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Abstract
The study of pivotal teaching moments (PTMs) offers significant insights into 
mathematics classroom interactions. PTMs are student-generated instances within 
a lesson that provide opportunities for teachers to modify planned instruction 
(Stockero & Van Zoest, 2013). Given the importance of interactions and discourse 
in students’ mathematical growth and understanding, we examine them in the con- 
text of PTM episode triples. PTM episode triples consist of three main elements: 
(1) a PTM, (2) a teacher response to the PTM, and (3) the immediately ensuing 
student utterance. Analysis of data from nine elementary mathematics lessons 
shows that teacher responses that explicitly “pursued students’ thinking” elicited   
significantly higher cognitive levels of student discourse than teachers who 
"ignored or dismissed" PTMs or simply "acknowledged [PTMs] but continued as 
planned." While many researchers have focused on PTM episode “doubles” (com-
binations of student-generated interruptions and the teacher’s response), no studies 
to our knowledge have addressed PTM episode “triples” as we have. Implications 
of these findings prove helpful for identifying concrete ways that educators can 
increase the cognitive level of student discourse within their classrooms. Further, 
our integration and modification of existing theory and frameworks for analyzing 
PTM episode triples—incorporating the relationship between PTMs and teachers’ 
responses to them, on the one hand, and the cognitive level of the ensuing student 
utterance, on the other hand—are a unique contribution to the field and provide a 
method by which researchers and educators can study classroom practice.
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Introduction

Teaching is a profession where uncertainty is an inherent certainty (Campbell, 
2007). Educators constantly face unforeseen scenarios in their classrooms where 
students raise questions, make connections, or give answers outside those rea-
sonably anticipated by the teacher. Such instances require teachers to act swiftly 
and make decisions that balance “a variety of interests that need to be satisfied” 
(Lampert, 1985, p. 190). A pivotal teaching moment (PTM) is an “instance in a 
classroom lesson in which a[] [student-generated] interruption in the flow of the 
lesson provides the teacher an opportunity to modify instruction in order to extend 
or change the nature of students’ mathematical understanding” (p. 127). That is, a 
PTM is an utterance, authored by a student, that provides an opportunity to mod-
ify instruction and which if pursued by the teacher could further support student 
understanding (Stockero & Van Zoest, 2013).

In this study, we analyze a convenience sample of nine video-recorded third 
and fourth grade teachers’ self-selected lessons to answer the following research 
question: What is the relationship (if any) between the teacher response to PTMs 
and the cognitive level of student discourse of the student utterance elicited by the 
response, and/or the PTM type which prompted the response? By building on and 
extending past work (e.g., Stockero & Van Zoest, 2013; Weaver et al., 2005), to give 
us a framework for analyses to fill an identified research gap, we demonstrate that it 
is possible to code and analyze these types of classroom interactions. Further, our 
findings suggest that there are indeed such relationships that can be described. For 
instance, a dominant teacher response type in our data led to high cognitive levels 
of discourse of the ensuing student utterance. This finding is confirmatory empiri-
cal evidence of what may be only a previously assumed hypothesis (e.g., Chi et al., 
1994). Interestingly, we find that the only PTMs ignored or dismissed by teachers 
in our study involved incorrect or contradictory statements by students.

Pivotal teaching moments and cognitive levels of discourse

PTMs are rooted in the concept of contingent situations in the mathematics classroom 
(Rowland et  al., 2005). In addition to necessary content and curricular knowledge, 
“teaching also involves attending to students’ questions, anticipating some difficulties 
and dealing with unexpected ones, taking advantage of opportunities, making connec-
tions, and extending students’ horizons beyond the immediate tasks. In short, teaching 
involves dealing with unpredictable, contingent events in the classroom” (Rowland & 
Zazkis, 2013, p. 138). Stockero and Van Zoest (2013) define a PTM as an utterance 
authored by a student that provides an opportunity to modify instruction which if pur-
sued by the teacher could further support student understanding.

Pivotal teaching moments

The notion of a PTM is derived from research on teacher noticing (e.g., van Es & 
Sherin, 2008) and the fourth element of Rowland et  al. (2005) teacher knowledge 
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quartet, known as the contingency. The contingency is “a teacher’s recognition  
of the value in students’ unexpected ideas and their ability to deviate from the 
planned lesson, when appropriate, in response to these ideas” (Stockero & Van 
Zoest, 2013, p. 127). Though it is a student utterance that is the PTM, the student 
utterance may or may not be a noticeable deviation from the planned instruction, 
but in some way provides a moment where the instructional plan could “pivot” 
and further develop student thinking. For example, Stockero and Van Zoest  
(2013) described a teacher who was explaining that slope and intercept of a linear 
equation can be found from the graph. A student reply asking if it was possible to 
have more than one y-intercept is a PTM. This particular student utterance pro- 
vided an opportunity for the teacher to modify instruction. The student “pivoted” 
the lesson from a procedural focus—identifying slope and intercept on a graph— 
to conceptual—questioning the possibility of multiple y-intercepts.

Pivotal teaching moment episodes

One common classroom verbal interaction structure is a teacher initiation → 
student response → teacher feedback or evaluation sequence. In such interac-
tions in mathematics classrooms, the teacher-initiated probe or prompt is often 
seeking a simple arithmetic computation or a “remember” or recall-type answer 
(Bloom et al., 1956), and the teacher is anticipating the responses. These types 
of student utterances might be characterized as having a low level of cognitive 
demand (e.g., Weaver et  al., 2005). “The teacher, by evaluating what students 
say, assumes the right to control the talk. Also, as initiator of the sequence, the 
teacher maintains the right to call on students and allocate turns, in essence 
organizing and orchestrating the discussions” (Greenleaf & Freedman, 1993, 
p. 466). Though further discussion is beyond the scope of this paper, much 
research and work have been done to understand this classroom structure (e.g., 
Cazden, 1988; Mehan, 1979; Sinclair & Coulthard, 1975), especially in efforts 
to build teachers’ capacity to initiate student responses that require high cogni-
tive demand (e.g., Weaver et al., 2005).

