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Abstract
This paper illustrates how years 1 and 2 students were guided to engage in data mod-
elling and statistical reasoning through interdisciplinary mathematics and science 
investigations drawn from an Australian 3-year longitudinal study: Interdisciplinary 
Mathematics and Science Learning (https:// imsle arning. org/). The project developed 
learning sequences for 12 inquiry-based investigations involving 35 teachers and 
cohorts of between 25 and 70 students across years 1 through 6. The research used a 
design-based methodology to develop, implement, and refine a 4-stage pedagogical 
cycle based on students’ problem posing, data generation, organisation, interpreta-
tion, and reasoning about data. Across the stages of the IMS cycle, students gen-
erated increasingly sophisticated representations of data and made decisions about 
whether these supported their explanations, claims about, and solutions to scientific 
problems. The teacher’s role in supporting students’ statistical reasoning was ana-
lysed across two learning sequences: Ecology in year 1 and Paper Helicopters in 
year 2 involving the same cohort of students. An explicit focus on data modelling 
and meta-representational practices enabled the year 1 students to form statistical 
ideas, such as distribution, sampling, and aggregation, and to construct a range of 
data representations. In year 2, students engaged in tasks that focused on ordering 
and aggregating data, measures of central tendency, inferential reasoning, and, in 
some cases, informal ideas of variability. The study explores how a representation-
focused interdisciplinary pedagogy can support the development of data modelling 
and statistical thinking from an early age.
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Interdisciplinary approaches to mathematics and science learning from early child-
hood through to secondary school typically engage students in inquiry-led investiga-
tions that reflect the way these disciplines contribute to problem solving in authentic 
contexts. Lehrer (2021) maintains that such interdisciplinary work opens up possibili-
ties of knowledge transfer between disciplines as science and mathematics interact, 
and emphasises disciplinary knowledge as relevant to solving important problems. 
This approach builds the connected and structured knowledge systems that expert 
Science, Technology, Engineering, and Mathematics (STEM) practitioners display. 
Data modelling gives rise to statistical reasoning, integral to interdisciplinary math-
ematics and science learning (Lehrer & English, 2018; Watson et  al., 2022). The 
foundations of statistics essentially begin with data modelling whereby students pose 
questions to solve authentic problems, decide what is worth noticing (i.e., identifying 
attributes of the phenomena), and organise, structure, visualise, and represent data 
(Lehrer & Schauble, 2012; Makar, 2014, 2016). Statistical reasoning involves pos-
ing questions, collecting data, comparing groups, making predictions, representing 
and making inferences from data, and understanding variability—critical to statis-
tical literacy (Lehrer & English, 2018; Makar, 2014, 2016; Makar & Rubin, 2018; 
Pfannkuch, 2018; Watson et al., 2018, 2020).

Although the need to preserve the integrity of disciplinary knowledge in mathemat-
ics and science is well recognised, insufficient attention has been paid to the central 
role of data modelling and statistics, particularly for young students. Inquiry-based 
authentic investigations, often focused on scientific problems, support the develop-
ment of statistical knowledge and decision-making and are well recognised in research 
and practice (e.g., English, 2012, 2013; Fielding-Wells, 2018a; Fielding-Wells & 
Makar, 2015; Fielding & Makar, 2022; Leavy & Hourigan, 2018; Watson et al., 2018). 
Such studies with young students have illustrated their engagement in data explora-
tion through problem posing, categorising and ordering data, and representational 
forms such as pictorial icons, tallies, simple tables, and self-constructed data displays 
(Chick, 2003; English, 2012; Estrella, 2018; Frischemeier, 2018; Mulligan, 2015; Suh 
et  al., 2021). Moreover, young students can be engaged in the practice of statistics 
where they develop, through experience, concepts such as distribution, sampling and 
aggregation, and predictive and inferential reasoning (Ben-Zvi & Sharett-Amir, 2005; 
diSessa, 2004; Makar & Rubin, 2018; Oslington et al., 2020). By engaging in meta-
representational practices, students can be guided to explore the interrelationships 
between these practices which support their conceptual knowledge and statistical 
reasoning.

However, such statistical practices are not necessarily integrated with or priori-
tised in the teaching and learning of mathematics or science or other STEM initia-
tives, particularly in the early years. One explanation is that statistics is considered 
developmentally inappropriate or unnecessary, with limited reference in primary 
mathematics or science curricula (Australian Curriculum and Reporting Authority 
[ACARA], 2022). Teachers also face many challenges in the practical implemen-
tation of investigations and in accessing the statistical content knowledge required 
to support students’ learning (Callingham & Watson, 2011; Fielding-Wells, 2018a). 
Studies that focus on how teachers engage and support young students’ statistical 
meaning-making through interdisciplinary investigations can provide new insights 
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into the effectiveness and appropriateness of particular pedagogies and models (e.g., 
Leavy, 2008; Lehrer, 2009; Wild & Pfannkuch, 1999). Few longitudinal studies 
have focused on the collaboration of researchers, teachers, and students to plan and 
engage in pedagogical cycles or ‘moves’ that centre on the interdisciplinary nature 
of data modelling leading to statistical inquiry. Furthermore, ascertaining the effec-
tiveness and efficacy of designing tasks and relevant problems across the primary 
school, adopting an interdisciplinary approach, can contribute to a more coherent 
view about the critical role of data modelling and statistical reasoning in mathemati-
cal and scientific learning. We assert that teacher-guided interrelated scientific and 
mathematical inquiry can contextualise and support the emergence of early statis-
tical ideas. These foundational experiences can contribute to the development of 
statistical literacy and critical thinking (Lehrer & English, 2018; Pfannkuch, 2018; 
Watson et al., 2020). The IMS project was conceptualised and designed to imple-
ment an interdisciplinary pedagogical approach with a range of authentic problems 
across years 1 through 6. A pedagogical model underpinning IMS focused on the 
invention, evaluation, refinement, and coordination of representational systems 
in both science and mathematics (Tytler et  al., 2022). Data modelling and statis-
tical reasoning were integral to the development and implementation of learning 
sequences. In this paper, we investigate a key research question:

How does teacher implementation of the IMS pedagogical cycle support the 
development and application of statistical reasoning through interdisciplinary 
mathematical and scientific investigations?

In the context of the IMS longitudinal study, this paper addresses our question 
with a sample of 32 year 1 students followed through to year 2, illustrated by two 
investigations, Ecology and Paper Helicopters, respectively.

