
RACSAM (2012) 106:235–245
DOI 10.1007/s13398-011-0048-0

ORIGINAL PAPER

Complete convergence for arrays of rowwise negatively
orthant dependent random variables

Xuejun Wang · Shuhe Hu · Wenzhi Yang

Received: 5 May 2011 / Accepted: 17 August 2011 / Published online: 6 September 2011
© Springer-Verlag 2011

Abstract Let {Xni , i ≥ 1, n ≥ 1} be an array of rowwise negatively orthant dependent
random variables. Some sufficient conditions for complete convergence for arrays of rowwise
negatively orthant dependent random variables are presented without assumptions of iden-
tical distribution. As an application, the Marcinkiewicz–Zygmund type strong law of large
numbers for weighted sums of negatively orthant dependent random variables is obtained.
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1 Introduction

The concept of complete convergence was introduced by Hsu and Robbins [9] as follows.
A sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant C
if

∑∞
n=1 P(|Un − C | > ε) < ∞ for all ε > 0. In view of the Borel–Cantelli lemma, this

implies that Un → C almost surely (a.s.). The converse is true if the {Un, n ≥ 1} are inde-
pendent.Hsu and Robbins [9] proved that the sequence of arithmetic means of independent
and identically distributed (i.i.d.) random variables converges completely to the expected
value if the variance of the summands is finite. Erdös [7] proved the converse. The result of
Hsu–Robbins–Erdös is a fundamental theorem in probability theory and has been generalized
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and extended in several directions by many authors. One of the most important generalizations
is the Baum–Katz–Spitzer type result. For more details about the Baum–Katz–Spitzer type
results, one can refer to Spitzer [15], Baum and Katz [5], Gut [8], and so forth. The main
purpose of the present investigation is to provide the Baum–Katz–Spitzer type results for
weighted sums of negatively orthant dependent random variables and arrays of rowwise
negatively orthant dependent random variables.

Let us recall the definitions of negatively associated random variables and negatively
orthant dependent random variables.

Definition 1.1 A finite collection of random variables X1, X2, . . . , Xn is said to be nega-
tively associated (NA) if for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov{ f (Xi : i ∈ A1), g(X j : j ∈ A2)} ≤ 0, (1.1)

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An
infinite sequence {Xn, n ≥ 1} is NA if every finite subcollection is negatively associated.

An array of random variables {Xni , i ≥ 1, n ≥ 1} is called rowwise NA random variables
if for every n ≥ 1, {Xni , i ≥ 1} is a sequence of NA random variables.

Definition 1.2 A finite collection of random variables X1, X2, . . . , Xn is said to be nega-
tively orthant dependent (NOD) if

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤
n∏

i=1

P(Xi > xi )

and

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤
n∏

i=1

P(Xi ≤ xi )

for all x1, x2, . . . , xn ∈ R. An infinite sequence {Xn, n ≥ 1} is said to be NOD if every finite
subcollection is NOD.

An array of random variables {Xni , i ≥ 1, n ≥ 1} is called rowwise NOD random variables
if for every n ≥ 1, {Xni , i ≥ 1} is a sequence of NOD random variables.

The concepts of NA and NOD sequences were introduced by Joag-Dev and Proschan [10].
Obviously, independent random variables are NOD. Joag-Dev and Proschan [10] pointed
out that NA random variables are NOD. They also presented an example in which X =
(X1, X2, X3, X4)possesses NOD, but does not possess NA. So we can see that NOD is weaker
than NA. A number of limit theorems for NOD random variables have been established by
many authors. We refer to Volodin [17] for the Kolmogorov exponential inequality, Asadian
et al. [4] for the Rosenthal’s type inequality, Kim [11] for Hájek–Rényi type inequality,
Amini et al. [2,3], Ko and Kim [13], and Klesov et al. [12] for almost sure convergence,
Amini and Bozorgnia [1], Kuczmaszewska [14], Taylor et al. [16], Zareo and Jabbari [20]
and Wu [18,19] for complete convergence, and so on.

Our goal in this paper is to further study the complete convergence for arrays of rowwise
NOD random variables under some moment conditions. We will provide the Baum–Katz–
Spitzer type results for weighted sums of NOD random variables and arrays of rowwise NOD
random variables. As an application, the Marcinkiewicz–Zygmund type strong law of large
numbers for weighted sums of NOD random variables is obtained. We will give some suffi-
cient conditions for complete convergence for an array of rowwise NOD random variables
without assumption of identical distribution. The results presented in this paper are obtained
by using the truncated method and the Rosenthal’s type inequality of NOD random variables.
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Definition 1.3 An array of random variables {Xni , i ≥ 1, n ≥ 1} is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P(|Xni | > x) ≤ C P(|X | > x) (1.2)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

The following lemmas are useful for the proof of the main results.