PTMs create a somewhat inverted interaction structure. That is, our conceptu-
alization of PTM episode triples follows a student initiation → teacher response 
→ student response sequence. Recall, PTMs are unique from other interactions 
in the classroom in that they can “pivot” the planned lesson and they are not rea-
sonably anticipated by the teacher. This student-generated “interruption in the 
flow of the lesson provides the teacher an opportunity to modify instruction in 
order to extend or change the nature of students’ mathematical understanding” 
(Stockero & Van Zoest, 2013, p.127). One “modification” or impact of interest 
is the opportunity to support students’ use of high cognitive levels of discourse.
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Mathematical thinking and discourse

While the relationship is not yet clearly articulated or agreed upon in the field, some 
researchers suggest that student engagement explaining mathematical thinking sup-
ports mathematical achievement (e.g., Stein & Lane, 1996). Cognitive processes, 
like thinking, reasoning, and problem-solving skills (Henningsen & Stein, 1997), are 
observed through students’ language. One measure of students’ mathematical think-
ing is through the cognitive levels of their discourse, that is, the levels of thinking or 
comprehension that students display through their speech. Higher cognitive levels of 
student discourse can be thought of as higher quality mathematical utterances, say of  
“justifying” or “generalizing” natures (levels 8 and 9, Weaver et al., 2005). These 
types of responses are in contrast to “lower quality” utterances, like those that give 
just a short (e.g., “recall”) answer to a direct question from the teacher or another stu- 
dent (Levels 1 and 2, Weaver et al., 2005).

Student mathematical discourse, defined in our study as “the act of [students] 
articulating mathematical ideas or procedures” (Weaver et  al., 2005, p. 3), has 
been identified as a key element in students’ cognitive development (e.g., Forman,  
1996; Lampert & Cobb, 2003; Yackel et al., 1991). It is language on which the pro-
cesses of teaching and learning mathematics depend. “Abstract mathematical ideas 
are brought into being through classroom talk or writing” (Barwell, 2008). The 
important role of discourse in students’ mathematical growth and understanding  
is reflected in standards and curricula generated from all over the world (e.g., Aus-
tralian Curriculum, Assessment and Reporting Authority, 2015; National Council 
of Teachers of Mathematics, 2000, 2013; National Curriculum of England, 2014; 
National Governors Association Center and Council of Chief State School Officers, 
2010).

Potential impact of teacher response to a PTM on student learning, discourse

Stockero and Van Zoest (2013) opined that PTMs to which the teacher responds 
“inactively” lack significant potential to impact student learning. Inactive 
responses lack any active pursuit of the PTM. They may be intentional or unin-
tentional ignoring of the PTM (the latter when a teacher does not recognize or 
notice the PTM) or an explicit disregard of the PTM. “Active” responses are 
“productive” in that they have potential to positively impact student learning. 
“These [teacher response] decisions provide a starting point for helping to learn 
to use student thinking in ways that support the development of students’ math-
ematical understanding” (Stockero & Van Zoest, 2013, p. 144). Active responses 
may extend students’ mathematical thinking or emphasize the meaning of math-
ematics, for example.

In their exploratory study of PTMs and beginning secondary teachers, Stockero 
and Van Zoest (2013) found that the teacher response “decision to extend or make 
connections was the one most likely to have a positive impact on learning ([which 
they anticipated might do so] 83% of the time in [their] study), regardless of the 
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PTM type that the decision was in response to” (p. 142). Stockero and Van Zoest 
(2013) “hypothesized that the decision-making process involved with PTMs may 
be more obvious with [beginning teachers] than with skilled teachers” (p. 129). 
Sun and Hanna (2013) applied Stockero and Van Zoest’s (2013) framework with 
professionally produced videos of secondary mathematics teachers with at least 
5-year experience and found that PTMs could both be found and categorized with 
the existing framework. Sun and Hanna (2013) showed that while “skilled teach-
ers may recognize a PTM and make the decision to act so quickly and smoothly 
that the interruption would not be easily observable by someone who was not 
intricately familiar with the teacher’s plan for the lesson” (Stockero & Van Zoest, 
2013, p. 129), and thus coding for PTMs may be more difficult, it is indeed pos-
sible. Yet, their application did not account for anticipated or actual impact of 
the teacher response. Additional applications of Stockero and Van Zoest’s (2013) 
PTM and teacher response framework have been carried out (e.g., teaching with 
technology) (e.g., Cayton et  al., 2017; Coskun et  al., 2021; Hollebrands et  al., 
2013; Shaughnessy et al., 2020); yet, none examined actual impact on student dis-
course as we propose.

Study purpose

Understanding the relationship between teacher responses to PTMs and the 
resulting cognitive levels of student discourse uncovers particular combinations 
of interactions that encourage higher levels of mathematics discourse. That is, 
this study uncovers what cognitive levels of discourse students used to respond in 
the third element of the PTM episode triple, given the particular teacher response 
to PTMs and/or the PTM type. Such knowledge aids school mathematics teacher 
pedagogy: through such analysis, teachers would know how their actions affect 
conversations in the classroom and how to intentionally foster the goal of higher 
cognitive levels of discourse. “Continued research on Pivotal Teaching Moments 
is warranted as long as mathematics teacher educators are concerned with devel-
oping teachers’ abilities to take advantage of ‘teachable moments’ in the class-
room” (Sun & Hanna, 2013, p. 1031).

Conceptual and theoretical framework

To move from anticipated impact of particular PTM episode doubles and consider 
actual impact—here, on the cognitive level of the ensuing student utterance—we 
marry a modification of Weaver et al. (2005) framework, for characterizing cog-
nitive levels of discourse, with Stockero and Van Zoest’s (2013) framework for 
characterizing PTMs and teacher responses. This study is centered on the rela-
tionships between a teacher response to a PTM and the cognitive level of student 
discourse of the student utterance elicited by the response, and/or the PTM type 
which prompted the response—as connectors between the individual and collective 
properties of classroom mathematical discourse (that is, two paired relationships, 
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between PTM episode triple elements 1 and 2 and elements 2 and 3). Stockero and 
Van Zoest’s (2013) framework allows us to distinguish basic types of student and 
teacher actions at the utterance level. Our modified Weaver et al. (2005) protocol 
is used to document the quality of students’ mathematical discourse based on the 
level of thinking displayed in specific types of remarks.

