(ui ) ⊂ E} ⊆ k(x)[V].
Let ρ(x) := dim(V).
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Remark 5.1.1 The following holds:

(i) U � jdi �
i divides Fj , 2 ≤ j ≤ m, for 1 ≤ i ≤ 3 such that div(ui ) ⊂ E .

(ii) Ix and V do not depend upon choices of z, u satisfying the assumptions.
(iii) the polynomials

U−m!di
i F

m!
j

j , 1 ≤ j ≤ m, 1 ≤ i ≤ 3

are zero or homogeneous of degree m!ε(x).

Statement (i) is a consequence of the definition of di . For (ii), suppose (z′, u′) is fully
prepared, where E ⊂ ÷(u′1u′2u′3). Let

u j = a1, j u
′
1 + a2, j u

′
2 + a3, j u

′
3 + b j z, ai, j , b j ∈ R, 1 ≤ i, j ≤ 3,

for some matrix (ai, j ) ∈ GL(3, R). Since τ(x) = 1, we have

degU j = degU ′j =
1

δ(x)
< degZ = 1

in grδ . Computing w.r.t. the r.s.p. (z, u′), we get

inδ(h) = Zm +
∑

2≤ j≤m

Zm− j F ′j (U ′1, U ′2, U ′3) ∈ grδ(R) = k(x)[Z , U ′1, U ′2, U ′3],

with F ′j (U ′1, U ′2, U ′3) = Fj (M.(U ′1, U ′2, U ′3)), M being the residue of M in GL(3, k(x)).

Since (z′, u′) is fully prepared, no term in Zm−1 occurs in inδ(h) ∈ k(x)[Z ′, U ′1, U ′2, U ′3]
and this implies that 〈 inδ(Z)〉 = 〈 inδ(Z ′)〉.

Statement (iii) immediately follows from definition 3.7.

Definition 5.2 Let E be a fixed normal crossings divisor and (z, u) be fully prepared (always
with the condition E ⊂ div(u1u2u3) ⊂ Spec(R)) as above.

We call “transverseness” index of x , denoted by t (x), the maximal dimension of a subspace
of V which is transverse to 〈Ui , div(ui ) ⊂ E〉. This is independent of the choice of a fully
prepared r.s.p. (z, u) by Remark 5.1.1(ii).

We call “encombrement” of x , denoted by e(x), the minimum number of Ui ’s among all
possible fully prepared (z, u) necessary to write a basis of V .

We define an invariant

ι(x) := (m(x),−τ(x), ε(x),−ρ(x),−t (x),−e(x)) ∈ N

×{−4,−3,−2,−1} × Q≥0 × {−3,−2,−1, 0}3.
For convenience, we extend the definition when τ(x) ≥ 2 by letting ι(x) := (m(x),−τ(x), 0,

0, 0), Theorem 1.3 being already proved in this special case (Sect. 2). Note that ε(x) ∈ 1
m(x)!N,

so any decreasing sequence of values (for the lexicographical ordering) taken by ι is finite.

Example 5.2.1 Assume p ≥ 5.

(i) h = z3 + u2
1(u1 + u2 + u3)

2, E = div(u1). Then δ(x) = 4
3 , d1(x) = 2

3 , V =
〈U1+U2+U3〉, ρ(x) = 1, t (x) = 1, e(x) = 1: take the r.s.p. (z, u1, u1+u2+u3, u3).

(ii) h = z3 + u2
1(u1 + u2 + u3)

2, E = div(u1u2u3). Then δ(x) = 4
3 , d1(x) = 2

3 ,
d2(x) = d3(x) = 0, V = 〈U1 + U2 + U3〉, ρ(x) = 1, t (x) = 0, e(x) = 3: the only
choice allowed upon (u1, u2, u3) is permuting or multiplying by a unit in R.
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(iii) h = z3 + u2
1(u

2
1 + u2

2), E = div(u1). Then δ(x) = 4
3 , d1(x) = 2

3 , V = 〈U1, U2〉,
ρ(x) = 2, t (x) = 1, e(x) = 2.

(iv) h = z3 + u2
1(u

2
1 + u2

2), E = div(u1u2). Then δ(x) = 4
3 , d1(x) = 2

3 , d2(x) = 0, V =
〈U1, U2〉, ρ(x) = 2, t (x) = 0, e(x) = 2.

Remark 5.2.2 The French “encombrement” was proposed by J. Giraud twenty years ago
(English: “cumbersomeness index” roughly).

6 Permissible blowing ups, behaviour of the invariants

We stick to the assumptions of the previous section and assume furthermore that ε(x) > 0.

Definition 6.1 An ε-permissible center (permissible center for short) Y at x is one of the
following:

(i) either Y := {x} = V (z, u1, u2, u3),
(ii) or Y := V (z, u1, u2) with (z, u) fully prepared,

d1 + d2 + ε(x) ≥ 1 (24)

and

l(h, u, z) = m, (25)

where L denotes the linear form L(x1, x2, x3) = x1+x2
d1+d2+ε(x)

(Definition 3.2).

Proposition 6.2 An ε-permissible center at x is permissible in Hironaka’s sense.

Proof Indeed, we have just to look at the case of a curve V(z, u1, u2). In that latter case, as
d1 + d2 + ε(x) ≥ 1, we have

ordη(h) ≥ vL ,h,u,z(h) = m,

where η is the generic point of V(z, u1, u2), so

ordη(h) = m,

which means exactly that V(z, u1, u2) is permissible in Hironaka’s sense.
‘

Proposition 6.3 Let π : Z ′ −→ Z be the blowing up along an ε-permissible center Y at x,
X ′ be the strict transform of X (with transformed equation h′ at the center x ′ ∈ X ′ of v). We
have:

(i) ι(x ′) ≤ ι(x) (Definition 5.2). If equality holds (in which case we say that x ′ is “very
near” x), then E ′ := π−1(E)red is transverse to the directrix T ′ of X ′ at x ′.

(ii) if Y = {x} and (m(x ′),−τ(x ′), ε(x ′)) = (m(x),−τ(x), ε(x)), then x ′ lies on

Projk(x)[Z , U1, U2, U3]/(Z , V) ⊂ Proj(grM(R)) = P
3
k(x)

with notations as in 5.1. The refined directrix V ′ at x ′ satisfies V ′ ≡ U−1V mod〈U 〉 where
U = inx ′(u), u an equation of the exceptional divisor of π .
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Proof First assume that Y = {x}. By [18, thm.3, p. 331], if m(x ′) = m(x), then x ′ lies on the
strict transform of z = 0. The variables u1, u2, u3 play symmetric roles; o after reordering,
it can be assumed that x ′ belongs to the affine chart SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′. Let

(z′, u′1, u′2, u′3) := (z/u1, u1, u2/u1, u3/u1).

We can choose a r.s.p. at x ′ in the following way: if x ′ is the origin, take (z′, u′1, u′2, u′3);
f x ′ belongs to the strict transform of, say div(u2), we can take (z′, u′1, u′2, v3) with v3 =
∑

a λau′3
a , λa ∈ R a unit or zero (the sum is finite) whose residue

∑

a λaU3
a ∈ k(x)[U3]

is an irreducible polynomial; in the general case u′2(x ′)u′3(x ′) �= 0, we take (z′, u′1, v2, v3)

where vc =∑

a,b λa,b,cu′2
au′3

b, c = 2, 3 (sums are finite), λa,b,c ∈ R a unit or zero, and

〈

∑

a,b

λa,b,cU2
aU3

b, c = 1, 2

〉

⊂ k(x)[U2, U3]

is a maximal ideal. Let

F := Zm +
∑

2≤ j≤m

Zm− j U a(1, j)
1 U a(2, j)

2 U a(3, j)
3 G j (U1, U2, U3)

:= Zm +
∑

2≤ j≤m

Zm− j Fj (U1, U2, U3) := inδ(h) ∈ grδ(R) = k(x)[Z , U1, U2, U3],

(26)

with a(i, j) ≥ jdi , 2 ≤ j ≤ m, 1 ≤ i ≤ 3, G j ∈ k(x)[U1, U2, U3] homogeneous, G j = 0
or deg(G j ) = jδ(x)− (a(1, j)+ a(2, j)+ a(3, j)) and G j not divisible by Ui , 1 ≤ i ≤ 3.

Let h′ := h/um
1 define the strict transform of h. We define the linear form

L ′(x ′1, x ′2, x ′3) :=
x ′1

δ(x)− 1

with associated valuation v′ := vL ′,h′,u′,z′ (Definition 3.2). We have

inv′(h
′) = Z ′m +

∑

2≤ j≤m

Z ′m− j U ′1
j (δ(x)−1)u′2

a(2, j)u′3
a(3, j)G j (1, u′2, u′3) ∈ grv′(R′),

(27)

where grv′(R′) = R′/(z′, u′1)[Z ′, U ′1]. Here, the meaning of G j (1, u′2, u′3) is given by the
inclusion

k(x) = R/M→ R′/(u′1)→ R′/(z′, u′1).

By (27), x ′1 = δ(x) − 1 is the minimum value of the first coordinate of points in
�(h′, u′1, v2, v3, z′). Since z is δ-prepared, no vertex of �(h′, u′1, v2, v3, z′) with first coor-
dinate equal to x ′1 = δ(x)− 1 is solvable. We get

d1(x ′) = δ(x)− 1,

and for at least one vertex (x ′1 = δ(x)− 1, x ′2, x ′3), we have

x ′2 + x ′3 ≤ min

{

ordx ′(u′2
a(2, j)u′3

a(3, j)G j (1, u′2, u′3))
j

, 2 ≤ j ≤ m

}

.
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In case x ′ belongs to the strict transform of some div(ui ), i = 2, 3, we have di (x ′) = di (x)

for u′i (x ′) = 0 by 3.6(iii). This leads to:

ε(x ′) ≤ min

{

ordx ′(u′2
a(2, j)− jd2 u′3

a(3, j)− jd3 G j (1, u′2, u′3))
j

, 2 ≤ j ≤ m

}

≤ ε(x) (28)

with the convention: ordx ′(u′i
a
) = 0 when a ∈ Q+ and u′i (x ′) �= 0, ordx ′(u′i

a
) = a when

u′i (x ′) = 0. This proves (−τ(x ′), ε(x ′)) ≤ (−τ(x), ε(x)).
Assume that (−τ(x ′), ε(x ′)) = (−τ(x), ε(x)). Then

ordx ′

⎛

⎝

∏

div(ui )⊂E

u′i
−m!(a(i, j)− jdi )Fj (1, u′2, u′3)

m!
j

⎞

⎠

= deg

⎛

⎝

∏

div(ui )⊂E

Ui
−m!(a(i, j)− jdi )F

m!
j

j

⎞

⎠

for each j with Fj �= 0. By [18, Theorems 2 and 3], this means that x ′ lies on

Projk(x)[Z , U1, U2, U3]/(Z , V) ⊂ Projk(x)[Z , U1, U2, U3] = P
3
k(x). (29)

This proves the first assertion of (ii) in this case. All other assertions are easy consequences
of (28) and of its explicitation (29).