Background literature

Research on how statistical reasoning can be developed in early childhood and in 
the  primary school has gained momentum, given growing evidence that students 
can acquire and apply statistical concepts through inquiry-based investigations. 
Such investigations are common to mathematics and science classrooms (Fielding  
& Makar, 2022; Lehrer, 2021; Mulligan et  al., 2022; Tytler et  al., 2021; Watson  
et  al., 2020). They include data modelling (Chick, 2003; English, 2012, 2013;  
Watson et al., 2018), ideas about sampling (Lehrer & Schauble, 2017), distribution 
(Ben-Zvi & Sharett-Amir, 2005; diSessa, 2004), and variability (Chick et al., 2018; 
Lehrer & English, 2018; Watson et al., 2022). Other studies highlight students’ abil-
ity to develop emergent inferential practices (Makar & Fielding-Wells, 2011; Makar 
& Rubin, 2018), predictive reasoning (Kinnear & Clark, 2014; Oslington et  al., 
2020), and meta-representational competence (Estrella, 2018; Leavy & Hourigan, 
2018; MacGillivray & Pereira-Mendoza, 2011). Student-constructed representations 
are well recognised as central to mathematical problem solving. Studies focused on 
data modelling with young students have described the development of statistical 
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thinking in constructing and interpreting graphs from data collected for example, in 
investigations of ice melting, growth of plants and measures of change in the growth 
pattern of chickens (Mulligan, 2015). Watson and Moritz (2001), English (2012), 
and Kinnear (2018) also describe predictive strategies used by young students which 
included seeking missing or unused numbers. Studies using picture books have been 
used as a stimulus for data modelling (English, 2012; Kinnear, 2018; Leavy, 2008; 
Leavy & Hourigan, 2018) and have, for example, investigated students’ eye colour 
(Makar, 2018) or show size (Fielding-Wells, 2018a; Makar, 2016). In studies of sta-
tistical reasoning, students as young as year 3 have been found to use predictive rea-
soning to interpret the aggregate properties and variability of a ‘real-world’ data set 
comprising monthly maximum temperatures over time (Oslington et  al., 2020; in 
press). Other studies indicate that year 3 students can be guided to develop a concept 
of average which included middle or representative values as well as outliers, the 
construction of a reference population, and to consider variability between samples 
(Makar, 2014; Makar & Rubin, 2018). Young students’ informal understanding of 
variation has also been found in other studies (Chick et al., 2018). Studies with older 
students, for example, year 5, used sampling to infer aggregate properties of a popu-
lation (Aridor & Ben-Zvi, 2017), and in another study, students used generalised 
models to compare two data sets (Doerr et al., 2017).

Meta‑representational competence

The construction of student representations is particularly productive for interpret-
ing data because it necessitates the visualisation of distributions and allows relation-
ships between variables to be observed, analysed, and revised. Different types of rep-
resentation can prompt alternative interpretations of a data set (Gattuso & Ottaviani, 
2011). Transnumeration, in turn, is the process of forming and refining a data rep-
resentation to better understand the data (Wild & Pfannkuch, 1999). It is a critical 
process necessary for young students to engage in informal inferential reasoning and 
making predictions (Makar, 2014, 2016), data tracking (Leavy & Hourigan, 2018; 
Makar, 2018), and the separation of qualitative and quantitative variables (Estrella, 
2018). An understanding of graphing conventions supports the development of struc-
tural components such as collinearity, equal spacing, data sequencing, and coordina-
tion of bivariate data (Mulligan, 2015; Tytler et al., 2022). With this development, 
students can also engage in the organisation of other transnumerative steps that may 
precede graphing, including collating data frequencies, calculating means, or con-
structing data tables (Chick, 2003).

In practising how to visualise, experiment with, and analyse their own data rep-
resentations, students can be guided to learn about the purposes, suitability, limita-
tions, and effective affordances of different disciplinary representations, such as the 
use of diagrams in science and timelines in mathematics. To learn to model data 
successfully in either subject, students need to reason about how these representa-
tions are organised and interpreted. In this way, reasoning and meta-representational 
competence are mutually necessary as students are taught disciplinary practices and 
come to understand the bases for key concepts. Student-constructed representations 
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can in turn support the development of inferential reasoning when students interpret 
further what they have represented (Lehrer, 2009; Makar, 2014; Mulligan, 2015; 
Oslington et al., 2020; Prain & Tytler, 2012, 2021).

Progression in statistical reasoning

Teacher planning for, and assessment of student development of meta-representa-
tional competence and statistical reasoning through engaging with authentic, inter-
disciplinary problems has given rise to the notion of developmental models or 
constructs proposed as ‘progressions’ or ‘stages’ of growth. Konold et  al. (2015) 
describe statistical understanding as a ‘loose hierarchy’, moving from a focus on 
observations unrelated to data towards a rich and multi-faceted concept of data 
including noticing the range in data values, aggregate properties, modal clumps, and 
variability. Students represent these fundamentally different ideas in which they may 
perceive data as four distinct ‘lenses’ as follows:

1. Pointer: The student makes no clear distinction between the data and the event: 
rather, the data ‘points’ to the event in which the data was collected. There is no 
clear perceptual unit.

2. Case value: The student focuses on an individual data point or points only and 
does not consider the broader pattern. The individual data point is the perceptual 
unit.

3. Classifier: The student focuses upon similarities between observations (e.g., by 
identifying a modal clump). There is a group perceptual unit.

4. Aggregate: The student interprets the data set holistically, identifying properties 
of aggregation as well as variation between individual data points. The perceptual 
unit is the entire set.