Pivotal teaching moments and teacher responses to PTMs: Stockero and Van Zoest 
(2013)

Pivotal teaching moment identification and types

Stockero and Van Zoest (2013) have defined five types of PTMs. In the example 
(Stockero & Van Zoest, 2013) from the classroom where a teacher was explain-
ing that slope and intercept of a linear equation can be found from the graph, 
an Extending-type PTM was made by a student who asked if it was possible 
to have more than one y-intercept. Extending PTMs are a student comment or 
question that, while related to the mathematics at hand, deepens the content 
being addressed. Incorrect Mathematics-type PTMs are student utterances of 
incorrect mathematical thinking or a solution which may interfere with stu-
dents’ mathematical understanding. Mathematical Contradiction differs from 
Incorrect Mathematics in that the initial student utterance provides an oppos-
ing answer in some way. This opposing answer may, or may not, be mathemat-
ically incorrect. We tease out the sometimes subtle differences of these two 
categories in our Results section. While Sense Making-type PTMs occur when 
students seek clarification of mathematical concepts, Mathematical Confusion 
PTM types are those utterances that make a lack of understanding of a specific 
mathematical process explicit.

Teacher response types

A teacher’s response to a PTM is categorized in one of five ways: (1) Acknowl-
edges, but Continues as Planned, (2) Emphasizes Meaning of the Mathematics, 
(3) Extends Mathematics and/or Makes Connections, (4) Ignores or Dismisses, 
and (5) Pursues Student Thinking. Recall the example previously presented from 
Stockero and Van Zoest (2013). When the student asked if it was possible to 
have more than one y-intercept, the teacher could have “made a connection” by 
responding with a prompt to consider the definition of a function. The teacher 
might use the Pursues Student Thinking-type response by asking probing ques-
tions or use the Emphasizes Meaning of the Mathematics-type response by high-
lighting mathematical definitions or procedures. An Extends Mathematics and/
or Makes Connections-type teacher response may “go beyond the topic that stu-
dents are working on in the lesson to revisit and make connections to past learn-
ing or to foreshadow or lay a foundation for future learning” (Stockero & Van 
Zoest, 2013, p. 138).
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An Ignores or Dismisses situation arises when the teacher does not address the 
student-initiated PTM at all, though the teacher may instead use the Acknowledges, 
but Continues as Planned type response, recognizing the student utterance explic-
itly but choosing not to address it further. This may sound like a “thank you”- or 
“interesting!”-type response from the teacher, or even a “we aren’t going to talk 
about that at this time”-type response. The PTM, when answered with these inactive 
(Stockero & Van Zoest, 2013) responses—Acknowledges, but Continues as Planned 
or Ignores or Dismisses—is not pursued. Only in the former teacher response type is 
the PTM utterance directly acknowledged. A code of “Acknowledges, but Continues 
as Planned” does not make a judgment from such a perspective that the teacher’s 
instructional plans were known and that there was no derivation. Simply, the code 
points to the lack of any active pursuit of the PTM. Table 1 is a list of each of the 
five PTM types and teacher response types, with a description and example; see 
Stockero and Van Zoest (2013, 2014) for additional examples.

Student responses, discourse in PTM episode triples

While particular PTM episode doubles (the PTM and teacher response) can be used 
to anticipate likely impact on student learning, as Stockero and Van Zoest (2013) 
have done, this is also a limitation of their model for our purposes. Recall, our par-
ticular interest in the current study is to continue to trace the PTM episode through 
the third element, assessing the quality of the discourse via the immediately ensuing 
student utterance.

Discourse is both individual and collective—it is constituted of utterances made 
by individuals, but can also be considered as a whole, as a connected body of 
responses among teacher and students. Each of the three components of a PTM epi-
sode triple—the initial student utterance, the teacher’s response, and the ensuing stu-
dent response—can be examined individually, or in connection to the utterances that 
precede or follow it, but at the same time fit into a longer conversation which has its 
own properties. One might consider, for instance, the cognitive level of individual 
utterances in a conversation, or instead the overall cognitive level of discourse of 
the entire discussion. At both levels, there are several possible measures to use as 
indicators.

Analyzing the cognitive level of the student utterance which most closely fol-
lows a teacher move, across the span of an entire lesson, provides one measure of 
the impact of that teacher response on student discourse. The mean cognitive level 
of all student utterances following the given teacher move and prior to the next 
teacher move would give another such measure. Both ostensibly allow for analyses 
of our interaction structure of interest. In order to focus on trends in the relation-
ships among the components of a PTM episode triple, this study uses the properties 
of individual contributions to discourse as markers which may lead to identifying 
emergent properties of the collective discourse in the lesson through future study 
and analyses. Note, in PTM episode triples, the “final” student response (element 
3) needs not be made by the same student who initiated the PTM, and in fact, the 
teacher may not allow for a student response.
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Although later student discourse (e.g., beyond PTM episode triple element 3) may 
be less clearly or reliably causally connected to a preceding teacher move, examin-
ing just the ensuing student utterance following a teacher’s response to a PTM may 
not completely capture the most highly valued response to the teacher’s question or 
comment. That is, in typical discourse, responses may often require some thought, 
and three or four children may respond to a teacher’s question or comment, or a 
10-min discussion among students may result. Following more sustained discourse 
threads could capture more complexity, yet it goes beyond the scope and purpose of 
this study. Further, we note that few, if any, sustained interactions originating with a 
PTM (that is, interaction chains longer than the PTM episode triple as we envision 
it) existed in our data corpus.

Cognitive level of a student utterance: Weaver et al. (2005)

Weaver et al. (2005) Classroom Observation Protocol allows for the identification of 
nine types of mathematical discourse, each given a numerical value, and varying in 
cognitive levels that range representative of the “continuum of discourse in terms of 
increasing levels of cognitive demand” (Weaver et al., 2005, p. 3).

At level 1, Answering, a student gives a short answer to a direct question from the  
teacher or another student. Level 2,  Stating or  Sharing, occurs when a  
student makes a simple statement or assertion or shares their work with others and 
the statement or sharing does not involve an explanation of how or why. Explaining 
(level 3) is a student utterance that explains a mathematical idea or procedure by 
stating a description of what the student did or how the student solved a problem, 
but without providing any justification of the validity of the idea or procedure. Level 
4 is Questioning—a student-posed question seeking clarification of mathematical 
idea or procedure.