Lemma 1.4 (cf. [6]). Let random variables X1, X2, . . . , Xn be NOD, f1, f2, . . . , fn be all
nondecreasing (or all nonincreasing) functions, then random variables f1(X1), f2(X2), . . . ,

fn(Xn) are NOD.

Lemma 1.5 (cf. [4,19]). Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of NOD random vari-
ables with E Xn = 0 and E |Xn |p < ∞ for every n ≥ 1. Then there exists a positive constant
C depending only on p such that for every n ≥ 1,

E

∣
∣
∣
∣
∣
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i=1

Xi

∣
∣
∣
∣
∣

p

≤ C

⎧
⎨

⎩

n∑

i=1

E |Xi |p +
(

n∑

i=1

E X2
i

)p/2
⎫
⎬

⎭
, (1.3)
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∣
∣
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∣
∣
∣

j∑

i=1

Xi
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∣
∣
∣
∣
∣
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⎠ ≤ C logp 2n

⎧
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⎩

n∑

i=1

E |Xi |p +
(

n∑

i=1

E X2
i

)p/2
⎫
⎬

⎭
. (1.4)

Lemma 1.6 Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically
dominated by a random variable X. For any α > 0 and b > 0,the following two statements
hold:

E |Xn |α I (|Xn | ≤ b) ≤ C1
[
E |X |α I (|X | ≤ b) + bα P (|X | > b)

]
, (1.5)

E |Xn |α I (|Xn | > b) ≤ C2 E |X |α I (|X | > b) , (1.6)

where C1 and C2 are positive constants.

2 Main results

Throughout the paper, let I (A) be the indicator function of the set A. C denotes a positive
constant which may be different in various places and an = O(bn) stands for an ≤ Cbn .

Our main results are as follows.

Theorem 2.1 Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables
which is stochastically dominated by a random variable X and {ani : i ≥ 1, n ≥ 1} be an
array of real numbers. Assume that there exist some δ with 0 < δ < 1 and some α with
0 < α < 2 such that

∑n
i=1 |ani |α = O(nδ) and assume further that E Xni = 0 if 1 < α < 2.

If for some h > 0 and γ > 0 such that

E exp
(
h|X |γ )

< ∞, (2.1)

then for any ε > 0,

∞∑

n=1

n pα−2 P

⎛

⎝ max
1≤ j≤n

∣
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∣
∣

j∑

i=1

ani Xni

∣
∣
∣
∣
∣
∣
> εbn

⎞

⎠ < ∞, (2.2)

where p ≥ 1/α and bn
.= n1/α log1/γ n.
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Proof For fixed n ≥ 1,define

X (n)
i = −bn I (Xni < −bn) + Xni I (|Xni | ≤ bn) + bn I (Xni > bn), i ≥ 1,

T (n)
j =

j∑

i=1

ani

(
X (n)

i − E X (n)
i

)
, j = 1, 2, . . . , n.

It is easy to check that for any ε > 0,
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which implies that
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P (|Xni | > bn) + P
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Firstly, we will show that

b−1
n max

1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

ani E X (n)
i

∣
∣
∣
∣
∣
∣
→ 0, as n → ∞. (2.4)

By
∑n

i=1 |ani |α = O(nδ) and Hölder’s inequality, we have for 1 ≤ k < α that

n∑

i=1

|ani |k ≤
(

n∑

i=1

(
|ani |k

) α
k

) k
α

(
n∑

i=1

1

) α−k
α

≤ Cn. (2.5)

Hence, when 1 < α < 2, we have by E Xni = 0, (1.6) of Lemma 1.6, (2.5)(Taking k = 1),
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Markov’s inequality and (2.1) that
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|ani |P(|X | > bn) + b−1
n

n∑
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|ani |E |Xni |I (|Xni | > bn)
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E exp(h|X |γ )

exp(hbγ
n )

+ Cb−1
n
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i=1

|ani |E |X |I (|X | > bn)

≤ Cn

nhnγ /α
+ Cb−1

n nE |X |I (|X | > bn)
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nhnγ /α
+ Cb−1

n n
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k=n

E |X |I (bk < |X | ≤ bk+1) (2.6)