Assume now that u′2(x ′)u′3(x ′) �= 0. If x ′ is rational over x , i.e. u′2(x ′) = λ ∈
k(x), u′3(x ′) = μ ∈ k(x), we have

Ix ′ ≡ (Z ′, G j (1, V2 − λ, V3 − μ)
m!
j , 2 ≤ j ≤ m) mod (U ′1), (30)

where Ix ′ is the refined tangent ideal of x ′ (cf. 5.1(ii)). This proves the last assertion of (ii)
in this case. Finally, if x ′ is not rational over x , then dim(V) = 1. We get

V = 〈aU1 + bU2 + cU3〉, a, b, c ∈ k(x), (b, c) �= (0, 0).

If b �= 0, we take v2 := a + bu′2 + cu′3mod(u1) and we get by 5.1.1

Ix ′ = (Z ′, V m!ε(x)
2 ) mod (U ′1), (31)

which proves the last assertion of (ii) in this case. All other assertions are easy as in the
previous case.

We now consider blowing up along a curve Y = V (z, u1, u2).
By [18, thm.3, p. 331], if m(x ′) = m(x), then x ′ lies on the strict transform of z = 0. The

variables u1, u2 play symmetric roles; so after reordering, it can be assumed that x ′ belongs
to the affine chart SpecR[z/u1, u2/u1, u3] ⊂ Z ′. Let

(z′, u′1, u′2, u′3) := (z/u1, u1, u2/u1, u3).

We can choose a r.s.p. at x ′ in the following way: if x ′ is the origin, take (z′, u′1, u′2, u′3);
otherwise take (z′, u′1, v2, u′3) where vv = ∑

a λau′3
a , λa ∈ R a unit or zero (the sum is

finite) whose residue
∑

a λaU3
a ∈ k(x)[U3] is an irreducible polynomial.

With notations (26), since V(z, u1, u2) is ε-permissible, we have

a(3, j) = jd3, G j ∈ k(x)[U1, U2].
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Let h′ := h/um
1 define the strict transform of h. Equation (27) gets replaced by

inv′(h
′) = �0 Z ′m +

∑

2≤ j≤m

Z ′m− j U ′1
j (δ(x)−1−d3)u′2

a2 u′3
jd3� j ∈ grv′(R′)

= R′/(z′, u′1)[Z ′, U ′1], (27*)

with � j ∈ R′/(z′, u′1) whose residue in R′/(z′, u′1, u′3) is G j (1, u′2) for 2 ≤ j ≤ m, �0 a
unit.

By (27*), δ(x) − 1 − d3 is the minimum value of the first coordinate of points in
�(h′, u′1, v2, u′3, z′). As in (26) there is no Z ′m−1, each vertex of �(h′, u′1, v2, u′3, z′) with
first coordinate equal to δ(x)− 1− d3 is not solvable. Then

d1(x ′) = δ(x)− 1− d3,

and for at least one vertex (x ′1 = δ(x)− 1− d3, x ′2, x ′3), we have

x ′2 + x ′3 ≤ min

{

ordx ′(u′2
a2 u′3

a3 G j (1, u′2))
j

, 2 ≤ j ≤ m

}

.

By Theorem 3.6(iii), we have d3(x ′) = d3. If u′2(x ′) �= 0, this gives

ε(x ′) ≤ min

{

ordx ′(u′3
a3−d3 G j (1, u′2))

j
, 2 ≤ j ≤ m

}

≤ ε(x).

If u′2(x ′) = 0, we also have d2(x ′) = d2 by 3.6(iii). This leads to:

ε(x ′) ≤ inh

{

ordx ′(u′2
a2−d2 u′3

a3−d3 G j (1, u′2))
j

, 2 ≤ j ≤ m

}

≤ ε(x)

with the convention: ordx ′(u′i
a
) = 0 when a ∈ Q

+ and u′i (x ′) �= 0, ordx ′(u′i
a
) = a when

u′i (x ′) = 0.
If ε(x ′) = ε(x), then

ordx ′

⎛

⎝

∏

div(ui )⊂E

u′i
−m!(a(i, j)− jdi )G j (1, u′2)

m!
j

⎞

⎠ = deg

⎛

⎝

∏

div(ui )⊂E

Ui
−m!(a(i, j)− jdi )G

m!
j

j

⎞

⎠

for each j with G j �= 0. By [18, Theorems 2 and 3], this means that x ′ lies on

Projk(x)[Z , U1, U2]/(Z , V) ⊂ Projk(x)[Z , U1, U2], (29*)

where the latter is identified with π−1(x) ⊂ Z ′. The proof now runs parallel to the case
Y = {x}.
Proposition 6.4 With assumption as in 6.3, assume e(x) = 3 and Y = {x}. Then x ′ is not
very near x, i.e. ι(x ′) < ι(x) (Definition 5.2).

Proof If ρ(x) = 3, this follows from 6.3(ii), since Projk(x)[Z , U1, U2, U3]/(Z , V) = ∅.
When ρ(x) = 2, we have t (x) < 2 necessarily: otherwise we should have

E ⊆ div(u1), V = 〈U2, U3〉 mod (U1).

By a linear change on the free variables (u2, u3), we would get

V = 〈U2, U3〉,
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i.e. e(x) = 2, a contradiction.
When ρ(x) = 2, t (x) = 1, we can choose parameters such that

E = div(u1u2), V = 〈U3, αU1 +U2〉, α ∈ k(x)×.

By Proposition 6.3(ii), we have

V ′ ≡ 〈U ′3, V ′2〉 mod (U ′1),

with E ′ = div(u′1), V ′2 = inx ′(a + u2/u1), where a ∈ R is a preimage of α. Then ρ(x ′) ≥
t (x ′) ≥ 2.

When ρ(x) = 2, t (x) = 0, then, up to a permutation on u1, u2, u3, we have E =
div(u1u2u3) and

V = 〈U1 + αU2, βU2 +U3, 〉, α ∈ k(x)×, β ∈ k(x).

By Proposition 6.3(ii), we can take π−1(x) = div(u2) locally at x ′, and r.s.p.

(z′, v′1, u′2, v′3) := (z/u2, u1/u2 + a, u2, u3/u2 + b),

where a, b ∈ R are preimages of α, β. In particular we get E ⊆ div(u′2u′3). On the other
hand, we have

V ′ ≡ 〈V ′1, V ′3〉 mod (U ′2),

and this proves that t (x ′) ≥ 1.
When ρ(x) = 1, then e(x) = 3 implies E = div(u1u2u3) (so t (x) = 0) and

V = 〈αU1 + βU2 +U3, 〉, α, β ∈ k(x)×

up to renumbering parameters. By Proposition 6.3(ii), we can choose E ′ ⊆ div(u′1u′2), say
π−1(x) = div(u1) locally at x ′ and r.s.p.

(z′, u′1, v′2, v′3) := (z/u1, u1, v
′
2, a + bu2/u1 + u3/u1),

at x ′, where a, b ∈ R are preimages of α, β. Since V ′3 ∈ V ′ ⊕ 〈U1〉, we get t (x ′) ≥ 1.

Proposition 6.5 Let x satisfy the conclusion of Proposition 4.1(ii) and assume e(x) = 2.
There exists a finite sequence of local blowing ups

(Z , x) =: (Z0, x0)←− (Z1, x1)←− · · · ←− (Zn, xn), (32)

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 ≤ i ≤ n, is the center of
v, each blowing up center is Yi = {xi } such that ι(x ′) < ι(x).

Proof First assume that ρ(x) = 1. Then t (x) = 0, div(u2u3) ⊆ E and we have V =
〈αU2 +U3〉, α ∈ k(x)× after possibly renumbering parameters. If x ′ does not belong to the
strict transform of div(u2), we can take π−1(x) = div(u2) locally at x ′, and r.s.p.

(z′, v′1, u′2, v′3) := (z/u2, v
′
1, u2, a + u3/u2),

where a ∈ R is a preimage of α. In particular we get E ′ ⊆ div(u′1u′2), with u′1 = u1/u2. On
the other hand, we have

V ′ ≡ 〈V ′3〉 mod (U ′2),
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whence t (x ′) ≥ 1, so ι(x ′) < ι(x). Assume now that x ′ belongs to the strict transform of
div(u2). We can take π−1(x) = div(u1) locally at x ′, and r.s.p.

(z′, u′1, u′2, u′3) := (z/u1, u1, u2/u1, u3/u1).

We get E = div(u′1u′2u′3) and

V ′ ≡ 〈αU ′2 +U ′3〉 mod (U ′1).

If ι(x ′) = ι(x), then V ′ = 〈αU ′2 + U ′3〉 and iterate. Since the valuation v has rank one, say
v(u2) < nv(u1) for some n > 0, the process stops after iterating n times.

Assume that ρ(x) = 2. Then V = 〈U2, U3〉 after possibly renumbering parameters. We
can take π−1(x) = div(u1) locally at x ′ and r.s.p.

(z′, u′1, u′2, u′3) := (z/u1, u1, u2/u1, u3/u1).

We get div(u′1) ⊆ E ′ and

V ′ ≡ 〈U ′2, U ′3〉 mod (U ′1),

hence 〈U ′2 + α2U ′1, U ′3 + α3U ′1〉 ⊆ V ′ for some α2, α3 ∈ k(x). If ι(x ′) = ι(x), then equality
holds; moreover αi = 0 whenever div(ui ) ⊆ E , i = 2 or i = 3.