In contrast to levels 1–4, those of “lower” quality discourse, levels 5–9 are  
considered “higher” quality discourse (Weaver et  al., 2005). Challenging (level  
5) is a student statement or question that challenges the validity of a mathemati- 
cal idea or procedure. The utterance may include a counterexample and requires 
someone else to reevaluate the student’s thinking. Relating, level 6, is a student 
statement indicating a connection or relationship to some prior knowledge or  
experience, while Predicting or Conjecturing, level 7, is a student utterance that 
makes a prediction or conjecture based on an understanding of the mathematics 
behind a problem. For example, a student may recognize a pattern in a sequence  
of numbers, make a prediction about what might come next in the sequence, or  
state a hypothesized mathematical property observed in a problem.

At the final two levels are Justifying and Generalizing. Justifying, level 8, is when 
a student provides justification for the validity of a mathematical idea or procedure 
by providing an explanation of the thinking that led to the idea or procedure. The 
justification may be in defense of an idea challenged by the teacher or another stu-
dent. Generalizing, level 9, is a student utterance that is evidence of a shift from a 
specific example to the general case.
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Level 0 or no response

In addition to the nine levels of discourse outlined by Weaver et  al. (2005) pre-
viously discussed, we found an outcome in discourse records not addressed  
by the protocol. Our additional level, level 0 or No Response, captures the  
instances where, for whatever reason, no student responded verbally. In these  
cases, the PTM episode would only include the PTM type and teacher response  
type elements without the addition of our code to allow a level 0 for the final  
element. Weaver et  al. (2005) protocol does not include a level 0 because it  
was developed to analyze student discourse when it occurs, not in response to  
some other stimulus. Therefore, we adopt our modified version of Weaver et  al. 
(2005) protocol for this study; we consider level 0 to be of lowest quality dis- 
course, since no quality whatsoever can be determined.

“Lower” and “higher” quality discourse, cognitive levels

Answering and  Stating or Sharing are of lowest cognitive demand and are thus con-
sidered lowest-quality discourse (levels 1 and 2). Justifying and Generalizing (levels 
8 and 9) are of highest cognitive demand and are thus considered highest-quality 
discourse. “The order of the discourse types represents the continuum of discourse 
in terms of increasing levels of cognitive demand. That is, giving a short right or 
wrong answer to a direct question represents the lowest level of cognitive demand 
and justifying mathematical ideas and procedures and making generalizations repre-
sent the highest levels” (Weaver et al., 2005, p. 3).

Interrelating existing frameworks for analyzing PTM episode triples

Individually, our modified Weaver et  al. (2005) and the Stockero and Van Zoest 
(2013) frameworks provide lenses through which to examine isolated elements  
of PTM episodes. However, a PTM, teacher response, and immediately ensu- 
ing student utterance level of discourse are interrelated in complex mathematics 
classroom interactions. We contend a teacher’s response to a PTM shapes the type 
of student utterance that follows. Thus, we combine the Stockero and Van Zoest 
(2013), and the modified Weaver et al. (2005) structures in order to identify trends 
in teacher actions and student discourse and help isolate the effects of particular 
teacher moves. The simultaneous use of these two frameworks offers the potential 
to uncover discourse-based connections which educators could leverage. While the  
trends identified in this study are limited to the specific lessons studied, as well  
as potentially to instructional context characteristics (e.g., third- and fourth-grade, 
teacher self-selected or designed lessons on a given topic), even in this limited 
scope, the relationships observed can be important descriptors of the tie between  
the individual and collective facets of classroom mathematical discourse.
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Figure  1 illustrates our interrelated use of Stockero and van Zoest’s (2013)  
framework and our modified Weaver et  al. (2005) framework for analyzing PTM 
episode triples. Element 1 is the PTM, with five possible categories, element 2 is 
the teacher response, also with five possible categories, and element 3 is the stu- 
dent response, with 10 total cognitive level of discourse categories.

Methodology

This project deals with the descriptive analysis of discourse from a convenience  
sample of nine third and fourth grade mathematics lessons, which were vide-
0orecorded at public elementary schools in large urban and suburban school dis-
tricts in the state of Texas. The lessons were self-selected and taught by certi- 
fied elementary school mathematics teachers, all of whom had at least 4 years of  
teaching experience (range 4–28, median 12) and held mathematics instructional  

Fig. 1  Illustration of PTM episode triple elements, frameworks for analyses
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leadership positions on their campuses. Further, each teacher was enrolled in a 
multi-year professional development program on mathematics education and dis-
course moderation during the time that the lessons were recorded. Teachers used 
their own videos, including those in this study, to analyze various aspects of their 
classroom practice. The teachers neither learned about nor analyzed their videos  
for PTMs, and the teachers’ analyses are not considered in the present study. The 
second author was the professional developer.

The teachers were tasked to submit videos representative of their teaching  
practices from lessons of multiplication and division content. We note that some 
draw from multiplication and division content but also emphasize fractional  
understanding, the result of division (e.g., lessons D and G, see Appendix 1).  
We include all submitted lessons in analyses; the content and nature of the les- 
sons may impact the interactions and thus the PTM episode triples. Yet, given  
the infancy of the work we propose, the content and teaching methodology are  
not yet considered as a mediator or moderator. We discuss this further in the  
Discussion section. Each lesson had a duration of 15:03 to 53:44  min (median 
31.38 min) and was transcribed for analyses.

Analysis

Our analysis followed a seven-phase process. Phases 1–3 are guided by the work of 
Stockero and Van Zoest (2013), a process operationalized by others (e.g., Cayton  
et al., 2017; Hollebrands et al., 2013; Sun & Hanna, 2013).

Phase 1: PTM identification

The first and second author identified PTMs within each lesson, watching each  
of the nine videos in this study and reading their transcripts to identify PTMs. 
Decontextualized utterances, similar to the examples provided in Table  1 and the 
illustrations presented in the Results section, are especially difficult to understand  
as PTMs (and particular types of PTMs or teacher responses). Context allows for 
easier and more accurate coding. We had access to the teachers’ entire class tran-
script and the classroom video and supplemental documentation (e.g., lesson plan) 
and therefore a robust and contextualized data corpus. Each PTM identified rep-
resents the first element in a PTM episode triple. PTMs were identified regardless  
of whether a teacher followed up the initial student utterance (e.g., when students 
made mathematical comments that were incorrect, did not relate to the topic under 
discussion, or expressed a need to clarify mathematical concepts). That is, a teach-
er’s decision not to respond to a PTM utterance from a student, perhaps because s/ 
he did not notice it, did not preclude the PTM from analyses.