The ‘data lenses’ approach is advantageous in analysing students’ written and verbal 
reflections of their data displays and representational processes, particularly for students 
in the middle primary years. This approach enables researchers and teachers to identify 
developmental markers in students’ reasoning but leaves open the questions of disci-
plinary purposes and intended learning outcomes served by this statistical knowledge 
and these processes. Complementary to Konold’s approach, Lehrer  (2022) describes 
key constructs and progressions in data modelling that can inform how teachers support 
student learning in science and mathematics (https:// datam odeli ng. app. vande rbilt. edu/). 
The development of statistical concepts occurs by teachers engaging students in models 
of measuring variability (Lehrer et al., 2014). Early development in data modelling may 
involve the teacher or student in posing a question or making statements about a poten-
tially measurable object of interest and in identifying measurable attributes (qualities). 
Students’ statistical reasoning development is evident when they can explain, justify, 
and demonstrate the use of particular properties of a unit of measure. Students’ percep-
tions of data, particularly the ways they might construct or interpret a display (e.g., a 
graph), provide a means to better understand the phenomenon in question.

https://datamodeling.app.vanderbilt.edu/
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Lehrer describes (Lehrer et  al., 2014) five increasing levels of abstraction in 
the development of data displays as follows:

1. Create or interpret data displays without relating them to the goals of the inquiry
2. Interpret and/or produce data displays as collections of individual cases
3. Notice or construct groups of similar values
4. Recognise or apply scale properties to the data
5. Consider the data in aggregate when interpreting or creating a display

Meta-representational competence encompasses the creation, interpretation, 
and comparison of various forms and functions of data displays. At early lev-
els, students display emerging and elementary representational competencies, fol-
lowed by the capacity to articulate how features of the display reveal something 
about the structure of the data. We consider that these levels provide explicit 
indicators of the broad categories of student growth in statistical reasoning. In 
this paper, we present a descriptive, interpretive analysis of how teachers enacted 
the IMS pedagogical model to guide young students to develop elementary ideas 
about statistics through generating and refining representational tools and con-
ventions related to data modelling in science and mathematics.

Theoretical approach

Our theoretical approach draws on Peirce’s (1955) foundational theory of meaning-
making and on the sociocultural theory of disciplines as cultural practices with 
particular assumptions, goals, methods, and procedures for making, testing, and 
confirming or proving knowledge claims (Lemke, 1998). For Peirce (1931–1958; 
1955), meaning-making at the most fundamental level entails the abstracting pro-
cess of having signs or representations stand in for referents or other signs, thus ena-
bling signs to function as tools for communication, reasoning, and further sign- and 
meaning-making. Learning to model data thus entails students engaging in multiple 
abstraction processes with and from signs. From a sociocultural perspective, to learn 
and practice a discipline, students need to use particular representational practices 
for meaning-making in this discipline and understand their underlying logic. While 
science, mathematics, and statistics as cultural practices entail collecting, ordering, 
modelling, and analysing data, they proceed from different assumptions, draw on 
different logics, and address contrasting purposes. To develop disciplinary reason-
ing in science and mathematics, students need to learn how and why we collect data, 
sample adequately for particular purposes, choose effective measures and represen-
tations, interpret data variability, track growth over time, and recognise differences 
between categorical and continuous data. Statistical reasoning entails concepts and 
principles that can be adapted to varied purposes and warrant conclusions in differ-
ent disciplines and is therefore a crucial component in making and justifying claims 
in science and mathematics.
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The IMS approach to interdisciplinarity assumes that inquiry-based designs 
involve new learning in each of the science and mathematical disciplines and that 
they mutually reinforce. We built on Lehrer’s (Lehrer, 2021) principle of focusing 
on concepts common to science and mathematics but treated distinctively in the 
two disciplines. The sequences involved, to different degrees, an explicit focus on 
statistical reasoning, including reasoning about measurement and data modelling. 
We argue that, while the project was not conceived of as focusing exclusively on 
statistical reasoning, students’ data modelling and statistical reasoning are devel-
oped and enriched, driven by deep engagement with science-related questions that 
are meaningful to students. In turn, strategic, considered generation and analysis 
of data enriches the pursuit of scientific questions. In that spirit, the current paper 
focuses on the ways in which each stage of the IMS pedagogical model strategi-
cally contribute to the development of student’s statistical reasoning, analysing 
the teacher-student interactions that drive this process, and illustrating the student  
representation constructions and refinements that occur.

The IMS pedagogical model

Several pedagogical models focused on statistical investigations have been devel-
oped for teaching and learning contexts. A widely utilised model developed by 
Wild and Pfannkuch (1999) is based on a five-stage cycle that progresses through 
problem posing, planning, data collection and analysis, making claims, and draw-
ing conclusions based on the data. This PPDAC model—Problem, Plan, Data, 
Analysis, Conclusion––highlights planning in the investigation cycle. The IMS 
pedagogical model reflects the PPDAC model in the Orienting stage but empha-
sises representation construction of data and refinement of representations in 
order to build consensus. We drew on the work of Lehrer and colleagues who 
describe their approach as establishing the need to engage in data exploration, 
to create representations, explore what they reveal, make decisions about appro-
priate representations, and engage with an expanded set of representational tools 
(Lehrer & Schauble, 2020). Thus, the IMS model (Fig.  1) enables students to 
develop scientific and mathematical concepts and tools that could be applied 
across a range of contexts or problems. The co-design process driving the pro-
ject led to the refinement of the pedagogical model, developed over the first year 
of the project based on analysis of teachers’ practice involving video capture of 
teacher-student interactions, students’ representations and assessment data, and 
teacher and student interviews. The model consists of four stages, each of which 
involves distinctive teacher-student negotiation of concepts and practices: Orient-
ing; Posing Representational Challenges; Building Consensus; and Applying and 
Extending Conceptual Understanding (Fig. 1).

In some sequences, an iterative process involved more than one cycle of stages 
focused on the refinement of the same concept (e.g., motion and force or variabil-
ity) or developing a sequence of concepts (shadow patterns leading to modelling 
of earth’s rotation).
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Learning sequences: a framework for connecting science, mathematics, 
and statistics

Table  1 provides an overview of seven of the 12 learning sequences where sci-
ence, mathematical, and statistical concepts and meta-representational processes are 
aligned. Although they appear to be segregated in the table, interdisciplinary learn-
ing is interrelated in the pedagogical process.

Methodology

The project overall adopted a design-research approach (Bakker, 2018; Cobb et al., 
2003) employing a cycle of collaborative planning, trialling, data generation and 
analyses, review and refinement in four schools and across years 1 through 6. The 
project was implemented over a 3-year period tracking a subset of students and 
teachers across years 1 through 3 and years 4 through 6. The analysis adopted an 
interpretive and qualitative approach (Creswell, 2013) using an ethnographic meth-
odology drawing on classroom video capture, student and teacher interviews, pre-
post assessment, and artefact collection (Tytler et  al., 2021). The data generation 
and analyses primarily focused on the teacher’s role in guiding students through the 
four stages of the IMS model and on the development of students’ mathematical and 
scientific knowledge and meta-representational competence. In this paper, we use 
an ethnographic approach to illustrate how the IMS cycle supported first and second 

Fig. 1  The Interdisciplinary Mathematics and Science (IMS) pedagogical model (from Tytler et  al., 
2021)
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year students’ engagement in data modelling and statistical reasoning through two 
learning sequences, Ecology and Paper Helicopters, respectively.