Iterating, there exists a regular formal curve ̂Y ⊂ X passing through all points x, x1 :=
x ′, . . . , xn , taking Yi = {xi } for each i ≥ 0. By standard arguments, ̂Y ⊆ Singm(x)(X). Our
assumptions (beginning of Sect. 5) force ̂Y ⊂ E , say ̂Y ⊂ div(u2). One concludes as in the
case ρ(x) = 1.

7 Proof of the main theorem

By Theorem 3.9, a reduction in m = m(x) can be achieved when ε(x, E) = 0 for some
normal crossings divisor E ⊆ div(u1u2u3). The previous section (Propositions 6.4 and 6.5)
reduces Theorem 1.3 to the only case ε(x) > 0, e(x) = 1. There remains to prove the
following:

Theorem 7.1 Let x satisfy the conclusion of Proposition 4.1(ii) (w.r.t. E ⊆ div(u1u2u3))

and assume ε(x) > 0, e(x) = 1. There exists a finite sequence of local blowing ups

(Z , x) =: (Z0, x0)←− (Z1, x1)←− · · · ←− (Zn, xn), (33)

where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 ≤ i ≤ n, is the center of
v, each blowing up center Yi ⊂ Xi is permissible in Hironaka’s sense, such that

(i) ι(xn) < ι(x), and
(ii) xn satisfies the conclusion of Proposition 4.1(ii) (w.r.t. the strict transform En of E in

Zn) if ((m(xn), τ (xn)) = (m(x), τ (x)) and ε(xn) > 0).

The proof is long, needing new invariants and the control of their behavior under permis-
sible blowing ups. There are two different cases:

(i) t (x) = 0, e(x) = 1,
(ii) t (x) = e(x) = 1.

In both cases, we choose the indices so that V = 〈U3〉. We assume that
(P1) (z, u) is fully prepared, and
(P2) E ⊆ div(u1u2u3).
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7.2 A new invariant B, preparation of the free variable (case (ii)).
Let us remind the convention di (x) = 0 for div(ui ) �⊂ E, 1 ≤ i ≤ 3. In particular,

d3(x) = 0 in case (ii). For B ∈ Q+, define the monomial valuation vB by

vB(z) = 1, vB(u3) := 1

ε(x)+ d3 + d1+d2
B

=: BvB(u1) = BvB(u2).

We choose B ∈ N ∪ {+∞} maximal such that, up to the multiplication by an element of
k(x)×, invB (h) takes the following form:

invB (h) = Zm +
∑

1≤ j≤m

Zm− j� j (U1, U2, U3),

with

degU3
(� j ) ≤ j (d3 + ε(x)), 1 ≤ j ≤ m,

� j (U1, U2, U3) = U jd1
1 U jd2

2 U jd3
3 (λ j U

jε(x)
3 + Pj (U1, U2, U3)) (34)

with λ j ∈ k(x) and ( jd1, jd2, jε(x)) ∈ N
3 whenever equality holds; furthermore, equality

holds for some j , 2 ≤ j ≤ m.
Note that we necessarily have � j (U1, U2, U3) �= λ j U

jε(x)
3 for some j if B < +∞,

since B is taken to be maximal. Moreover, since (z, u) is fully prepared and V = 〈U3〉, we
necessarily have B ≥ 1 and degU3

(�1) < d3 + ε(x).
This construction builds up a face of �(h, u, z) with equation

x1 + x2

B(ε(x)+ d3)+ d1 + d2
+ x3

(ε(x)+ d3 + d1+d2
B )
= 1,

for some B which contains the point x := (d1, d2, ε(x)+ d3) and at least another point.
Let p be the projection

p : R3 − {x} −→ {x3 = 0}.
For analytic computations, note that if M = zm− j ua1

1 ua2
2 u3

a3 is a monomial appearing with
nonzero coefficient in some expansion 3.1(1) of h and j ≥ 1, then M defines the point xM :

M = zm− j ua1
1 ua2

2 u3
a3 ↔ xM =

(

a1

j
,

a2

j
,

a3

j

)

∈ �(h, u, z),

and

p(xM ) =
(

d1 +
a1
j − d1

d3 + ε(x)− a3
j

, d2 +
a2
j − d2

d3 + ε(x)− a3
j

)

. (35)

Then B + d1 + d2 is the minimum value x1 + x2 for points in p(�(h, u, z) ∩ {x3 <

ε(x)+ d3}).
We define �2(h; u1, u2; u3) ⊆ (R+)2 by the formula

(d1, d2)+�2(h; u1, u2; u3) := p(�(h, u, z) ∩ {x3 < ε(x)+ d3}).
The main idea is that �2(h; u1, u2; u3) acts as the characteristic polyhedron of a surface
singularity and in the following, we mimic [2,11], all these following Hironaka.

In case (ii) ( div(u3) �⊂ E), we will require two extra conditions (to be achieved in 7.3
below by possibly changing u3):
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(P3) there is no homogeneous P ∈ k(x)[U1, U2], P �= 0, such that

invB (h) = Zm +
∑

2≤ j≤m

Zm− jλ j U
jd1

1 U jd2
2 (U3 + P(U1, U2))

jε(x), (36)

with the convention λ j = 0 when ( jd1, jd2, jε(x)) �∈ N
3;

(P4) if B < +∞, let x2 = (d1 + A(1), β + d2) be the vertex of �2(h; u1, u2; u3) with
minimal first coordinate. Then x2 does not vanish by changing u3 to u3 + γ uα

1 uβ
2 , γ ∈ R, γ

invertible.

Proposition 7.3 With assumptions as above, there exist (z, u1, u2, u3), z, u3 ∈ ̂R such that
(P1)(P2) and (P3)(P4) (in case (ii) with B <∞) are satisfied.

Proof The conditions (P1) (P2) can be achieved easily. If (P3) or (P4) is not achieved, we
make a translation on u3: we replace u3 by u3 +∑

a1,a2
γa1,a2 ua1

1 ua2
2 , γa1,a2 ∈ R, (a1, a2) ∈

p(�(h, u, z) ∩ {x3 < ε(x)+ d3}). To achieve (P3), we take
∑

a1,a2

γa1,a2U a1
1 U a2

2 := P(U1, U2),

P(U1, U2) as in (36), which makes B increase if (P3) is not achieved. To achieve (P4)
we change u3 to u3 + γ uα

1 uβ
2 as in (P4)), which makes (A(1), β) strictly increase for the

lexicographical ordering.
In both cases, this translation makes �2(h; u1, u2; u3) smaller. These translations may

spoil (P1), so each must be followed by a translation on z to get again (P1). This translation
makes �2(h; u1, u2; u3) not bigger. The process may be infinite, but since �2(h; u1, u2; u3)

gets smaller at each step, this converges to some z, u3 ∈ ̂R.

Definition 7.3.1 With assumptions as above, a r.s.p. (z, u1, u2, u3), z, u3 ∈ ̂R such that
(P1)(P2) and (P3)(P4) (in case (ii) with B <∞) are satisfied is said to be well prepared. For
such (z, u1, u2, u3), the number B defined above is denoted by B(z, u1, u2, u3) or B(x) for
short, even if it may depend on the choice of (z, u1, u2, u3).

7.4. We begin the proof of Theorem VI.1 by the special case B(x) = ∞.
When B(z, u1, u2, u3) = ∞, �(h, u, z) has only one vertex with coordinates (d1, d2, ε(x)

+d3). Since ε(x) > 0, we have div(u3) �⊂ E , hence t (x) = 1 (case (ii)) and E ⊆ div(u1u2),
d3 = 0. The proof is a variation of that of Theorem 3.9, checking carefully the algebraicity
of the blowing up centers.

It has been assumed from Sect. 5 on that Singm(X) ⊆ E , so ε(x, E) < 1 necessarily
since V (z, u3) ⊆ Singm(X) otherwise.

By blowing up the surfaces V (z, ui ), div(ui ) ⊆ E , it can be assumed w.l.o.g. that di < 1.
Similarly, it can be assumed that d1 + d2 < 1 by blowing up V (z, u1, u2).

Assume that V (z, ui , u3) ⊆ Singm(X) ⊆ E , i.e. di + ε(x) ≥ 1, i = 1 or i = 2. Then
Ci := V (z, ui , u3) is a formal irreducible component of Singm(X). By excellence, its Zariski
closure Ci is a curve on X . On the other hand, Ci is contained in V (z, ui ), so Ci itself is a
curve on X . By blowing up Ci , we may assume that di + ε(x) < 1, i = 1, 2.

At this point, we have reached the situation of Theorem 3.9(17) and the proof therein
extends without changes: we eventually get reduction in (m(x), τ (x)) by blowing up closed
points. We observe that Theorem 7.1 can also be phrased as follows in this case: En can be
enlarged to a new normal crossings divisor Fn such that ε(xn, Fn) = 0.

From now on, we assume that

e(x) = 1, B(x) <∞. (Hyp)
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Definition 7.4.1 (New invariants) We define A1, β by: (d1 + A1, β + d2) is the vertex of
minimal first coordinate of

p(�(h, u, z) ∩ {x3 < ε(x)+ d3}).
We define A2 by: d2 + A2 is the minimal second coordinate of the points of

p(�(h, u, z) ∩ {x3 < ε(x)+ d3}).
We define C(u, z) (or C(x) for short) by;

C(u, z) = B(u, z)− A1 − A2.

Finally, we define γ (u, z) (or γ (x) for short) as follows:

(i) γ (u, z) := �β(u, z)� ≥ 0 if (E ⊆ div(u1) and t (x) = 1);
(ii) γ (u, z) := �β(u, z)� ≥ 0 if (E ⊆ div(u1u3) and t (x) = 0);

(iii) γ (u, z) := 1 + �C(u, z)� ≥ 1 otherwise, i.e if (E = div(u1u2) and t (x) = 1 ) or if
(E = div(u1u2u3) and t (x) = 0).

Proposition 7.4.2 (Behaviour of the new invariants under blowing up along an
ε-permissible curve). Assume that (Hyp) is true, (z, u) is well prepared and let

Ci := V(z, ui , u3), i = 1 or i = 2.