Specifically, and guided by the work of Stockero and Van Zoest (2013), “the [first 
and second] authors marked on the transcripts the points in the dialogue at which 
PTMs occurred” (p. 131) using the definition: a student utterance that in some way 
provides a moment where the instructional plan could “pivot” and further develop 
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student thinking. Those researchers coded the data corpus for PTMs independently 
to improve reliability; the process revealed more than 82% inter-rater reliability.  
Discrepancies (of which there were 15 total; less than 18% of the 84 PTMs found) 
were resolved through discussion using “a collaborative process of analyzing and 
discussing the results,” as Stockero and Van Zoest (2013, p. 131) suggest. This 
choice to “team code” (Miles et al., 2014), where “two researchers code the same 
data set and discuss their initial difficulties” (p. 84), was used intentionally to 
increase reliability.

Phase 2: PTM categorization

In phase 2 (again, using team coding, Miles et al., 2014), each identified PTM (phase 1,  
element 1 in the PTM episode triple) was coded independently by both the first and sec- 
ond authors with one of the following tags: (Mathematical) Confusion, (Mathematical)  
Contradiction, Extending, Incorrect (Mathematics), or Sense Making. Discrepancies in  
coding were found for 19 instances (less than 23%), for resolution, phase 5.

Phase 3: teacher response categorization

Each teacher response to the PTMs (element 2 in the PTM episode triple) was 
coded, using the same researcher process as outlined in phase 2, into the fol- 
lowing categories: ACP (Acknowledges, but Continues as Planned), EMM  
(Emphasizes Meaning of the Mathematics), EM/MC (Extends Mathematics and/ 
or Makes Connections), I/D ( Ignores or Dismisses), or PST (Pursues Student  
Thinking). Eighteen (about 21%) discrepancies had to be resolved.

Phase 4: student response categorization

In phase 4, each of the student responses (element 3 in the PTM episode triple)  
were coded using our modified Weaver et  al. (2005) framework of ten cognitive  
levels of discourse. Codes were assigned independently by the first and second 
authors (i.e., team coding, Miles et  al., 2014), revealing 11 (about 13%) discrep-
ancies to be resolved.

Phase 5: coding comparison, discrepancy resolution, and final codes

Codes from phases 2–4 were compared across researchers (revealing the discrep-
ancies, rates for each phase reported previously). On average, across phases 2–4,  
about 19% of all coding revealed discrepancies. In phase 5, a codebook was gen-
erated (following the recommendations of MacQueen et  al, 1998) with the codes, 
descriptions of each, and data-based examples, which was operationalized for dis-
cussing and resolving discrepancies in coding. Final coding of all three PTM epi-
sode elements was thus established.

58



1 3

Embracing pivotal teaching moments: elementary teachers’…

Phase 6: descriptive analysis

Using the final coding (phase 5), relationships between a PTM type and the type  
of response the teacher makes and between the teacher’s response and the imme-
diately ensuing student utterance, were represented in data displays (see Miles  
et al., 2014) and described. Further, data from the corpus was identified as exem-
plar of particular findings, and anomalies or unique findings were addressed.

Phase 7: additional, statistical analysis

In addition to a descriptive analysis, we further examined the relationship between 
teacher responses to PTMs and the cognitive levels of student discourse of the 
immediately ensuing student utterances through statistical tools. When treating the 
Weaver et al. (2005) protocol as a ranking of discourse, the nonparametric Kruskal-
Wallis test was used to test for differences between the mean cognitive levels of stu-
dent discourse (PTM episode triple element 3) among teacher response types (PTM 
episode triple element 2) (not to be confused with teachers or a test for differences 
between the mean cognitive levels of student discourse among classes).

Following the Kruskal-Wallis test, Dunn’s test was employed to pinpoint which dif- 
ferences between two types’ mean discourse levels are statistically significant. Details of  
the Kruskal-Wallis and Dunn’s analyses can be found in Appendix 2. The authors also  
chose to investigate the effect of treating the discourse in the Weaver et al. (2005) proto- 
col as numerical data and used the one-way ANOVA and Tukey-Kramer test which are  
appropriate for analyzing such data. In Weaver et al. (2005) initial work, their levels were  
not intended to be treated numerically, only categorically, but we chose to do so because  
of the indication of higher levels for discourse. This is essentially a first approximation  
to a ranking, though we know the levels might not be equidistant. We find that cognitive  
level of discourse can be treated as numerical or categorical and the results are the same  
(see next section), so there is essentially no issue treating as numerical.

A note on analyses of relationships between PTM episode triple elements

At this time, and under various constraints of the work (e.g., size of corpus), we 
would not be able to confidently find accumulation points in a three-way analysis 
between the PTM episode triple elements. However, this is work that we would 
like to do, and we believe that our findings (see Results) of the two-way analyses 
(between teacher responses to PTMs and the cognitive levels of student discourse 
of the student utterances elicited by the response, and/or the PTM types which 
prompt the response) warrant continued work to analyze triples. Thus, our work here 
focuses on linking PTM episode triple Elements 1 and 2 and Elements 2 and 3, as 
explained by our research question.
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Results

PTM episodes

A total of 84 PTMs (and therefore PTM episode triples) were identified from the 
nine videos. The different numbers of PTMs present within each lesson may also 
affect our data. It was calculated that PTM occurrences in each lesson ranged  
from 1.36 to 9.75 PTMs per 15  min. The particular combinations of PTMs,  
teacher response types, and student discourse levels of immediately ensuing stu-
0dent utterances that occurred within the data set are illustrated in Table  2. For 
instance, there were 6 total Confusion-type PTMs; 2 of those were followed by  
the teacher response type ACP, and in both of those cases, the student cognitive 
level of discourse in the immediately ensuing response was level 1. 

PTM and teacher response combinations

Incorrect mathematics‑type PTMs

The overwhelming majority (77%) of the PTMs involved some sort of mathemati-
cal error or contradiction made by students (Incorrect or Contradiction). The most 
commonly observed type was Incorrect; about 40% (34 of 84) of the PTMs were of 
this type. Teacher responses to Incorrect-type PTMs were somewhat evenly spread 
among I/D (24%), ACP (21%), EMM (26%), and PST (29%).