Context and participants

The study reported in this paper was conducted in two metropolitan state govern-
ment primary schools in Victoria, Australia. The schools were located in middle 
socio-economic areas, with students drawn from diverse cultural backgrounds. In 
consultation with school principals, the schools were selected on the basis of their 
previous collaborative partnerships with the research team and on their willing-
ness and capacity to undertake a new, longitudinal project. Mathematics and sci-
ence teaching programmes in these schools were consistent with the aims and out-
comes of the Victorian mathematics and science syllabi (Victorian Curriculum and  
Assessment Authority [VCAA]  2022) which are consistent with the Australian  
Curriculum (ACARA, 2022). Mathematics programmes in the schools embedded 
Statistics and Probability syllabus content, but this was limited to basic activities in 
data interpretation of tables and pictographs. Science programmes were limited to 
a weekly timeslot between 1 and 2 h of typically allocated topics across year levels 
often utilising the inquiry-based modules of Primary Connections (Australian Acad-
emy of Science, 2020). The two schools supported an inquiry-based approach to 
teaching science, but data modelling and statistics were not adequately represented  
in the mathematics programmes or explicitly integrated with scientific inquiry.

In this paper, we draw on the pedagogical practice of four year 1 teachers, Anna, 
Kylie, Colin, and Vanessa (pseudonyms) in the Ecology sequence, and two year 2 
teachers, Cerise and Emily (pseudonyms) in the Paper Helicopters sequence. Colin 
and Vanessa, Anna and Kylie, and Cerise and Emily collaborated as teaching part-
ners (pairs) in their respective schools (two schools). There were 15 and 17 ‘case 
study’ students as a subset of each cohort at each school, respectively, selected on 
the basis of teacher judgement to represent a range of abilities, and in consideration 
of prior classroom-based assessment of the students’ mathematics and science learn-
ing. Students were aged between 5 years 4 months and 6 years 3 months (year 1) and 
between 6 years 5 months and 7 years 2 months (year 2). These ‘case study’ students 
were interviewed after each sequence, and their work was collected for all phases 
of the IMS pedagogical cycle. The Ecology and Paper Helicopters’ sequences were 
enacted in the first and second years, respectively, of the study, involving the same 
cohort of students.

Professional learning, planning, and review

The teachers collaborated with the research team in the development of the learn-
ing sequences, engaged in pre- and post-lesson review and refinement, and were 
interviewed following each learning sequence (for details, see Tytler et al., 2021). 
Professional learning workshops afforded opportunities for teachers to engage in 
data modelling and raise questions about the mathematical and scientific discipli-
nary knowledge and statistical ideas inherent in the investigations. For each learning 
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sequence, detailed plans were developed by the research team in consultation with 
the teachers. Guidelines included aims and links with syllabus outcomes, lesson 
plans providing inquiry-based questions, and tasks and resources aligned with each 
stage of the pedagogical model (see learning sequences at https:// imsle arning. org/ 
resou rces/). Samples of student work from comparable cohorts were included in the 
guidelines where possible. The sharing of teaching practice and discussion about 
students’ representations between the teachers and the research team encouraged 
them to review and refine their practice and extend the interdisciplinary inquiry 
to meet the needs and interests of their students. Professional planning and review 
meetings with participating teachers were also conducted by the research team 
where the learning sequences were evaluated and refined.

Implementation of learning sequences: procedures for collecting data

Ecology and Paper Helicopters were implemented in the first and second years of 
the project in term 2 in each case. Members of the research team provided support 
to the teachers and students during the lessons. The researcher-observers maintained 
their view of the classroom by situating themselves at various locations and circulat-
ing among students during the exploratory and representational phases of the les-
sons. Video capture of the lessons focused on teacher-student interactions utilised 
an iPad mounted on a Swivl robot. As the teacher produced class displays, and when 
students drew their representations and wrote descriptions or explanations, the 
researcher-observer took photographs of the work and later collected these work 
samples. The data was recorded in a workbook dedicated to the IMS project.

Data sources

For the teachers and students, data sources included video capture and field notes 
from a sample of lessons, teacher and student interviews, work samples, and pre- 
and post-assessment data. (For further details of data sources and collection proce-
dures, see Tytler et al., 2021, 2022). In this paper, we draw on data from four lessons 
on Ecology from year 1 in each of two schools, and three lessons from the year 2 
learning sequence on Paper Helicopters.

Data analysis

Our main aim in this paper is to illustrate how the IMS pedagogical model supported 
students’ data modelling and statistical reasoning across the two learning sequences. 
In pursuing this aim, we recognise the necessary interaction between the theory 
underpinning the pedagogical model, the IMS model stages and teacher discursive 
moves on the one hand, and student reasoning as judged by engaging with whole-
class reasoning, creating and refining representations, and demonstrating statistical 
reasoning in interview tasks. The data generation draws on all these sources. The 
analysis process required a review of the primary analyses of data which focused on 
the pedagogy supporting scientific inquiry more broadly. In the secondary analysis 

https://imslearning.org/resources/
https://imslearning.org/resources/
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reported here, we focused explicitly on students’ increasing sophistication in organ-
ising and structuring data, constructing and interpreting various data displays, and 
growth in meta-representational competence and reasoning about the data. The team 
engaged in independent multiple views of students’ representations and through 
repeated comparison and discussion reached group consensus on descriptors of stu-
dents’ representations as they developed across the lesson sequences. Descriptors of 
these statistical concepts and processes are presented in Table 1. In the second round 
of our interpretation of students’ representations, we aligned Lehrer’s levels of data 
modelling described earlier (Lehrer et al., 2014). This was followed by sorting and 
categorising representations indicative of students’ levels of statistical thinking at 
different stages of the learning sequences. This process then instigated a search for 
supporting evidence from video, field notes, interviews and assessment data. Video 
transcripts were annotated by the researcher who had observed the lessons, and 
these were reviewed by the other members of the research team. A content analysis 
of each stage of the pedagogical cycle, e.g., Building Consensus, was included in the 
annotations. Field notes were discussed and aligned with excerpts of video transcript 
to support our interpretation of the teacher-student interactions and student learning. 
Salient student and teacher interviews were transcribed for more detailed interpreta-
tion, providing deeper insights into students’ emerging concepts and teachers’ views 
of student learning. Data from these sources were then coordinated to illustrate 
students’ developing statistical reasoning. The research team compared these data 
for the two learning sequences, to search for distinctive features of teacher-student 
engagement with statistical concepts at the two developmental stages of learning.