Assume that Ci is ε-permissible in ̂X = Spec(̂R/(h)), for some i, i = 1, 2, then:

(i) ε(x)+ d3 + di ≥ 1,
(ii) Ci is algebraic, i.e., if in achieving (P3)(P4), we get z, u3 ∈ ̂R, then there exists a curve

in SpecR whose formal completion is V(z, ui , u3).
(iii) let πi : (Z ′, x ′)→ (Z , x) be the blowing up along Ci , X ′ ⊂ Z ′ the strict transform of

X and x ′ ∈ X ′ the center of v, with ι(x ′) = ι(x). Then:
(iv) if i = 1 and x ′ is the point of Z ′ with parameters

(z′, u′1, u′2, u′3) := (z/u1, u1, u2, u3/u1),

these are well-prepared parameters and

β(x ′) = β(x), A1(x ′) = A1(x)− 1, A2(x ′) = A2(x),

d1(x ′) = d1(x)+ ε(x)+ d3(x)− 1, d2(x ′) = d2(x), d3(x ′) = d3(x);
(v) if i = 2 and x ′ is the point of Z ′ with parameters

(z′, u′1, u′2, u′3) := (z/u2, u1, u2, u3/u2),

these are well-prepared parameters and

β(x ′) = β(x)− 1, A1(x ′) = A1(x), A2(x ′) = A2(x)− 1,

d2(x ′) = d1(x)+ ε(x)+ d3(x)− 1, d1(x ′) = d1(x).

Proof of (i). Condition (i) is equivalent to h ∈ (z, u3, ui )
m .

Proof of (ii)(iii). Let us note that (ii) is clear when div(u3) ⊂ E , because in that case, we
do not make (P3)(P4), z, u1, u3 ∈ R. When div(u3) �⊂ E , we will prove that

(ii)’ Ci is the only analytic branch in div(ui ) ∩ Singm(X) ∩ {y ∈ X : ε(y) > 0} not
contained in div(u j ), j = 1, 2, j �= i .
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By 3.10, 3.11, this will prove (ii). We compute πi : X ′ ⊂ Z ′ −→ X ′ ⊂ Z ′. By symmetry,
we suppose i = 1. Let us expand:

h =
∑

A,m− j,0≤ j≤m

CA,m− j z
m− j ua1

1 ua2
2 u3

a3 ,

CA,m− j ∈ R, CA,m− j invertible or zero, CA,m− j �= 0 ⇒ a1 + a2 + a3 ≥ jδ(x), ai ≥
jdi , i = 1, 2, 3, C0,0 invertible.

Since h ≡ δzm mod(u1, u2, u3), δ ∈ R a unit, X ′ ∩ SpecR[u1/z, u3/z] ⊂ Z ′ does
not contain the point (z, u1/z, u2, u3/z). Assume now that x ′ belongs to the affine chart
SpecR[z/u3, u1/u3] ⊂ Z ′. Let

(z′, u′1, u′2, u′3) := (z/u3, u1/u3, u2, u3).

We have

h′ := u−m
3 h =

∑

CA,m− j z
′m− j ua1

1 ua2
2 u′3

a1+a3− j
, (37)

h′ = C0,m z′m +
∑

2≤ j≤m

γ j u
′
1

jd1 u jd2
2 u3

j (d1+d3+ε(x)−1) modulo I+(z′, u′1, u2, u3), (38)

where, γ j ∈ R, γ j invertible or zero, γ j = 0 when one exponent is not integer,

γ j = C jd1, jd2, j (d3+ε(x)),m− j modulo M

when γ j is invertible and I+(z′, u′1, u2, u3) is generated by

z′m+1
, z′m− j u′1

aub
2uc

3,

with 1 ≤ j ≤ m, a ≥ jd1, b ≥ jd2, c ≥ j (d1 + d3 + ε(x)− 1), a + b + c > j (d1 + d2 +
d1 + d3 + ε(x)− 1).

Note that (38) implies d3(x ′) ≥ d1+d3+ε(x)−1, in fact there is equality. Otherwise, by
[17], there would exist t = z′ + γ ue

3, e ≥ d1+ d3+ ε(x)− 1, γ ∈ R, ordui γ ≥ di , i = 1, 2,
with h′ = C0,0tm modulo I+(t, u′1, u2, u3). As I+(z′, u′1, u2, u3) = I+(t, u′1, u2, u3) and,
in (38), there is no term in z′m−1, this is impossible. As d1(x ′) = d1(x) and d2(x ′) = d2(x),
by (38), we get ε(x ′) = 0: there is no x ′ very near x in this chart. This gives the first statement
in (iv). This gives also (ii)’, because if there was a curve in div(u2) ∩ Singm(X) ∩ {y ∈ X :
ε(y) > 0}, the strict transform of this curve would have a non empty intersection with our
affine chart and there would exist in this chart some x ′ with ε(x ′) ≥ 1.

Proof of (iv). Now x ′ ∈ SpecR[z/u1, u3/u1] ⊂ Z ′ is the point with parameters
(z′, u′1, u′2, u′3) := (z/u1, u1, u2, u3/u1). Then, using the notations of (37),

h′ := u−m
1 h =

∑

CA,m− j z
′m− j ua1+a3− j

1 ua2
2 u′3

a3 ,

�(h′, u′, z′) is obtained as follows: take the convex hull of the set {(a+c−1, b, c)|(a, b, c) ∈
�(h, u, z)} and add R

+3, then

∂(�(h′, u′, z′)) ⊂ {(a + c − 1, b, c)|(a, b, c) ∈ ∂(�(h, u, z))},
in(h′,�′)u′,z′ = C0,m Z ′m +

∑

2≤ j≤m,A/j∈∂(�(h′,u′,z′))
λ j,A Z ′m− j U ′1

a1+a3− j U ′2
a2U ′3

a3 ,

where the λ j,A ∈ k(x) are defined by:

in(h,�)u,z = C0,m Zm +
∑

2≤ j≤m, A
j ∈∂(�(h,u,z))

λ j,A Zm− j U1
a1+a3− j U2

a2U3
a3 .
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Let M′ be the set of monomials M ′ = z′m− j ua1+a3− j
1 ua2

2 u′3
a3 which appear with a non

zero coefficient in the expansion of h′, let M be the set of monomials M = zm− j ua1
1 ua2

2 u3
a3

which appear with a non zero coefficient in the expansion of h:

d1(x ′) = inhM ′∈M′
(

a1 + a3 − j

j

)

= d1 + d3 + ε(x)− 1,

di (x ′) = inhM ′∈M′
(

ai

j

)

= di , i = 2, 3.

As x ′ is very near x , ε(x) = ε(x ′), δ(x ′) = d1(x ′)+ d2(x ′)+ d3(x ′)+ ε(x). The only point
on the first side of �(h′, u′, z′) is

(d1(x ′), d2(x), d3(x)+ ε(x))

let p′ be the projection on x3 = 0 from this vertex. A monomial M ′ defines a point ( a1+a3
j −

1, a2
j , a3

j ) that we call also M ′, when a3 < d3(x)+ ε(x),

p′(M ′) =
(

d1(x ′)+
a1+a3

j − 1− d1(x ′)
d3(x)+ ε(x)− a3

j

, d2(x)+
a2
j − d2(x)

d3(x)+ ε(x)− a3
j

)

,

as
a1+a3

j −1−d1(x ′)
d3(x)+ε(x)− a3

j
=

a1
j −d1(x)

d3(x)+ε(x)− a3
j
− 1 and by 7.2 (35)

p(M) =
(

d1(x)+
a1
j − d1(x)

d3(x)+ ε(x)− a3
j

, d2(x)+
a2
j − d2(x)

d3(x)+ ε(x)− a3
j

)

.

We get

p′(�(h′, u′, z′) ∩ {x3 < d3(x)+ ε(x)})− (d1(x ′), d2(x ′)),

i.e. the polyhedron p′(�(h′, u′, z′) ∩ {x3 < d3(x) + ε(x)}) translated by the vector
−(d1(x ′), d2(x ′)), from

p(�(h, u, z) ∩ {x3 < d3(x)+ ε(x)})− (d1(x), d2(x))

by making an horizontal translation of −1. This gives the other assertions of (iv). Mutatis
mutandis, we get (v).

Proposition 7.4.3 (Behaviour of the new invariants under blowing up a closed point) Assume
that (Hyp) is true and (z, u) is well prepared. Let πi : (Z ′, x ′)→ (Z , x) be the blowing up
along x, X ′ ⊂ Z ′ the strict transform of X and x ′ ∈ X ′ the center of v, with ι(x ′) = ι(x).
Then

(i) x ′ belongs to the strict transform of V (z, u3),
(ii) if x ′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ is the point

(z′, u′1, u′2, u′3) := (z/u1, u1, u2/u1, u3/u1),

these parameters are well-prepared and

β(x ′) ≤ β(x), A1(x ′) = B(x)− 1, A2(x ′) = A2(x), C(u′, z′) ≤ C(u, z),

d1(x ′) = d1(x)+ d2(x)+ d3(x)+ ε(x)− 1, d2(x ′) = d2(x), d3(x ′) = d3(x);
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(iii) if x ′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ and x ′ �= (z′, u′1, u′2, u′3), then

β(x ′) ≤ 1+
⌊

C(u, z)

2

⌋

, A1(x ′) = d(x)− 1,

d1(x ′) = d1(x)+ d2(x)+ d3(x)+ ε(x)− 1, d2(x ′) = 0, d3(x ′) = d3(x),

where �.� denotes lower integral part. If moreover (E ⊆ div(u1u3) and 0 < β(x)),
then β(x ′) ≤ β(x).
We have

γ (x ′) ≤ γ (x).

More precisely: if (x ′ is not rational over x and γ (x) ≥ 3), then γ (x ′) < γ (x); if
(γ (x ′) = γ (x) = 2 and x ′ is not rational over x), then β(x) = 2, div(u2) �⊂ E and
β(x ′) < β(x) = 2;

(iv) if x ′ ∈ SpecR[z/u2, u1/u2, u3/u2] ⊂ Z ′ is the point with parameters

(z′, u′1, u′2, u′3) := (z/u2, u1/u2, u2, u3/u2),

these are well prepared parameters and

β(x ′) = β(x)+ A1(x)− 1, A1(x ′) = A1(x), A2(x ′) = B(x)− 1,

d2(x ′) = d1(x)+ d2(x)+ d3(x)+ ε(x)− 1, d1(x ′) = d1(x),

γ (x ′) ≤ γ (x), C(u′, z′) ≤ β(x)

2
.