A teacher response of EMM to an Incorrect-type PTM is illustrated in the excerpt 
from lesson E (described in Appendix 1) as shown below:

T: “Our system of numbers is based on ten. What are the ten digits that we use 
to make up every number in…that we can possibly come up with? What are 
the ten digits?”

S: “Ones, tens, hundreds…”

T: “Those are places. Those are places. Digits are to numbers like letters are to 
words.”

The student incorrectly named place values instead of digits. In response to this 
thinking, the teacher emphasized the meaning of ones, tens, and hundreds by repeat-
edly saying that those are ‘places,’ then emphasized the meaning of the mathemati-
cal term ‘digit’ by making an analogy to letters and words.

Mathematical contradiction‑type PTMs

The next most frequent PTM type observed was Contradiction. Approximately 37% 
(31 of 84) of the PTMs were of this type. Recall, Contradiction-type PTMs can be a 
specialized form of incorrect mathematics, that is, the contradiction can be made by 
a student utterance that is an incorrect answer or idea. Of course, not all Incorrect-
type PTMs are contradictions and not all Contradiction-type PTMs are incorrect 
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mathematics. The overall majority of teachers’ responses to Contradiction-type 
PTMs were nearly evenly split between pursuit of student thinking and dismissal: 
about 45% resulted in a teacher response of PST, 39% resulted in a teacher response 
of I/D, 10% in EMM, 3% in EM/MC, and 3% in ACP.

Multiple examples of Contradiction-type PTMs were seen in lesson D where stu-
dents (who are in groups) are asked to share three tortillas equally among eight peo-
ple and determine what fraction of a tortilla each person would get. In this excerpt, 
the teacher has come across a group that has figured out how to cut the tortillas 
evenly:

T: “What did you cut this one [model of a tortilla] into?”
S1: “Eighths.”
S2: “They’re all wholes.”
T: “Why do you call it a whole?”

Here, the teacher’s questioning PST to understand the Contradiction between stu-
dent 1 and student 2.

Sense making‑type PTMs

Following Contradiction type in frequency is the Sense Making-type PTM, consti-
tuting about 10% (8 of 84) of the PTMs in this data set. In this category, 63% of the 
teachers responded by PST and the remaining 37% by ACP.

An example of a teacher responding to a Sense Making-type PTM with a PST-
type response occurs in lesson G. In this lesson, students are given a model, divided 

Fig. 2  Lesson G fraction model
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into four unequal pieces and similar to the image in Fig.  2, and asked to decide 
whether the model represents one-third.

S: “If you look more carefully, you could have just erased the line.” Student 
refers to the line circled in Fig. 2.
T: Teacher erases the line circled in Fig. 2. “Okay, so what about now? Would 
that be equal?”

Mathematical confusion‑type PTMs

About 7% (6 of 84) of the PTMs were Confusion. Most (67%) of the teacher 
responses to these PTMs were of PST while close to 33% were of ACP.

An example of a Confusion-type PTM followed by PST response is seen in  
lesson D. Prior to the excerpt below, one student divided each of the three tortil- 
las models into eighths in order to share them equally among eight people. This  
student claimed that each person would get three tortillas pieces (eighths) but 
another student did not understand why:

S: “But how would all of them get three because it would be like three, six, 
and nine. I can’t go by threes to get to eight.”

T: “Why are you counting by threes to get to eight?”

Through the teacher’s question following this Confusion, one can see that she 
seeks to understand what prompted the student to count by threes.

Extending‑type PTMs

Lastly, the Extending-type PTM consisted of about 6% of the data. Within this cat-
egory, 80% of teacher responses were PST while 20% were EM/MC. All Extending-
type PTMs garnered active teacher responses.

An example of a teacher EM/MC in response to an Extending-type PTM is in 
lesson H. Students were learning the relationship between multiplying by two and 
doubling. The teacher calls out asking students to tell the “doubles.” In the midst of 
this, the following utterances are made:

S: “I just need to learn my seven’s.”
T: “When you’re multiplying by seven what are you doing?”

The comment that the student made certainly dealt with multiplication but  
went beyond what was being taught at the moment (multiplication by 2). For con-
text, the student connected doubling to multiplication and beyond, thinking about 
multiplying by 3’s and 4’s and so forth, and was noting that he would not be able 
to carry out multiplication or repeated addition of 7’s and would “just need to  
learn [their] seven’s” to be able to do so. The question that the teacher asked in 
response to the PTM utterance shows her desire to know what concept the student 
relates with multiplication by 7, which we have explained.
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In summary, our analyses show that teacher responses of I/D and EMM only fol-
lowed instances of Incorrect or Contradiction-type PTMs, with a majority of the 
EMM responses following Incorrect-type PTMs. ACP responses occurred after all 
PTM types except for Extending. However, just over 50% of ACP followed Incor-
rect-type PTMs. Lastly, PST was well distributed across all PTM types, whereas 
EM/MC (which only happened a total of two times in the data corpus) occurred after 
Contradiction- or Extending-type PTMs.

Teacher response and following student utterance discourse level combinations

The frequency of student discourse type associated with each teacher response is 
shown in Fig. 3.

Level 1 discourse

Most of the I/D, ACP, and EMM teacher responses led to discourse of level 1. An 
example of an ACP response which led to discourse of level 1 is in lesson C. In this 
lesson, students were representing multiplication using arrays and highlighted the 
fact that they could represent 6 × 7 two different ways because they would yield the 
same amount.

T: “What property is that?”
S1: “Identity.”
T: “Not the identity…”
S2: “The product.”

Fig. 3  Teacher response and associated student discourse
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In this example, the teacher acknowledges the incorrect mathematics of this PTM, 
saying “Not the identity…” However, by simply acknowledging that the response is 
not correct, students were led to continue answering.

Pursues student thinking‑type teacher responses

An interesting shift in the pattern of these data emerged with the teacher response 
of PST. With this response type, there was a similar amount of discourse of cogni-
tive level 8 (30%) and level 1 (32%). An example of a PST teacher response which 
resulted in discourse of level 8 can be seen in the continuation of a previous example 
from lesson D:

T: “What did you cut this one (model of a tortilla) into?”
S1: “Eighths.”
S2: “They’re all wholes.” (model shows each whole divided into eighths).
T: “Why do you call it a whole?”
S2: “Because it’s (the piece of tortilla which actually represents one-eighth) 
one of these (student is referring to a whole tortilla) but into pieces.”