≤ Cn

nhnγ /α
+ Cb−1

n n
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k=n

bk+1 P(|X | > bk)

≤ Cn

nhnγ /α
+ Cb−1

n n
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k=n

bk+1
E exp(h|X |γ )

exp(hbγ

k )

≤ Cn

nhnγ /α
+ Cb−1

n n
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k=n

(k + 1)1/α(log(k + 1))1/γ k−hkγ /α

≤ Cn

nhnγ /α
+ Cb−1

n
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k=n

(k + 1)1/α+1(log(k + 1))1/γ k−hkγ /α

≤ Cn

nhnγ /α
+ Cn−1/α(log n)−1/γ → 0, as n → ∞.

Elementary Jensen’s inequality implies that for any 0 < s < t,
(

n∑

i=1

|ani |t
)1/t

≤
(

n∑

i=1

|ani |s
)1/s

. (2.7)

Therefore, when 0 < α ≤ 1, we have by (1.5) of Lemmas 1.6, (2.7), Markov’s inequality
and (2.1) that
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≤ Cb−1
n nδ/α E |X |I (|X | ≤ bn) + Cnδ/α P(|X | > bn)

≤ Cb−1
n nδ/α

n∑

k=2

E |X |I (bk−1 < |X |≤bk)+ Cnδ/α E exp(h|X |γ )

exp(hbγ
n )

≤ Cb−1
n nδ/α

n∑

k=2

bk P(|X | > bk−1) + Cnδ/α

nhnγ /α
(2.8)

≤ Cb−1
n nδ/α
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exp(hbγ

k−1)
+ Cnδ/α

nhnγ /α

≤ Cb−1
n nδ/α

n∑

k=2
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nhnγ /α
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nhnγ /α

= C(log n)−1/γ nδ/α−1/α + Cnδ/α

nhnγ /α
→ 0, as n → ∞.

By (2.6) and (2.8), we can get (2.4) immediately. Hence, for n large enough,
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ε

2
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.

To prove (2.2), we only need to show that

I
.=

∞∑

n=1

n pα−2
n∑

i=1

P (|Xni | > bn) < ∞ (2.9)

and

J
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∞∑

n=1

n pα−2 P

(

max
1≤ j≤n

∣
∣
∣T (n)

j

∣
∣
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ε

2
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)

< ∞. (2.10)

By Definition 1.3, Markov’s inequality and (2.1), we can see that

I
.=

∞∑

n=1

n pα−2
n∑

i=1

P (|Xni | > bn)

≤ C
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For fixed n ≥ 1, it is easily seen that {X (n)
i , 1 ≤ i ≤ n} are still NOD by Lemma 1.4. For

q > 2, it follows from (1.4) of Lemma 1.5, Cr ’s inequality and Jensen’s inequality that
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Taking q > max{2, α(pα − 1)/(1 − δ)}, which implies that pα − 2 + qδ/α − q/α < −1
and q > α. It follows from Cr ’s inequality, (1.5) of Lemmas 1.6, (2.7), Markov’s inequality
and (2.1) that
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By Cr ’s inequality, (1.5) of Lemma 1.6, (2.7) and Jensen’s inequality, we can get that
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Therefore, the desired result (2.2) follows from (2.11)–(2.14) immediately. This completes
the proof of the theorem. �	

Similar to the proof of Theorem 2.1, we can get the following result for sequences of NOD
random variables.

Theorem 2.2 Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochas-
tically dominated by a random variable X and {ani , i ≥ 1, n ≥ 1} be an array of real
numbers. Assume that there exist some δ with 0 < δ < 1 and some α with 0 < α < 2 such
that

∑n
i=1 |ani |α = O(nδ) and assume further that E Xn = 0 if 1 < α < 2. If (2.1) holds

true for some h > 0 and γ > 0, then for any ε > 0,

∞∑

n=1

n pα−2 P

⎛

⎝ max
1≤ j≤n

∣
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∣
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∣
∣
∣
∣
∣
∣
> εbn

⎞

⎠ < ∞, (2.16)

where p ≥ 1/α and bn
.= n1/α log1/γ n.

The following result provides the Marcinkiewicz–Zygmund type strong law of large num-
bers for weighted sums

∑n
i=1 ai Xi of a sequence of NOD random variables.