Proof (i) is a consequence of 6.3(ii) and 6.3 (28).
Proof of (ii). Write

h =
∑

CA,m−bzm−bua1
1 ua2

2 ua3
3 , CA,m−b ∈ R× or CA,m−b = 0,

where the sum runs along b ≤ m, A = 0 when b = 0, and A = (a1, a2, a3) ∈ b�(h, u, z).
Then

h′ := u−m
1 h =

∑

CA,m− j z
′m− j ua1+a2+a3− j

1 u′2
a2 u′3

a3 ,

and �(h′, u′, z′) is obtained as follows: take the convex hull of the set

{(a + b + c − 1, b, c)+ R+3|(a, b, c) ∈ �(h, u, z)}.
Let M′ be the set of monomials M ′ = z′m− j ua1+a2+a3− j

1 u′2
a2 u′3

a3 which appear with a non
zero coefficient in the expansion of h′, let M be the set of monomials M = zm− j ua1

1 ua2
2 u3

a3

which appear with a non zero coefficient in the expansion of h:

d1(x ′) = infM ′∈M′
(

a1 + a2 + a3 − j

j

)

= d1 + d2 + d3 + ε(x)− 1,

di (x ′) = infM ′∈M′
(

ai

j

)

= di (x), i = 2, 3.

As x ′ is very near to x , ε(x) = ε(x ′), δ(x ′) = d1(x ′) + d2(x ′) + d3(x ′) + ε(x). The only
point on the first side of �(h′, u′, z′) is

(d1(x ′), d2(x), d3(x)+ ε(x)).
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Let p′ be the projection on x3 = 0 from this vertex. A monomial M ′ corresponds to a point
xM ′ (

a1+a2+a3
j − 1, a2

j , a3
j ). When a3 < d3(x)+ ε(x),

p′(M ′) =
(

d1(x ′)+
a1+a2+a3

j − 1− d1(x ′)
d3(x)+ ε(x)− a3

j

, d2(x)+
a2
j − d2(x)

d3(x)+ ε(x)− a3
j

)

,

as
a1+a3

j −1−d1(x ′)
d3(x)+ε(x)− a3

j
=

a1
j −d1(x)

d3(x)+ε(x)− a3
j
− 1 and by 7.2 (35)

p(M) =
(

d1(x)+
a1
j − d1(x)

d3(x)+ ε(x)− a3
j

, d2(x)+
a2
j − d2(x)

d3(x)+ ε(x)− a3
j

)

.

So we get

p′(�(h′, u′, z′) ∩ {x3 < d3(x)+ ε(x)})− (d1(x ′), d2(x ′))

from

p(�(h, u, z) ∩ {x3 < d3(x)+ ε(x)})− (d1(x), d2(x))

as follows: take the convex hull of the set

{(a + b − 1, b)+ R+2|(a, b) ∈ p(�(h, u, z) ∩ {x3 < d3(x)+ ε(x)})− (d1(x), d2(x))}.
These are the usual transformation laws of the characteristic polyhedra of surfaces see the

appendix of H. Hironaka in [3]. To get the other assertions of (ii), the proof runs along the
same lines as 7.4.2 (37).

Proof of (iv). Mutatis mutandis, we get all assertions of (iv), except the last line that we
prove now. In fact, we get

p′(�(h′, u′, z′) ∩ {x3 < d3(x)+ ε(x)})− (d1(x ′), d2(x ′))

from

p(�(h, u, z) ∩ {x3 < d3(x)+ ε(x)})− (d1(x), d2(x))

as follows: take the convex hull of the set {(a, a+b−1)+R+2|(a, b) ∈ p(�(h, u, z)∩{x3 <

d3(x)+ ε(x)})− (d1(x), d2(x))}. We get A1(x ′) = A1(x), β(x ′) = β(x)+ A1(x)− 1 and
A2(x) = d(x)− 1.

Let us denote by (α2, β2) and (α3, β3) with α2 ≤ α3, the coordinates of the (maybe equal)
vertices of the first side of p(�(h, u, z) ∩ {x3 < d3(x)+ ε(x)})− (d1(x), d2(x)).

Then (α2, α2 + β2 − 1) = (α2, B(x)− 1) is the vertex of smaller second coordinate of

p′(�(h′, u′, z′) ∩ {x3 < d3(x)+ ε(x)})− (d1(x ′), d2(x ′)).

Note that (A1(x), A1(x)+ β(x)− 1) is the vertex of smaller first coordinate of

p′(�(h′, u′, z′) ∩ {x3 < d3(x)+ ε(x)})− (d1(x ′), d2(x ′)).

All this leads to:

A1(x ′) = A1(x), A2(x ′) = B(x)− 1,

C(u′, z′) ≤ β(x ′)− A2(x ′)= A1(x)+ β(x)− 1− (B(x)− 1)=β(x)− (B(x)− A1(x)),

C(u′, z′) ≤ α2 − A1(x ′) = α2 − A1(x) ≤ α2 + β2 − A1(x) = B(x)− A1(x).
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Then either B(x) − A1(x) ≤ β(x)
2 , then C(u′, z′) ≤ β(x)

2 by the last inequality; or B(x) −
A1(x) >

β(x)
2 , then C(u′, z′) <

β(x)
2 by the first of the two inequalities just above. The

inequality γ (x ′) ≤ γ (x) is left to the reader.
Proof of (iii). Recall the notations and assumptions of 7.2 (34). We write

� j (U1, U2, U3) = U jd1
1 U jd2

2 U jd3
3 (λ j U

jε(x)
3 +

∑

i∈Q+
U a(i, j)

1 U b(i, j)
2 U jε(x)−i

3 Qi, j (U1, U2))

(39)

with λ j ∈ k(x), λ j = 0 if ( jd1, jd2, jε(x)) �∈ N
3. In this expansion, we take:

Qi, j ∈ k(x)[U1, U2], Qi, j = 0 or (U1 � |Qi, j and U2 � |Qi, j ),

Qi, j = 0 when ( jd1 + a(i, j), jd2 + b(i, j), jd3 + jε(x)− i) �∈ N
3.

Note that at least one Qi, j , 2 ≤ j ≤ m is nonzero and at least one λ j ′ , 2 ≤ j ′ ≤ m is
nonzero.

By definition of C(u, z), when Qi, j �= 0, deg(Qi, j ) ≤ iC(u, z), where deg is the usual
homogeneous degree. When Qi, j �= 0, let us denote d(i, j) =deg(Qi, j ). Then we have, with
natural notations, the relation:

vB(u jε(x)
3 ) = vB(U a(i, j)

1 U b(i, j)
2 U jε(x)−i

3 Qi, j (U1, U2))

jε(x)vB(u3) = ( jε(x)− i)vB(u3)+ (a(i, j)+ b(i, j)+ d(i, j))vB(u1)

jε(x)vB(u3) = ( jε(x)− i)vB(u3)+ (a(i, j)+ b(i, j)+ d(i, j))
vB(u3)

B
,

which leads to:

a(i, j)+ b(i, j)+ d(i, j)− j (d1 + d2) = i B. (40)

Then, in the expansion of U jε(x)+ jd3−i
3 U a(i, j)

1 U b(i, j)
2 Qi, j (U1, U2), the monomial with

non zero coefficient and minimal exponent in U1 is

U a(i, j)
1 Ui B−a(i, j)

2 U jε(x)+ jd3−i
3

which gives the point (cf. 7.2 (35))

(

d1 +
a(i, j)

j − d1

d3 + ε(x)− jd3+ jε(x)−i
j

, d2 +
i B−a(i, j)

j − d1

d3 + ε(x)− jd3+ jε(x)−i
j

)

in p(�(h, u, z) ∩ {x3 < ε(x)+ d3}). As

d1 +
a(i, j)

j − d1

d3 + ε(x)− jd3+ jε(x)−i
j

= d1 + a(i, j)− jd1

i
,

we deduce that

A1(u, z) = inf

{

a(i, j)− jd1

i
| 2 ≤ j ≤ m(x), 0 < i ≤ jε(x), jε(x)

+ jd3 − i ∈ N, i ∈ Q, Qi, j �= 0

}

. (41)
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Similarly,

A2(u, z) = inf

{

b(i, j)− jd1

i
| 2 ≤ j ≤ m(x), 0 < i ≤ jε(x), jε(x)

+ jd3 − i ∈ N, i ∈ Q, Qi, j �= 0

}

(42)

and, finally, by (40), when Qi, j �= 0,

d(i, j) = i

(

B − a(i, j)− jd1

i
− b(i, j)− jd1

i

)

≤ iC(u, z). (43)

Since x ′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′, x ′ is not the origin

(z′, u′1, u′2, u′3) = (z/u1, u1, u2/u1, u3/u1),

and x ′ belongs to the strict transform of V(z, u3) then z′(x ′) = u′1(x ′) = u′3(x ′) = 0. We
complete (z′, u′1, u′3) to a r.s.p. (z′, u′1, v′, u′3) at x ′ where

v′ = u′2
n +

∑

0≤a≤n−1

μau′2
n−a

, μa = 0 or μa ∈ R×,

for some irreducible polynomial

P := U2
n +

∑

0≤a≤n−1

μaU2
n−a ∈ k(x)[U2].

The following lemma will end the proof of 7.4.3(iii).

Lemma 7.4.4 With hypotheses and notations as in 7.4.3(iii), let d := [k(x ′) : k(x)]. We
have:

(i) A1(x ′) = B(u, z)− 1;
(ii) if div(u3) ⊂ E, then

β(x ′) ≤ C(u, z)

d
≤ β(x)

d

(iii) in general,

β(x ′) < 1+
⌊

C(u, z)

d

⌋

, (44)

(iv) if (E ⊆ div(u1), 0 < β(x) and x ′ is rational over x), then

β(x ′) ≤ β(x).

Proof As x ′ is very near to x , we have ε(x) = ε(x ′), δ(x ′) = d1(x ′)+d2(x ′)+d3(x ′)+ε(x).
As x ′ is on the strict transform of div(u3) and not on the strict transform of div(u2), we get:

d2(x ′) = 0, d3(x ′) = d3(x).