As a result of the teacher PST response, the student gave a justification of why he 
believes his piece is a whole. Although this justification is mathematically impre-
cise, we consider it a justification because of the student’s intent. Through the video, 
it is clear that the student is trying to articulate the distinction between whole items 
and group sizes.

It was also with the PST teacher response type that we see occurrence of student 
cognitive level 0, meaning that after an instance where a teacher PST students did 
not further respond.

Teacher ignores or dismisses‑type response and student discourse level 8

Worthy of note is that the sole instance of I/D leading to high-level student discourse 
(level 8) came from the teacher not intervening when students offered contradictory 
answers about what part of a fraction a tortilla piece represented.

Some students: “One fourth.”
Other students: “One third.”
Some students: “One fourth.”
Other students: “One third.” [they argue back and forth like this for 15 s]
S1: “It’s one third because there are three pieces.”

The teacher’s inactive response resulted in one of the students offering a justi-
fication for his answer in an attempt to convince others. This example occurred in 
lesson D, the lesson with by far the highest frequency of PTMs (0.65 per minute, 
more than twice that in all but one of the other lessons), which also included 7 of the 
11 instances in which PST-type teacher response led to student justifications. This 
teacher frequently asked her students “why?” questions; justification was clearly one 
of the class norms.
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Variations of teacher response types across lessons

A representative indicator of the variations across lessons is given in Table 3, which 
shows percentages of teacher response types observed in each lesson. Collectively, 
the teacher response types in the data show a trend of 44% PST, 24% I/D, 15% ACP, 
14% EMM, and 2% EM/MC. Although two thirds of the data in Table 3 fall within 
about 10 percentage points of these means, certain teachers diverged significantly 
from this trend within their lessons. Examples include teacher A whose lesson 
showed 50% I/D, teacher E whose lesson showed 54% ACP, teacher H whose les-
son showed 29% EMM response, and teacher I who displayed 66% PST. In addi-
tion, more than half of the teachers observed overwhelmingly (more than 50% of the 
time) used one specific type of response to PTMs. Teachers B, D, F, and I favored 
PST while teacher E favored ACP.

Statistical analysis

By treating the cognitive levels of discourse (Weaver et al., 2005) as ordinal rank-
ings, the Kruskal-Wallis and Dunn’s method were used to test for differences in the 
cognitive level of student discourse in the third element of PTM triples among the 
five teacher responses to PTMs. The results of the Kruskal-Wallis test showed a chi-
squared value of 12.746 and a p value of about 0.01. Therefore, we conclude the 
following: the difference in the mean rank of the cognitive level of student discourse 
in an utterance followed from each teacher response to a PTM is statistically sig-
nificant. The unadjusted p values in Dunn’s test, as depicted in Table 4, show that 
a difference in cognitive level of discourse of a student response is seen between 
two pairs of teacher responses: (1) PST and I/D and (2) PST and ACP (an adjusted 
p value of 0.07 does not recognize the latter difference as statistically significant). 
The results of the unadjusted p values in Dunn’s test are identical to the one-way 

Table 3  Percentage of teacher response types by lesson

Teacher response type

Lesson Acknowledges, 
but continues as 
planned

Emphasizes 
meaning of the 
mathematics

Extends math-
ematics and/or 
makes connections

Ignores or dis-
misses

Pursues stu-
dent thinking

A 25.00% 0 0 50.00% 25.00%
B 0 20.00% 0 20.00% 60.00%
C 16.67% 16.67% 0 16.67% 50.00%
D 0 19.23% 0 15.38% 65.38%
E 53.85% 15.38% 0 23.08% 7.69%
F 11.11% 0 0 33.33% 55.56%
G 18.18% 9.09% 9.09% 27.27% 36.36%
H 14.29% 28.57% 14.29% 28.57% 14.29%
I 0 0 0 33.33% 66.66%
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ANOVA and Tukey-Kramer test results obtained when treating the discourse levels 
as numerical data. Regardless of whether the discourse levels were considered as 
ordinal or numerical data, the Kruskal-Wallis and ANOVA test both showed that 
the cognitive levels of student discourse differed significantly across the five teacher 
response types.

Summary

Our results indicate that lower-quality discourse (levels 1–4 and 0) occurred after all 
teacher response types; however, teachers successfully elicited higher-quality dis-
course (levels 5–9) mostly after PST responses, with one instance each of higher-
quality discourse after EMM and I/D. Although every PTM type showed at least one 
instance in which a teacher response led to higher-quality discourse, the majority—
and the only category with more than one or two instances—followed a Contradic-
tion-type PTM, and in most cases, a PST teacher response. It is important to note 
that although all PTM and teacher response types found in Stockero and Van Zoest’s 
(2013) study were found in this study, not all discourse level types were observed. 
Students were not found to display discourse levels 6, 7, or 9; this is consistent with 
results of Weaver et al. (2005).

Discussion

Relationship between elements of the PTM episode triple

We found a concentration of certain types of PTMs, teacher responses, and the 
immediately ensuing student utterance cognitive levels of discourse, thus confirm-
ing the relevance of the relationships identified in the results to the vast majority of 
PTM episodes analyzed. Most of the PTMs were Contradiction or Incorrect types, 
and many teacher responses involved either PST or I/D.

Dominant teacher response types

Although PST and I/D were the two most common teacher response types, their results 
were drastically different. The inactive response (Stockero & Van Zoest, 2013) of I/D 
typically led to the lowest cognitive level of student discourse in student responses 
(levels 1–2 and 0), while the active response of PST led to more justification (Level 8) 
than any other cognitive level of discourse. Furthermore, 81% of the student response 
discourse in the lessons was in the range of levels 0–4.

The results that were found hint to a possible connection between dominant PTM 
(accounting for 50% or more of the PTMs within the lesson) and teacher response 
types. Recall, in lessons A, C, E, H, and I, the dominant PTM type was that of 
Incorrect while in lessons D, F, and G, it was Contradiction. Although the leading 
PTM types within these lessons differed, in general the dominant teacher response 
(across all PTM types) was that of PST. Although every PTM type led at least once 
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to a PST response, only Incorrect and Contradiction-type (the two types that may 
involve a mathematical error, accounting for 77% of observed PTMs) ever led to an 
I/D response. In fact, for most (6 out of 9) teachers in the study, I/D was, if not the 
most common response to an Incorrect or Contradiction-type PTM, within 1 PTM 
of being the most common (including ties). This suggests that in lessons where most 
PTMs involved some kind of mathematical error, those teachers tended, in general, 
to use PST as a dominant move (across all PTM types), but the responses of all 
teachers to error-related PTMs tended to be more hit-or-miss (either PST or I/D) 
than responses to other PTM types.