Results: illustrations of data modelling and statistical reasoning

Ecology: year 1

Ecology engaged year 1 students in identifying the distribution of living things 
in the schoolground. In this sequence, we see the emergence of students’ under-
standing of distribution and sampling, growth in meta-representational forms, 
and refinement through comparative evaluation and consensus.

Orienting

Through the Orientation stage, the teachers involved students in discussion about 
the classification of living/non-living things and students’ predictions about the type 
and number of living things they would find. Students reasoned why they would 
need to identify living things from a number of plots distributed across different 
areas of the schoolground. Students worked in small groups where they devised 
methods of counting, recording, categorising, and representing the distribution of 
living things in one plot and contributed their data to form a class display.
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Posing Representational Challenges

In the Posing Representational Challenge stage, students were supported to think 
about how they would represent their findings of living things in the school-
ground, focused on counts and location. Teachers differed in the ways they sup-
ported students. In Colin’s class, students had discussed tally processes previ-
ously in mathematics, and he offered a strategic reminder of this in a discussion 
on how they would identify and count living things in plots. In the schoolground, 
in pointing out the different sample plots students would be exploring, Colin 
raised the issue of what the ‘samples’ represented, based on the practicality of 
investigating the whole schoolground space:

Colin: (Indicating the large area of the schoolground) we’d find so many liv-
ing things it would take so long. So that’s why we’re going to get samples 
from our plots (pointing to the particular plot location).

Students’ counting and recording methods mostly used tallies but ranged from 
pictorial representations without quantification, to simple unordered tallies, and 
to more organised recording using tallies and a table. Figure 2 is an example of a 
student’s pictorial representation of the plot showing both these features, although 
the tallies are not organised in a manner that clearly advances the data from local-
ised counting to an ordered display of the distribution within the plot.

In this data generation phase, teachers circulated among students and encour-
aged them to refine their representations (see Tytler & Prain, 2022). The teachers’ 
focus, then, in this early representation challenge phase, was on shifting students’ 
attention from a focus on individual living things to the idea of the distribution 
of living things in a sample plot. We interpreted this type of thinking as consist-
ent with Lehrer’s level 2 ‘interpret and/or produce data displays as collections of 
individual cases’ (Lehrer et al., 2014).

Fig. 2  Student’s pictorial representation of their plot connecting individual organisms’ location with a 
count (tallies)
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Posing Representational Challenges (second challenge)

Back in the classroom, groups were challenged to construct a common class display 
which required negotiation of an appropriate way to represent the type and number 
of living things.

Figure 3 shows a group’s display of their collated data representing their com-
bined findings, displaying three features of informal data representation: icons 
drawn as an initial view of the data, categorisation of type and frequency of living 
things using tallies and recorded as a list, and classification of living (L) and non-
living (NL) things using symbols. An important distinction can be drawn here—the 
students did not classify the L and NL things first—the categories were assigned 
after the list had been compiled. Early indications of the need to organise and repre-
sent data in a systematic way began to emerge through negotiation within the group 
and guiding questions by the teacher. One group, for instance, engaged in a discus-
sion about whether it was reasonable to add the numbers of living things observed 
by individual group members, whether this would result in double counting, and 
how they could decide. Validity of measure was thus an issue that students grap-
pled with. The shift between Figs. 2 and 3 represents a move from Lehrer’s level 2 
‘interpret and/or produce data displays as collections of individual cases’ to a level 3 
focus on ‘organising data into ordered groups’ (Lehrer et al., 2014).

In a further Posing Representational Challenges task, students were challenged 
to re-represent their data in graphical form. The teacher (Vanessa) discussed  
the task of representing the data in more structured ways. Vanessa’s students were 
new to graphing, and she allowed time for them to try a range of approaches, gather-
ing the class together regularly to compare and evaluate their representations. Indi-
vidual students, with support from the teacher and their peers, explored different 
approaches to representing scale.

Figure 4 shows the distribution of living things for one plot. The group collected 
and recorded their data for one plot initially as a list with tallies. Vanessa strategically 
supported the task by using a grid to model the data. One-to-one correspondence 
was highlighted to help the student coordinate the frequency and category of living 
things. Encouraging the students to label their graph supported their understanding 

Fig. 3  Group data recording the distribution of living things found across plots
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of the purpose of the graph. We can see here the imposition of a visual order and 
scale on the previous tally representation. Students were then encouraged to invent 
ways of constructing their own graphical representation freehand without the use of 
grid paper. The teacher supported students’ development of a scale to represent the 
count. Figure 5 shows a student’s representation of their group’s plot data previously 
recorded as tallies. It shows the distribution of eight types of living things as an infor-
mal column graph, representing the number of each living thing as a dot. Empty seg-
ments in each column are superfluous and drawn irregularly.

Here, students seem to treat the graphical columns as unitary counts of ‘indi-
vidual cases’ without showing, or recognising the need for, scale properties. This 
was consistent with Lehrer’s level 2. We can see in Fig.  5 the student’s attempts 
to construct multiple vertical scales, although they lack the structure of the organ-
ised bar chart shown in Fig. 4. These staged representations can be interpreted as a 
bridging device linking the material ‘living thing’ counting experience to the more 
formal graphical convention, and then linked iconically in Peircean terms through a 
sequenced structural resemblance (Cripps Clark & Ferguson, 2022).

Figure 6 is more structured than the representation shown in Fig. 5. The student 
initially draws a grid freehand to organise and represent data. This is an advance 
on using grid paper because the student establishes links between the vertical and 
horizontal axes. The scale is limited to 10, although some data is represented beyond 
this. At this stage, the student does not see the need to remove the vertical lines 

Fig. 4  Bar graph of ‘minibeasts out of bounds’ for one group’s plot

Fig. 5  Invented column graph 
of living things for one group’s 
plot



S52 J. Mulligan et al.

1 3

because these help the student link the axes. The more formal attention to numbers 
of organisms of different types represented in these graphs reflects Lehrer’s level 3 
‘notice or construct groups of similar values’ (Lehrer et al., 2014).

Building Consensus—review and refinement

In the Building Consensus stage of the pedagogy, teachers guided students to evalu-
ate and refine their representations and move them towards recognition, in this case, 
of the formal conventions of graphical work and the statistical reasoning that under-
pins this. In lesson 4, students compared and collated individual/group findings and 
shared their ‘way of representing’ using various graphical forms. As a whole class 
and with individuals, teachers encouraged students to make meaning from others’ 
representations and discussed what makes some representations effective.