Theorem 2.3 Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochas-
tically dominated by a random variable X and {an, n ≥ 1} be a sequence of real numbers.
Assume that there exist some δ with 0 < δ < 1 and some α with 0 < α < 2 such that
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∑n
i=1 |ai |α = O(nδ) and assume further that E Xn = 0 if 1 < α < 2. If (2.1) holds true for

some h > 0 and γ > 0, then for any ε > 0,
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n→∞

|Sn |
bn

= 0 a.s., (2.18)

where p ≥ 1/α, bn
.= n1/α log1/γ n and Sn = ∑n

i=1 ai Xi for n ≥ 1.

Proof Similar to the proof of Theorem 2.1, we can get (2.17) immediately, which yields that
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< ∞. (2.19)

Therefore,

∞ >

∞∑

n=1

n−1 P

(

max
1≤ j≤n

∣
∣S j

∣
∣ > εbn

)

=
∞∑

i=0

2i+1−1∑

n=2i

n−1 P

(

max
1≤ j≤n

|S j | > εn
1
α (log n)

1
γ

)

≥ 1

2

∞∑

i=1

P

(

max
1≤ j≤2i

|S j | > ε2
i+1
α (log 2i+1)

1
γ

)

.

By Borel–Cantelli Lemma, we obtain that

lim
i→∞

max
1≤ j≤2i

|S j |

2
i+1
α (log 2i+1)

1
γ

= 0 a.s.. (2.20)

For all positive integers n, there exists a positive integer i0 such that 2i0−1 ≤ n < 2i0 . We
have by (2.20) that

|Sn |
bn

≤ max
2i0−1≤n<2i0

|Sn |
bn

≤
2

2
α max

1≤ j≤2i
|S j |

2
i0+1

α (log 2i0+1)
1
γ

(
i0 + 1

i0 − 1

) 1
γ → 0 a.s., as i0 → ∞,

which implies (2.18). This completes the proof of the theorem. �	
Remark 2.1 In Theorems 2.1–2.3, the condition “there exist some δ with 0 < δ < 1 and
some α with 0 < α < 2 such that

∑n
i=1 |ani |α = O(nδ) (or

∑n
i=1 |ai |α = O(nδ) )” is

needed. If we consider the weaker condition “there exists some α with 0 < α < 2 such that∑n
i=1 |ani |α = O(n) (or

∑n
i=1 |ai |α = O(n))”, we can get the following Theorems 2.4–2.6.

Their proofs are similar to that of Theorem 2.1, so the details are omitted.

Theorem 2.4 Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables which
is stochastically dominated by a random variable X and {ani : i ≥ 1, n ≥ 1} be an array of
real numbers. Assume that there exists some α with 0 < α < 2 such that

∑n
i=1 |ani |α = O(n)
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and assume further that E Xni = 0 if 1 < α < 2. If (2.1) holds true for some h > 0 and
γ > 0, then for any ε > 0,

∞∑

n=1

n−1 P

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

ani Xni

∣
∣
∣
∣
∣
∣
> εbn

⎞

⎠ < ∞, (2.21)

where bn
.= n1/α log1/γ n.

Theorem 2.5 Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochasti-
cally dominated by a random variable X and {ani , i ≥ 1, n ≥ 1} be an array of real numbers.
Assume that there exists some α with 0 < α < 2 such that

∑n
i=1 |ani |α = O(n) and assume

further that E Xn = 0 if 1 < α < 2. If (2.1) holds true for some h > 0 and γ > 0, then for
any ε > 0,

∞∑

n=1

n−1 P

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j∑

i=1

ani Xi

∣
∣
∣
∣
∣
∣
> εbn

⎞

⎠ < ∞, (2.22)

where bn
.= n1/α log1/γ n.

Theorem 2.6 Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochas-
tically dominated by a random variable X and {an, n ≥ 1} be a sequence of real numbers.
Assume that there exists some α with 0 < α < 2 such that

∑n
i=1 |ai |α = O(n) and assume

further that E Xn = 0 if 1 < α < 2. If (2.1) holds true for some h > 0 and γ > 0, then for
any ε > 0,

∞∑

n=1

n−1 P

(

max
1≤ j≤n

∣
∣S j

∣
∣ > εbn

)

< ∞ (2.23)

and

lim
n→∞

|Sn |
bn

= 0 a.s., (2.24)

where bn
.= n1/α log1/γ n and Sn = ∑n

i=1 ai Xi for n ≥ 1.
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