With notations as in the proof of 7.4.3(ii):

h =
∑

CA,m−bzm−bua1
1 ua2

2 ua3
3 , CA,m−b ∈ R× or CA,m−b = 0,
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where the sum runs along b ≤ m, A = 0 when b = 0, A = (a1, a2, a3) ∈ b�(h, u, z),

h′ := u−m
1 h =

∑

CA,m− j z
′m− j ua1+a2+a3− j

1 u′2
a2 u′3

a3 .

Up to multiplying h by an unit, we may assume C0,m = 1 ∈ k(x). Then, with the notations
of 3.2, we have

δ(x) = d1 + d2 + d3 + ε(x),

inδ,u,z(h) = Zm + ∑

2≤ j≤m
μ j Zm− j U jd1

1 U jd2
2 U jd3+ jε(x)

3 , μ j ∈ k(x), (45)

μ j = 0 whenever ( jd1, jd2, jd3 + jε(x)) �∈ N
3, μ j = C jd1, jd2, jd3+ jε(x),m− j ∈ k(x)

otherwise. This leads to

h′ =C0,m z′m+
∑

2≤ j≤m

z′m− j C jd1, jd2, jd3+ jε(x),m− j u
′
1

j (d1+d2+d3+ε(x)−1)u′2
jd2 u′3

jd3+ jε(x)+h′1

(46)

where h′1 ∈ {z′m− j u′1
a( j)

, j ∈ N, a( j) > j (d1 + d2 + d3 + ε(x)− 1) = j (δ(x)− 1)}. As a
consequence,

(δ(x)− 1, 0, d3(x)+ ε(x))

is the vertex of smallest first coordinate of �(h′, u′1, v′, u′3, t) and is not solvable. In the
preparation, we may replace z′ by t = z′ + λu′1

a with a ≥ δ(h) − 1, but, this cannot erase
the vertex (δ(x)− 1, 0, d3(x)+ ε(x)). We get

d1(x ′) = δ(x)− 1.

Let us study the projection of �(h′, u′1, v′, u′3, t) ∩ {x ′3 < d3 + ε(x ′)} on x ′3 = 0, in
particular we are interested in the vertex of smallest first coordinate of this projection. Let w

be the monomial valuation on R′ := OX ′,x ′ defined by

w(z′) = 1, w(u′3) =
1

ε(x)+ d3 + d1+d2
B(u,z)−1

,

w(u′1) =
1

(B(u, z)− 1)(ε(x)+ d3)+ d1 + d2
= 1

B(u, z)− 1
w(u′3).

There is an expansion

inw(h′) = Z ′m +
∑

2≤ j≤m

Z ′m− j
�′j (U ′1, U ′3) ∈ grw(R′) = R′/(z′, u′1, u′3)[Z ′, U ′1, U ′3],

where

�′j (U ′1, U ′3) = λ j U
′
1

j (δ(x)−1)u′2
jd2

U ′3
jε(x)+ jd3

+
∑

0<i≤ jε(x), jε(x)+ jd3−i∈N,i∈Q
U ′3

jε(x)+ jd3−i U ′1
a(i, j)+b(i, j)+d(i, j)+ jε(x)+ jd3−i− j u′2

b(i, j)

Qi, j (1, u′2),
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where d(i, j) = deg(Qi, j )u′2 is the image of u′2 in R′
(z′,u1,u′3)

= k(x)[u′2](v′), v′ being the

image of v′ in R′
(z′,u1,u′3)

. Let us recall that

inw(h′) ∈ grw(R′) :=
⊕

r∈Q≥0

Ir

I+r
,

with Ir = {a ∈ R′|w(a) ≥ r}, I+r = {a ∈ R′|w(a) > r}. By 7.4.3 (40), inw(h′) =

Z ′m +
∑

2≤ j≤m

Z ′m− j U ′1
j (δ(x)−1)[λ j U

′
3

jε(x)+ jd3 +U ′3
jε(x)+ jd3−i U ′1

i(B(u,z)−1)u′2
b(i, j)

Qi, j (1, u′2)]. (47)

This means that

1

(B(u, z)− 1)(ε(x)+ d3)+ d1 + d2
x ′1 +

1

ε(x)+ d3 + d1+d2
B(u,z)−1

x ′3 = 1

is the defining equation of a face of �(h′, u′1, v′, u′3).

7.4.4.1 When div(u3) ⊂ E , then div(u′3) ⊂ E ′, we have just to make (P2) in the prepara-

tion, we may replace z′ by t = z′ +r , r ∈ R′ and, as Z ′m−1 does not appear in (2), w(r) > 1,
w(t) = w(z′) = 1. This means that

1

(B(u, z)− 1)(ε(x)+ d3)+ d1 + d2
x ′1 +

1

ε(x)+ d3 + d1+d2
B(u,z)−1

x ′3 = 1

is the defining equation of a face of �(h′, u′1, v′, u′3, t). By 7.2 (34),

A1(u
′
1, v
′, u′3, t) = B(u, z)− 1 and β(x ′) = inf{ ordx ′(Qi, j (1, u′2))/ id}.

By 7.4.3(5), β(x ′) ≤ C(u, z)/d and this gives 7.4.4 in the case div(u3) ⊂ E .
7.4.4.2 From now on, div(u3) �⊂ E , in particular d3(x) = 0. Then, to get (P1),. . .,(P4),

we may replace z′ by t = z′ + r , r ∈ R′ and, as Z ′m(x)−1 does not appear in (46), w(r) > 1,
w(t) = w(z′) = 1. We possibly have to make the projection of �(h′, u′1, v′, u′3, t) ∩ {x ′3 <

d3 + ε(x ′)} on x ′3 = 0 smaller by changing u′3 to v3 = u′3 + λu′1
a with a ≥ B(u, z)− 1 and

λ ∈ R′, λ not divisible by u′1.
Assume that a > B(u, z) − 1 (this is always the case when B(u, z) �∈ N). Then

inw(v3) =inw(u′3), we get A1(u′1, v′, u′3, t) = B(u, z)− 1 and

β(x ′) = inf{ ordx ′(Qi, j (1, u′2))/ id}.
By 7.4.3 (43),

β(x ′) ≤ C(u, z)/d

which gives 7.4.4 in this case.
7.4.4.3 From now on,

B(u, z) ∈ N, a = B(u, z)− 1.

If there exists a couple (i, j0) such that in (47) above

λ j0 = 0 and Qi, j0 �= 0,
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then the translations t = z′ + r and v3 = u′3 + λu′1
a will not modify the term

U ′3
j0ε(x)−i0U ′1

i0(B(u,z)−1)u′2
b(i0, j0)

Qi0, j0(1, u′2)

with i0 := min{i : Qi, j0 �= 0}. More precisely, in the expansion

inw(h′) = T m +
∑

2≤ j≤m

T m− j U ′1
j (δ(x)−1)[λ j V3

jε(x) + μi, j U
′
3

jε(x)−i U ′1
i(B(u,z)−1)

×V ′e(i, j)],
μi, j ∈ R′

(t,u′1,u′3)
, e(i, j) ∈ N, we will have

u′2
b(i0, j0)

Qi0, j0(1, u′2) = μi0, j0 × V ′e(i0, j0)
.

Then

β(x ′) ≤ ordx ′(Qi0, j0(1, u′2))/ id,

which, by 7.4.3 (43), gives

A1(x ′) = B(u, z)− 1, β(x ′) ≤ C(u, z)/d

and implies 7.4.4 in this case.
7.4.4.4 From now on, we assume the implication:

Qi, j �= 0⇒ λ j �= 0.

In particular, we have jε(x) ∈ N, jδ(x) ∈ N and all the indices i in (46) (47) are integers.
Let us define

Fj ∈ grvB
(R) = k(x)[U1, U2, U3, Z ]

by

Fj = λ j U3
jε(x) +

∑

1≤i≤ jε(x)−1

U3
jε(x)−i U1

a(i, j)U2
b(i, j)Qi, j (U1, U2).

F ′j ∈ grw(R′) = R′
(u′1,u′3,z′)

[U ′1, U ′3, Z ′] = R′
(u′1,u′3,z′)

[U ′1, U ′3, T ]
by

F ′j = λ j U
′
3

jε(x) +
∑

1≤i≤ jε(x)−1

U ′3
jε(x)−i U ′1

i(B(u,z)−1)u′2
b(i, j)

Qi, j (1, u′2),

so (47) can be rewritten:

inw(h′) = T m(x) +
∑

2≤ j≤m(x)

T m(x)− j U ′1
j (δ(x)−1)F ′j . (47′)

The preceding remarks rewrite jε(x) �∈ N⇒ Fj = 0, F ′j = 0. Let

G j = F
m!ε(x)
jε(x)

j , G ′j = F ′j
m!ε(x)
jε(x) 2 ≤ j ≤ m, jε(x) ∈ N,

degU3(G j ) = m!ε(x) or G j = 0, and degU ′3(G
′
j ) = m!ε(x) or G ′j = 0.
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Let μ1, μ2 ∈ k(x), j1, j2, 2 ≤ j1, j2 ≤ m, let

G=μ1G j1 + μ2G j2=μm!ε(x)U3
m!ε(x) +

∑

1≤i≤m!ε(x)−1

U3
m!ε(x)−i U1

a(i)U2
b(i)Qi (U1, U2),

where Qi = 0 or Qi neither divisible by U1 nor by U2. Let us denote d(i) := deg(Qi ).
Assume that for some i , Qi �= 0, then, by 7.4.3 (43),

d(i) = i

(

B − a(i)

i
− b(i)

i

)

≤ iC(u, z). (48)

Assume that not all G j ’s are collinear in the k(x)-vector space grvB
(R). Then there is

some G �= 0 as above with λ = 0. Let

G = μ1G j1 + μ2G j2 =
∑

1≤i≤m!ε(x)−1

U3
m!ε(x)−i U1

a(i)U2
b(i)Qi (U1, U2),

with some Qi �= 0. Let i0 := min{i : Qi0 �= 0}. Let

G ′ = λG ′j1 + μG ′j2 =
∑

1≤i≤m!ε(x)−1

U ′3
m!ε(x)−i U ′1

i(B(u,z)−1u′2
b(i)

Qi (1, u′2).