Interviewer A: So how did the Building Consensus phase, where students 
compared and other students’ data recording, impact on the learning process?
Colin: I find that they learn best when they look at someone else’s graph who 
is on the right track ... they learned more by peer feedback, so it was an impor-
tant process.
Vanessa: We talked about why this is a good graph, how could this be better, 
what is missing here? All those discussions led to the children tucking it into 
the back of their minds for the next time they do it.

Another teacher (Anna), through a comparison of different students’ representa-
tions, pointed out the value of having a scale clearly and evenly spaced, highlighting 
this as an important structural feature (see Fig.  7). At this stage, we see students 
recognising the importance of intervals and scale, moving towards Lehrer’s level 4 

Fig. 6  Vertical bar chart of categories of living things from one plot using grid lines
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‘recognise or apply scale properties to the data’, and opening up discussion towards 
level 5 ‘capacity to articulate how features of display reveal something about the 
structure of the data’ (Lehrer et al., 2014).

At the next stage of the pedagogical cycle, applying and extending conceptual 
understanding, students were challenged to notice and interpret the distribution of 
particular animals across the different plots. This stage was not completed by all 
teachers, given time constraints, and in some classes was restricted to more confi-
dent students while others engaged with refining their first set of graphs such as in 
Fig. 7. Teachers orchestrated the entry of data from each group into a class table, 
and each group was assigned at least one animal, and then challenged to systemati-
cally organise, record, and represent (aggregate) the data across the sample plots.

Figure 8 shows Vanessa’s construction of a class data display prior to individual 
students representing the variation of particular animals across the sample plots.

During this process of re-configuring the class data, students generally progressed 
to more confident graphical representations of the distribution of their chosen ani-
mal, coordinating the vertical and horizontal axes. In Fig. 9, the student uses a ruler 
as a tool to align the data across four plots. They understand that the axes must be 
coordinated and the columns of equal width and interval. The gradations of the scale 
became decreasingly spaced because the paper height limited the drawing of the 
graph. This growing attention to scale corresponds to Lehrer’s level 4 ‘recognise or 
apply scale properties to the data’ (Lehrer et al., 2014).

Drawing on these transformed data representations showing the distribution of 
living things across different plots, teachers used guided questioning to establish the 
conditions in the different plots that could explain the variation in type and number 
of living things.

Anna: Why do you think we found different living things in the five plots?
Student: It wasn’t the same in each plot because there were lots of plots and in 
different areas, for different habitats for different living things because of the 
soil and the sun and the shade.

In the class discussion, Anna drew attention to the data as evidence for students’ 
justifications. She constructed with her class a list of features of each of the sample 
plots (sunny or in shade, type of vegetation, moist soil, mulch, etc.), and then chal-
lenged students to interpret the patterns of data—which plot had the most living 

Fig. 7  An invented column graph labelled with icons and a title
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things, and which plot had the most different living things—in terms of plot features 
(see, Tytler et al., 2022). At this stage, students viewed the data as aggregated when 
creating and interpreting displays, Lehrer’s level 4 (Lehrer et al., 2014). Students’ 
reasoning about these relationships between the type and distribution of living 
things and different plot features represents an informal idea of sampling, with the 
common features of habitats suitable for supporting particular living things, general-
ised, albeit in an emergent way.

Fig. 8  Class data display of 
different living things across 
sample plots

Fig. 9  Column graph using a 
ruler to align the data (birds) 
across plots
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Paper Helicopters: year 2

The learning sequence Paper Helicopters engaged the same students one year later, 
where they reasoned about the method of recording data and the variation in drop-
times, followed by comparison of different weight and wing conditions. The stu-
dents now grappled with ideas of aggregating the data, graphing using an interval 
scale, measures of central tendency, and interpreting variability.

This 3-lesson sequence began with students constructing a paper helicopter. In 
the Orientation stage of the first lesson the question was posed: ‘What affects how 
long a helicopter takes to fall to the ground?’ Teachers organised group trials of 
standardised helicopters with stop watches, discussing how a test of drop-time can 
be made fair. This focus on measurement variation required attention to protocols 
ensuring the generation of reliable data.

In Fig.  10, the teacher (Emily) recorded on the board the drop-times as they 
occurred. She then discussed with students what they noticed in the data, prompting 
them to identify the shortest and longest times, and to re-order the data from fastest 
to slowest (1.34 to 2.02 s).

The following excerpt shows a student’s response to the question of ‘common 
time’ enabled supported by the ordered record.

Teacher: What is the data telling you?
Student: It is telling me that 1.34 is the lowest and 2.02 is the biggest number 
on my number line.
Teacher: What is the common time?
Student: The most common is 1.92 and 1.99 is common of all the groups 
(referring to the frequencies of drop-times).

In this representation challenge stage of the lesson, another teacher (Cerise) 
questioned students as to whether a horizontal scale (referred to as a number line) 

Fig. 10  Teacher, Emily’s record of students’ data plotted on a vertical interval scale (left) and ordered 
drop-times (right)
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might be useful to display the data and what it might look like. One student volun-
teered a horizontal, scaled number line with arrows on both ends ‘because it keeps 
going’. Figure 11 shows a student subsequently structuring a scale for their trial to 
accurately indicate drop-times in seconds, 1.22, 1.25, 1.3, 1.39 1.49, and 1.5.

In both Cerise and Emily’s classes, statistical ideas were developed using a 
co-construction process of question and answer supported by students’ represen-
tations. The teachers discussed the transformation of the data set encouraging stu-
dents to notice clumps of numbers. Subsequently, in the Building Consensus class 
discussion, students noted the modal value as a possible representative value, but 
subsequently, the counter suggestion of the middle value (median) was adopted 
as appropriate (see Fig. 12). In the second lesson, which focused on Applying and 
Extending Conceptual Understanding, the effect of weight on helicopter drop-
time was investigated, using a series of tests for each of 0, 1, 2 and 3 paper clips. 
Groups constructed their own data sets, and a class data set was also compiled 
and displayed.

The following interview excerpt illustrates how a student reasons about the 
class data set, by taking a holistic view.

Interviewer: With the class data, you said you did see the class data. What 
did the class data tell you or not tell you?
Student: It told me that more paper clips make the whirlybird go faster and 
less make it go slower.