Replacing U ′3 by V3, we get

G ′ = μ1G ′j1 + μ2G ′j2 = V3
m!ε(x)−i0U ′1

i0(B(u,z)−1u′2
b(i0)

Qi0(1, u′2)
+H ′, degV3

H ′ < m!ε(x)− i0.

Then

A1(x ′) = B(u, z)− 1, β(x ′) ≤ C(u, z)/d

which implies 7.4.4 in this case.
7.4.4.5 From now on, we assume that all G j ’s are collinear in the k(x)-vector space

grvB
(R).

By (P3) for (z, u), any G j �= 0 is not collinear to a (m!ε(x))th-power, any Fj �= 0 is not
collinear to a ( jε(x))th-power. Take some Fj �= 0, and let

jε(x) = peq, (p, q) = 1. (49)

Let v3 = u′3 + λu′1
a , with a ≥ B(u, z)− 1 and λ ∈ R′, λ not divisible by u′1. Let

λ ∈ R′

(z′, u1, u′3)
= k(x)[u′2]v′ , b := ordv′(λ), β0 := mini

(

ordv′(Qi, j (1, u′2))
i

)

≤ C(u, z)/d.

When b < β0, we have

A1(x ′) = B(u, z)− 1, β(x ′) = b < C(u, z)/d.

When b > β0, we have

A1(x ′) = B(u, z)− 1, β(x ′) = β0 ≤ C(u, z)/d.
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When b = β0 and there exists i < pe such that Qi, j �= 0, say i0 is the smallest such i , we
get

F ′j = λ j V3
jε(x) + V3

jε(x)−i0U ′1
i0(B(u,z)−1)u′2

b(i0, j)
Qi0, j (1, u′2)

+H ′j , degV3
H ′j < jε(x)− i0,

A1(x ′) = B(u, z)− 1, β(x ′) ≤ ordv′(Qi0, j (1, u′2))
i0

) ≤ C(u, z)/d.

When b = β0 and for i ≤ pe Qi, j = 0, then

F ′j = λ j V3
jε(x) + V3

jε(x)−pe
U ′1

pe(B(u,z)−1)
λq + H ′j , degV3

H ′j < jε(x)− pe,

A1(x ′) = B(u, z)− 1, β(x ′) ≤ b = β0 ≤ C(u, z)/d.

When b = β0 and for i < pe Qi, j = 0 and λ−1
j U a(pe, j)

1 U b(pe, j)
2 Q pe, j is a(pe)th-power, then

λ j
−1U a(pe, j)

1 U b(pe, j)
2 Q pe, j = U pea

1 U peb
2 Q pe

0 ,

with a ≥ A1(x), b ≥ A2(x)andB0 := deg(Q0) ≤ C(u, z). Let W3 := U3 +U a
1 U b

2 Q0, we
get

Fj = λ j W3
jε(x) +

∑

1+pe≤i≤ jε(x)−1

W3
jε(x)−i U1

a0(i, j)U2
b0(i, j)Q0,i, j (U1, U2),

a0(i, j) ≥ i A1(x), b0(i, j) ≥ i A2(x), d0(i, j) := deg(Q0,i, j ) ≤ iC(u, z), or Q0,i, j = 0.

Let w3 ∈ R such that invB (w3) = W3, then, with w′3 = w3/u1, W ′3 =inw(w′3):

F ′j = λ j W ′3
jε(x) + degW ′3 < jε(x)− pe.

Let v3 = w′3 + λ′u′1
a′ , with a′ ≥ B(u, z) − 1 and λ′ ∈ R′, λ′ not divisible by u′1. Then we

conclude as above:

A1(x ′) = B(u, z)− 1, β(x ′) ≤ b = β0 ≤ C(u, z)/d.

7.4.4.6 From now on, we assume 7.4.4.2, 7.4.4.3, 7.4.4.4, 7.4.4.5 and for i < pe Qi, j = 0

and λ j
−1U a(pe, j)

1 U b(pe, j)
2 Q pe, j is NOT a (pe)th-power (c.f. (49)). In particular e ≥ 1. Let

us recall the following elementary lemma [13, II.5.3.2].

Lemma 7.4.4.7 Let F(U1, U2) ∈ k(x)[U1, U2] be a homogeneous polynomial of degree
d0 ≥ 0, and a, b ∈ N be such that U a

1 U b
2 F(U1, U2) �∈ (k(x)[U1, U2])p.

Let x ′ ∈ Speck(x)[U2
U1
] be a closed point with ideal (v := P(1, U2

U1
)), P ∈ k(x)[U1, U2]

a nonzero homogeneous irreducible polynomial of degree d := [k(x ′) : k(x)], unitary in U2.
Let A ∈ T ′ := k(x)[U1,

U2
U1
](U1,v) be such that U a+b+d0

1 (resp. U a+b+d0
1 vb) divides Ap

in T ′ if P �= U2 (resp. P = U2). There exists an integer c ≥ 0 such that

U a+b+d0
1

(

U2

U1

)b

F

(

1,
U2

U1

)

+ Ap ≡ U a+b+d0
1

(

U2

U1

)b

γ vc mod(U a+b+d0+1
1 T ′),

with γ invertible in T ′. We have the following estimates for c:

(i) if P �= U2 (resp. P = U2), then c ≤ 1+ d0
d (resp. c ≤ d0);

(ii) if P �= U2, then c < p(1 + � d0
pd �) (equivalently: for every N ∈ N such that d0

pd < N,
we have c < N p);
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(iii) if d0 ≥ 1 and b = 0, then c ≤ i .

Let f < e be the integer defined by:

λ j
−1U a(pe, j)

1 U b(pe, j)
2 Q pe, j = Q ph

0 , Q0 is not a pth−power.

Let

Q0 =: (U a
1 U b

2 F(U1, U2)),

with pha = a(pe, j), phb = b(pe, j), phd0 = d(pe, j), where d0 :=deg(Q0). In particular,

d0 ≤ pe−hC(u, z).

Then,

F ′j = λ j (V3
jε(x) + V3

jε(x)−pe
λ−1

j (U ′1
pe(B(u,z)−1)u′2

b(i0, j)
Qi0, j (1, u′2)+ λ

pe

)

+degV3
< jε(x)− pe).

By Lemma 7.4.4.7, (u′2
b(i0, j)

Qi0, j (1, u′2)+ λ
pe

) = (γ v′c)(ph) �= (0), so

A1(x ′) = B(u, z)− 1, peβ(x ′) ≤ phc.

Furthermore, by (i) above, c ≤ 1+ d0
d , so:

peβ(x ′) ≤ ph(1+ d0
d ) ≤ ph + ph pe−hC(u,z)

d = ph + peC(u,z)
d ,

β(x ′) ≤ 1
p + C(u,z)

d .

By (ii),

peβ(x ′) < ph p

(

1+
⌊

d0

pd

⌋)

≤ p f+1
(

1+
⌊

pe−hC(u, z)

pd

⌋)

, β(x ′) < 1+
⌊

C(u, z)

d

⌋

,

which is 7.4.4(iii). Now 7.4.4(iv) is a consequence of (iii) above.
7.4.5 Proof of Theorem VI.1: some cases with γ (u, z) = 1.
The strategy to make the proof is to make a list of different subcases covering this case,

from the easiest to the most difficult and to prove them up to the former ones.
All cases ( β(u, z) < 1 and div(u1u2) �⊂ E) are covered by 7.4.5.3 below. All cases

with (γ (u, z) < 1 and div(u1u2) ⊆ E) are dealt with in 7.4.5.6. This includes in particular
all remaining cases with β(u, z) < 1 since C(u, z) ≤ β(u, z) for div(u1u2) ⊆ E (see
Definition 7.4.1).

Lemma 7.4.5.1 With assumptions as in 7.4.3, assume furthermore that

A1(u, z) < 1, β(u, z) < 1. (50)

There exist well prepared parameters (z′, u′) at x ′ such that

(A1(u
′, z′), β(u′, z′)) <lex (A1(u, z), β(u, z)), and β(u′, z′) < 1. (51)

Proof This is a direct consequence of Lemma 7.4.4.
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Lemma 7.4.5.2 With assumptions as in 7.4.3, assume furthermore that

β(u, z) < 1, A1(u, z) ≥ 1, (d1(x)+ d3(x)+ ε(x) ≥ 1 or E ⊆ div(u1u3)). (52)

Then C1 := V (z, u1, u3) is an ε-permissible algebraic curve on X.
Let π : (Z ′, x ′)→ (Z , x) be the blowing up along C1, X ′ ⊂ Z ′ the strict transform of X

and x ′ ∈ X ′ the center of v and assume ι(x ′) = ι(x). Then (z′, u′) = (z/u1, u1, u2, u3/u1)

are well prepared parameters at x ′ and we have

(A1(u
′, z′), β(u′, z′)) = (A1(u, z)− 1, β(u, z)).

Proof This follows from Proposition 7.4.2.

Remark 7.4.5.3 Lemmas 7.4.5.1 7.4.5.2 prove Theorem 7.1 when (Hyp) is true and

β(u, z) < 1, A1(u, z) ≥ 1, (d3(x)+ ε(x) ≥ 1 or E ⊂ div(u1u3)). (53)

Indeed, d3(x)+ε(x) = d3(x ′)+ε(x ′) if ι(x ′) = ι(x) after blowing up. If E ⊆ div(u1u3), then
E ′ ⊆ div(u′1u′3), so condition (3) remains stable after blowing up. A descending induction
on A1(u, z) ends the proof.

7.4.5.4 Proof of Theorem 7.1 in the case C(u, z) = 0.
In that special case, we have β(u, z) = A2(u, z). When A2(u, z) < 1 and A1(u, z) < 1,

7.4.5.1 gives the result. Let us see the other cases:

A1(u, z) ≥ 1 or A2(u, z) ≥ 1. (54)

Case 1 d3(x) + ε(x) ≥ 1. We may assume A2(u, z) ≥ 1 by symmetry on u1, u2. Then
C := (z, u2, u3) is an ε-permissible algebraic curve by Proposition 7.4.2 and we get

A1(x ′) = A1(x), A2(x ′) = A2(x)− 1, C(u′, z′) = 0

after blowing up along C if ι(x ′) = ι(x). A descending induction on A2(x) and 7.4.5.2 give
the result. From now on, we assume

d3(x)+ ε(x) < 1.

Case 2 d3(x) + di (x) + ε(x) < 1, i = 1 and i = 2. We blow up {x} in this case. By
Proposition 7.4.3(ii) or (iv), we have

d3(x ′) = d3(x), d2(x ′) = d2(x), d1(x ′) = d1(x)+ d2(x)+ d3(x)+ ε(x)− 1

< d1(x), C(u′, z′) = 0,

δ(x ′) = d1(x ′)+ d2(x ′)+ d3(x ′)+ ε(x ′) < δ(x)

if ι(x ′) = ι(x) and x ′ is the origin of a chart. Otherwise, Lemma 7.4.4(ii)(iii) gives 7.4.5.2
(52) at x ′ for some well prepared r.s.p. (z′, u′).
Case 3 d3(x) + ε(x) < 1, d3(x) + di (x) + ε(x) ≥ 1 for some i = 1 or i = 2, A j (x) ≥ 1,
j = 1, 2. We choose an ε-permissible blowing up center Y as follows:

if V(z, ui , u3), for i = 1, 2 are ε-permissible, then Y := (z, ui , u3) with

(Ai (x), di (x)) ≥ (Ai ′(x), di ′(x)), {i, i ′} = {1, 2};
if V(z, ui , u3) is ε-permissible for a unique i ∈ {1, 2}, then Y := (z, ui , u3);
if V(z, ui , u3) is not ε-permissible for i ∈ {1, 2}, then Y := {x}.
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Let n(x) := 2 if (A1(x), d1(x)) = (A2(x), d2(x)), n(x) := 1 otherwise. If ι(x ′) = ι(x),
we claim that x ′ satisfies 7.4.5.2 (52) or falls into cases 1,2 above, or there is a well prepared
r.s.p. (z′, u′) at x ′ with C(u′, z′) = 0 and

(maxi=1,2{Ai (x)}, maxi=1,2{di (x)}, n(x)) <lex

(maxi=1,2{Ai (x ′)}, maxi=1,2{di (x ′)}, n(x ′)). (55)

Note that this ends the proof of the case C(u, z) = 0, since (3) can repeat but finitely
many times. To prove the claim, first assume that Y = (z, u1, u3). By Proposition 7.4.2, we
have

A1(x ′) = A1(x)− 1, A2(x ′) = A2(x), d1(x ′) = d1(x)

+d3(x)+ ε(x)− 1 < d1(x), d2(x ′) = d2(x)

and the result is clear. The case Y = (z, u2, u3) is similar.
Assume now that Y = {x}. By symmetry on u1, u2, we assume A2(x) ≥ 1.

If x ′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ and x ′ is the point with parameters
(z/u1, u1, u2/u1, u3/u1) (origin of the first chart), we get

A1(x ′) = A1(x)+ A2(x)− 1, A2(x ′) = A2(x), d1(x ′)
= d1(x)+ d2(x)+ d3(x)+ ε(x)− 1, d2(x ′) = d2(x).

Since A2(x) ≥ 1 and V (z, u2, u3) is not ε-permissible, we have

d2(x)+ d3(x)+ ε(x) < 1, d1(x)+ d3(x)+ ε(x) ≥ 1 and A1(x) < 1.

We get d1(x) > d2(x) and d1(x ′) = d1(x) + d2(x) + d3(x)ε(x) − 1 < d1(x), A1(x ′) <

A1(x) ≤ A2(x ′) = A2(x) which proves the claim.
If x ′ ∈ SpecR[z/u1, u2/u1, u3/u1] ⊂ Z ′ and x ′ is not the above point, we have 7.4.5.2

(52) at x ′ for some well prepared r.s.p. (z′, u′) at x ′ by lemma 7.4.4(ii)(iii).
If x ′ ∈ SpecR[z/u2, u1/u2, u3/u2] ⊂ Z ′ and x ′ is the point with parameters

(z/u2, u1/u2, u2, u3/u2) (origin of the second chart), we get

A2(x ′) = A1(x)+ A2(x)− 1, A1(x ′) = A1(x), d2(x ′)
= d1(x)+ d2(x)+ d3(x)+ ε(x)− 1, d1(x ′) = d1(x).

We have A1(x) < 1: otherwise, as V (z, u1, u3) is not ε-permissible, this would imply
d1(x)+d3(x)+ε(x) < 1, d2(x)+d3(x)+ε(x) ≥ 1, hence V (z, u2, u3) ε-permissible since
A2 ≥ 1: a contradiction. We now get A1(x) < 1 ≤ A2(x) and A2(x ′) = A1(x)+A2(x)−1 <

A2(x) which completes the proof of the claim.
7.4.5.5 Proof of Theorem 7.1 in the case C(u, z) < 1, div(u1u2) ⊆ E .
We perform the sequence of local blowing ups

(Z , x) =: (Z0, x0)←− (Z1, x1)←− · · · ←− (Zn, xn)← · · · ,
where x0 = x , xi ∈ Xi (Xi denoting the strict transform of X ), 0 ≤ i ≤ n, is the center of
v, each blowing up center is Yi = {xi }.

If ι(x1) = ι(x), and is not the origin of a chart (viz. case 3 in 7.4.5.4), then x1 verifies the
assumptions of 7.4.5.1 by Lemma 7.4.4(iii).

Assume now that ι(xi ) = ι(x) and xi is the origin of a chart for all i ≥ 0. By 7.4.3(ii)(iv),
xi verifies the assumptions of 7.4.5.5 and C(xi+1) ≤ C(xi ) for all i ≥ 0. It is then a very
well known fact that C(xi ) = 0 for i >> 0, i.e. the assumptions of 7.4.5.4 are satisfied.
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7.4.5.6 End of the proof of Theorem 7.1. As our invariants C(u, z), β(u, z) are discrete,
the next lemma shows that we will reach one of the cases (ii) β(u, z) < 1 or (iii) C(u, z) < 1.
This ends the proof of Theorem 7.1 (see comments right after 7.4.5.).

Lemma 7.4.5.7 With assumptions as in 7.4.3, consider the sequence of local blowing ups

(Z , x) =: (Z0, x0)←− (Z1, x1)←− · · · ←− (Zn, xn)← · · · ,
where x0 = x, xi ∈ Xi (Xi denoting the strict transform of X), 0 ≤ i ≤ n, is the center of
v, each blowing up center is Yi = {xi }.

Assume that ι(xi ) = ι(x) for all i ≥ 0. There exists some i ≥ 0 and a well prepared r.s.p.
(zi , u1,i , u2,i , u3,i ) at xi (w.r.t. the reduced inverse image of E in Zi ) such that one of the
following holds:

(i) γ (ui , zi ) < γ (u, z);
(ii) β(ui , zi ) < 1;

(iii) C(ui , zi ) < 1;

Proof This breaks up in three cases:
Case 1 for all i ≥ 0, the point xi is the origin of one of the two charts of 7.4.3, i.e. we are
always in one of the cases 7.4.3(ii)(iv). Then C(ui , zi ) = 0 for i >> 0 (see 7.4.5.5 above).
Case 2 for all i ≥ 0, (xi is rational over x and belongs to the first chart), i.e. xi is a rational
point not on the strict transform of div(u1). By 7.4.3(ii)(iii), x1 has a r.s.p. of the form
(z/u1, u1, u2/u1 + μ1, u3/u1) for some μ1 ∈ R. A well prepared r.s.p. is of the form

z/u1 + λ1u1, u1, u2/u1 + μ1, u3/u1 + μ2u1, λ1, μ1, μ2 ∈ R,

with μ2 = 0 if div(u3) ⊆ E . Then there exists a regular formal curve C of the form
C = V (̂z, û2, û3) on Spec(̂R/(h), transverse to Ei for all i ≥ 0, û3 = u3 if div(u3) ⊆ E ,
whose strict transform goes through all points xi , i ≥ 0. Necessarily C ⊆ Singm(X), so we
may assume that C ⊂ div(u j ) ⊆ E for j = 2 or j = 3. In particular, we may take û j = u j

for j = 2 or j = 3. This implies that v(u j ) > v(un
1) = nv(u1) for all n ≥ 1: a contradiction,

since our given valuation v has rank one.
Case 3. E ⊆ div(u1u3) and we are not in case 2, i.e. there exists i0 ≥ 0 such that either xi0+1

is not rational over xi0 or Ei0+1 has one more component than Ei0), i0 minimal. Suppose
β(xi0) ≥ 1.

If xi0+1 is not rational over xi0 , we get

β(x) ≥ β(xi0) > β(xi0+1)

by 7.4.3(ii)(iii) and 7.4.4(iii): note that C(u, z) ≤ β(u, z) since div(u2) �⊂ E and

1+
⌈ x

2

⌉

≤ x for every x ≥ 1.

If Ei0+1 has one more component than Ei0 , we have

C(ui0+1, zi0+1) ≤ β(xi0)

2
≤ β(x)

2

by 7.4.3(ii), (iii), (iv). This gives 7.4.5.7(iii) if 1 ≤ β(x) < 2.
Now, γ (xi0+1) = 1+�C(ui0+1, zi0+1)�, γ (x) = �β(x)�, so we get 7.4.5.7(i) if β(x) > 2.
Assume that

β(xi0) = β(x) = 2. (56)

Since γ (x) = 2, we get 7.4.5.7(i) unless γ (xi ) = 2 for i ≥ 0 by Proposition 7.4.3.



Resolution of singularities of threefolds in mixed characteristic 151

Let i1 > i0 be the largest index such that Ei has as many components as Ei0 for i0 ≤ i ≤ i1.
We may assume i1 < +∞ by case 1 and we have

γ (xi1) = 2 = 1+ �C(ui1 , zi1)�.
By 7.4.4(iii), we get β(xi1+1) < 2. Now the point xi1+1 falls into case 2 above or into case
3 with (56) not satisfied. This concludes the proof in case 3.

The end of the proof of 7.4.5.7 is just a logical game: we reach the assumption E ⊆
div(u1u3) for some point xi , i ≥ 0 provided we are not in case 1.
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