Figure 12 shows a class data set displayed as a table. Students were directed to 
look for patterns in the data: more weight resulted in drop-time decreasing from 

Fig. 11  Student’s representation 
of a horizontal scale with arrows 
showing intervals of 1.2 to 1.6 s 
and various drop-times

Fig. 12  Class data set showing the effect of weight (number of paperclips) on repeated drop-times, indi-
cating the mode
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2.1 s (no paperclips) to 0.9 s (3 paperclips). Students engaged in teacher-led discus-
sion about the most common time (mode) and the time that was ‘about in the mid-
dle’ (median) for each trial depending on the number of paper clips.

In the final lesson, Application and Extension of Conceptual Understanding, 
groups were challenged to adapt the wing design of their helicopters to maximise 
the drop time. Following the re-design, students tested their helicopter and com-
pared their drop-times with other students’ results (see Fig. 13). A class table was 
constructed from recording 3 drop-times for each design, with the median values 
displayed on a number line. The class discussion centred on comparing new design 
features of the slowest and fastest helicopters.

At the end of the three lessons, after orientation to the need for multiple meas-
ures, the students had engaged with and refined data using tables, and ordered sets 
of numbers as a whole class and individually. The representational challenge phase 
had opened up multiple data representations for discussion. The Building Consensus 
Building Consensus phase extended this to agreement on measures of a ‘common 
time’.

Post lesson sequence: semi‑structured interview and assessment

Following the last stage of the pedagogical cycle, students were assessed 
through a written post-assessment, followed by a semi-structured interview 
(with a member of the research team). We were able to probe students’ statisti-
cal reasoning alongside their mathematical and scientific conceptual understand-
ings (see Tytler et al., 2021). In a post-assessment task, the majority of students 
represented unfamiliar data sets, generated by fictitious characters ‘Ben’ and 
‘Tamara’, of five sample drop-times and could order and plot these values on an 

Fig. 13  Cerise’s table of class results, entered on the board, with identification of the median time
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interval scale. Questions were designed to probe students’ understanding of the 
need to collect data for repeat trials and explain variation in drop-times:

Why did Ben and Tamara measure the drop five times instead of once?
Why did the times vary from trial to trial?

In interview, students reasoned about for the need for repeat measures to pro-
vide comparisons such as ‘you can tell if it’s the same, different or changed’, 
or for accuracy purposes, ‘to be more accurate’ or ‘to make sure’, indicative of 
Lehrer’s level 5 involving ‘recognition of the value of aggregated data’ (Lehrer 
et al., 2014). Two thirds of students were explicit about the inevitability of vari-
ation in measure or the need to check and compare. They reasoned that possible 
causes of variation in measure were due to variations in helicopter wing design 
and weight, or differences in drop height. Only one student alluded to the notion 
of variability in terms of timing error. Students were able to make choices about 
the most appropriate form of representation to interpret the data. Further assess-
ment questions probed students’ predictive reasoning by asking for estimates 
(‘best guess’) of drop-times for further trials:

If the students repeated this experiment what drop-times are possible?

Each of the 15 students interviewed provided a different series of drop-times, 
but these were distributed similarly to the data set provided in the first question. 
This explanation demonstrated a student’s understanding of the measures being 
samples of a wider possible set, aligned with Lehrer’s level 5 ‘consider the data 
in aggregate when interpreting or creating displays’ (Lehrer et al., 2014).

I didn’t want to choose them the same because it’s really unlikely that 
they’re going to be the same. So, I chose different ones because I think that 
some of them are going to be slow and some of them would be a bit fast.

Discussion

Our illustrations of the IMS pedagogical cycle revealed the challenges and affor-
dances of engaging students in mathematical and scientific inquiry through data 
modelling. In the inquiry process, students needed to reason about the meaning 
of their data in solving authentic problems. This process saw these students draw 
upon, and grapple with scientific and mathematical concepts as well as grasping 
statistical ideas and new meta-representational skills that were novel or intui-
tively formed. We draw on the analysis of the two sequences to respond to our 
research question:

How does teacher implementation of  the IMS pedagogical cycle support 
the development and application of statistical reasoning through interdisci-
plinary mathematical and scientific investigations?
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Development and application of statistical reasoning

In Ecology, we observed how year 1 students applied informal statistical methods to 
develop concepts of sampling, distribution, and adaptive features of habitat. While 
not all students could use their spatial and numerical skills to develop early ideas 
of distribution and sampling, we did see impressive attempts by students to predict 
that similar types of living things would be found in plots having the same living 
conditions. We consider this an emergent form of generalisation. In Paper Helicop-
ters, year 2 students engaged in experimental methods exploring concepts of gravity, 
force and motion, and flight and air flow. Teachers encouraged students to grapple 
with speed/time/distance relationships and justify the importance of repeated tri-
als and accuracy in measuring height and time. They guided students to notice pat-
terns in the data leading to agreement on measures of central tendency. This struc-
tured guidance through the explicit stages of the IMS pedagogical model contrasts 
with direct instruction traditionally favoured to establish scientific and statistical 
concepts.

Our findings support those of other studies indicating that young students can 
develop informal statistical concepts from as early as 5  years of age. For exam-
ple, our study showed that year 1 students developed, represented, and explained 
ideas about sampling and distribution, supporting the seminal work of Ben-Zvi and 
Sharett-Amir (2005). In both years, our students drew increasingly sophisticated 
graphical representations of their data from which they made inferences about their 
findings that supported their emerging scientific concepts (for discussion of informal 
inference, see Fielding-Wells, 2018b; Makar, 2014, 2016; Makar & Rubin, 2018). 
Consistent with other studies (Chick, 2003; English, 2012, 2013; Kinnear, 2018; 
Mulligan, 2015), our students recognised common values and the range of values 
in small data tables, constructed their own data sets as well as represented the data 
in informal ways and extended representations to bar and column graphs. From the 
Paper Helicopters’ trial data, students made increasingly accurate predictions show-
ing that predictive reasoning and emergent notions of variability may develop even 
earlier than previously found (consistent with the findings of Tytler et  al., 2021; 
Watson et al., 2022). The IMS study is longitudinal, cross-sectional (years 1 through 
6), and broader in scope than studies focused on particular statistical concepts with 
one age group. Across the stages of the IMS cycle for each learning sequence, stu-
dents generated increasingly sophisticated representations of data and made deci-
sions about whether these supported their explanations, claims about, and solutions 
to scientific problems. Young students in this study engaged in this process from 
years 1 through 2.

Progression in data modelling

Our illustrative examples provide fresh insights into fine-grained features of the 
data-modelling process supporting statistical reasoning (Lehrer et  al., 2014). We 
identified a progression in students’ representations and their reasoning aligned with 
Lehrer’s levels of data modelling and the emergence of statistical ideas. However, 
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individual students developed different aspects of data modelling in a variety of ways 
depending on the learning context and the IMS pedagogical stage of engagement. In 
turn, our data does not necessarily reflect a neat developmental progression. In Ecol-
ogy, the year 1 students were supported to move beyond the identification and iconic 
representation of different individual living things, to an understanding of the distri-
bution of living things across plots. The focus increasingly shifted towards an aggre-
gate view of the data, first within the sample plot and then across the plots. Students 
noticed similarities (the habitat features-in-common of different plots) and variation 
(across plots due to different conditions). They progressed to increasingly abstract 
representational forms such as tallying, constructing a table, bar chart, or column 
graphs, and eventually using an informal scale. In Paper Helicopters, year 2 students 
transformed individual data to an ordered pattern, arranged the times on an interval 
scale, considered time as representative of the aggregated data and as measures of 
central tendency. This allowed the comparison of data sets for different experimental 
conditions and noticing variability between times due to drop conditions and meas-
urement imprecision. However, the notion of variability did not extend to an under-
standing of natural variation in measure. In view of Lehrer’s description of meta-
representational competence, students showed a capacity to articulate how features 
of display reveal something about the structure of the data (Lehrer et al., 2014). The 
focus of class discussions was on the clarity of graphical displays of living things, 
and of what a horizontal scale (timeline) offered that ordered sets of numbers did 
not. While in neither sequence can we claim that students operated at Lehrer’s level 
4, most students were able to ‘consider the data in aggregate when interpreting or 
creating displays’ (Lehrer et al., 2014).

The IMS pedagogical cycle

In the learning sequences, we traced the way that students’ data modelling, their rep-
resentations, and reasoning were supported by teachers using particular discursive 
moves associated with the different stages of the pedagogical model. This involved 
(i) engaging students with an authentic inquiry focus and establishing what patterns 
could be noticed and what data should be gathered, and how; (ii) challenging students 
to represent the data, moving them through guided questioning towards evaluating 
and refining their representations and reasoning; (iii) through guided comparison, 
establishing consensus about principles for representing data sets; and (iv) opening 
up opportunities for extending these representations to new situations. In both cases, 
the teachers crafted the tasks and the pedagogical process to draw attention to simi-
larities and differences, and patterns in the data, and to make inferences from the data 
to engage with the scientific ideas. This resulted in a shift towards students’ apprecia-
tion and representation of more sophisticated ideas such as aggregation, measures of 
central tendency, and variability. Acquiring disciplinary knowledge in both learning 
sequences involved carefully designed pedagogical moves and validation of students’ 
emerging meta-representational competencies. Not all students progressed through 
the pedagogical cycle in the same way or at the same pace. Teachers synchronised 
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their pedagogical moves with the students’ existing and emerging knowledge to elicit 
students’ sense-making. This involved establishing meaning across increasingly 
abstract sign systems, involving iconic transformations where students’ attention is 
drawn to structural resemblances. This process is akin to transnumeration and the 
development of increasing structural features in students’ representations (Estrella, 
2018; Lehrer et al., 2009; Oslington et al., 2020; Wild & Pfannkuch, 1999). Through 
the pedagogy, students made meaningful links between the structural features of the 
successively abstracted graphical or tabular forms back through tallies or timelines, 
through categorisation of data, to the systematic recording of individual living things, 
or of helicopter drop-times (Tytler et al., 2022; Watson & Moritz, 2001). Teachers’ 
expectations of and capacity to engage with statistical reasoning was dependent on 
curriculum expectations for the year level, such that the higher-level reasoning around 
aggregated data and measures of central tendency were challenging for years 1 and 2 
students. Nevertheless, they were able to productively engage with data-modelling 
and statistical reasoning at both year levels, well in advance of teacher expectations, 
demonstrating that the introduction of data modelling and statistical concepts in the 
early years of primary school is both possible and productive.

Limitations

In this paper, our analysis of how the IMS pedagogical model supports statistical 
reasoning is limited to 6 teachers and their ‘case study’ students for one iteration of 
two learning sequences. Other learning sequences also provided evidence of young 
students’ impressive statistical thinking (e.g., see Table 1). However, our data, which 
consisted of evidence from students’ engagement with productive classroom dis-
course around statistical representational work, individual representational genera-
tion, and explanations and justifications elicited in interview, were limited to per-
formance during two learning sequences and small student samples. What we do 
not know is how the students’ transferred their meta-representational competence  
to other situations between learning sequences. Further, we cannot claim that our 
findings can be generalised to primary school students or a more diverse range of 
participants and learning contexts. What we can say is that our project provides 
unique opportunities and supporting evidence that young students can be guided to 
engage in data modelling and statistical thinking beyond curriculum expectations 
through an interdisciplinary pedagogical model.

Conclusions and implications

This paper contributes to the emerging field of research on the design and efficacy 
of pedagogical approaches that support data modelling and the  development of 
statistical reasoning in the early years of schooling. It also indicates how Lehrer’s  
model (2021) of progression in data modelling can articulate important mile-
stones in interpreting students’ representations and reasoning. Through adopting  
an interdisciplinary pedagogical approach to data modelling, we have illustrated 
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how teachers used an explicit representational focus to support young students in 
their development of statistical ideas not usually expected at such as early age, 
such as distribution, sampling, range, aggregation, measures of central tendency, 
and variability when embedded in scientific inquiry. The IMS approach offers 
an explicit practical focus responding to the challenge identified by Wild and 
Pfannkuch (1999) of the importance of transnumeration to support statistical rea-
soning. Subtle and fine-grained progressions in young students’ thinking and their 
invented ways of representing and interpreting data need to be noticed, valued, and  
encouraged. This is relevant for each of the domains of statistics, mathematics education 
and science education. Another challenge is promoting the important role of data  
modelling and statistical reasoning in the Australian Curriculum (ACARA, 2022). 
Lifting our expectations of the statistical capacities of young students and provid-
ing opportunities for them to be active participants in data collection and interpre-
tation is critical to advancing statistical literacy. Without well-coordinated, sys-
tematic interdisciplinary research involving data modelling, convincing evidence 
of the beneficial long-term outcomes for students’ mathematics learning remains a 
challenge for future education policy, curricula, and practice.
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