Empirical evidence for impact of pursues student thinking teacher response type

Teacher response type PST was a dominant response regardless of PTM types and 
led to the highest cognitive levels of discourse in the ensuing student utterance. 
Dunn’s test and the Tukey-Kramer test indicate a significant difference in the cog-
nitive level of student discourse between the I/D versus PST and ACP versus PST 
responses (the adjusted p value for the latter comparison may limit the statistical 
significance of the difference). This reveals that when teachers pursued student 
thinking, they were more successful at eliciting higher cognitive level responses 
from students than when they ignored or merely acknowledged PTMs.

Limitations, accounting for variances in the data

Certain aspects of this study limit the extent to which we can generalize its results. 
For one, the small sample size keeps us from concluding that the concentrations 
of PTMs, teacher responses to PTMs, and the immediately ensuing student utter-
ance’s cognitive level noted in this paper are indicative of the atmosphere in third 
and fourth grade mathematics classrooms. In order to bolster confidence in our 
results, there is a need to analyze more mathematics lessons from those specific 
grade levels (and on other topics). Secondly, the group of teachers observed in this 
study may also have affected the results that were found. This is because PTMs/
responses are difficult to detect in the lessons of highly experienced teachers (Stock-
ero & Van Zoest, 2013), and we may consider that many, if not all, of the teach-
ers in this study are experienced. Minimally, they are committed, as they all were 
both active in a three to four-year professional development and held mathematics 
instructional leadership positions on their campuses. Thus, not all of the PTMs and 
responses that were present in each lesson may have been accounted for in the data. 
In addition, instances where teachers did not respond to a PTM were not discussed 
afterward with the teachers, to determine whether they recognized and deliberately 
I/D the PTM or simply failed to notice it (although in either case it would be classi-
fied as I/D).

The unequal distribution of PTMs and teacher response types within each les-
son may limit our understanding of how teacher responses to PTMs could generally 
affect student discourse, and specifically the cognitive level of the ensuing student 
utterance, in elementary school classrooms. Also note, PTMs and teacher responses 
in this study were labeled using the Stockero and Van Zoest (2013) framework. 
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However, since the framework was created in the context of high school classrooms 
and used primarily in secondary classroom contexts previously (e.g., Cayton et al., 
2017; Hollebrands et al., 2013; Sun & Hanna, 2013), its use may serve as a poten-
tial limitation of this research project. However, recall that there were no PTMs or 
teacher response utterances in the data that could not be categorized with Stockero 
and Van Zoest’s (2013) framework. Therefore, we have demonstrated an application 
of this framework to elementary classrooms.

Variations in the data may also bear on generalizability, namely the content of 
the lessons. Given that the nature of tasks may vary quite significantly from day to 
day, the limitation to single lessons could rather restrict the range of PTMs likely 
to occur. It is quite possible that specific interaction patterns may have been dif-
ferent in different parts of a teaching sequence. In addition, as noted in developing 
our framework for analysis, we focused our analysis of teacher impact through the 
immediately ensuing student utterance, rather than on patterns in any extended stu-
dent discourse that may have followed.

Connections to literature

Some results of this study resemble those of projects previously discussed. For 
instance, the prevalence of lower-quality discourse in the third and fourth grade 
classrooms aligns with the findings of Weaver et al. (2005), which also found a 
high proportion of discourse recorded in elementary classrooms to be of lower-
quality (Weaver et al., 2005). Another conspicuous similarity that our research 
had with Weaver et al. (2005) was the lack of two specific discourse types: Pre-
dicting or Conjecturing (level 7) and Generalizing (level 9). While Weaver et al. 
(2005) observed that middle and high school students displayed these discourse 
types (even if only in a small number), students in elementary schools did not. 
The fact that this finding is confirmed in our results, while perhaps unsurpris-
ing, is of concern. If “conceptual understanding is critically important to begin 
developing in primary grades” (Georgius, 2014, p. 48), this phenomenon must 
be addressed. Further research which looks closely into what may be hindering 
these specific discourse types could identify what combination of instruction, 
curriculum, and cognitive development is keeping children from reaching these 
discourse levels.

The fact that PST appears in this study to be the most successful teacher response 
type in eliciting higher-quality discourse from students is supported by teaching 
practices such as Smith and Stein’s (2011) 5 Practices for Orchestrating Productive 
Mathematics Discussions. At their core, the five practices—anticipating likely stu-
dent responses to cognitively demanding mathematical tasks, monitoring students’ 
responses to tasks, selecting particular students to present mathematical responses, 
sequencing student responses, and making connections between student responses—
require educators to build on students’ mathematical ideas and show PST utterances 
as a foundation for providing students with the opportunity to discuss mathematics 
at high levels.
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Conclusion

We demonstrate that it is possible to code and analyze PTM episode triple classroom 
interactions and element relationships, thus filling a gap in terms of tracing interac-
tions and discourse by building on and extending past work to give us a framework 
to do just that. Overall, this project provides a distinctive view of PTMs, one that 
shows them as intricately woven with teacher responses and immediately ensuing 
student utterance discourse into the very fabric of a lesson. Teacher actions are the 
vital link between PTMs and the types of student responses displayed in the class-
room. As depicted in this work, inactive teacher responses to PTMs can be detri-
mental to the quality of discourse present in elementary mathematics classrooms. To 
help students discuss mathematics more deeply, educators must draw on students’ 
original mathematical ideas through the act of pursuing student thinking.

We also envision this study to serve as the basis of a resource for future 
researchers investigating effective responses to PTMs and could be used in teacher 
professional development. For example, teacher professional development could 
include teachers’ collection of their teaching videos, which could be analyzed 
using the framework we provide here, to identify particular interactions in their 
own classrooms. That is, this study frames a way for teachers to see their own 
practice through the PTM lens to better understand the effects of their own instruc-
tional decisions. “By examining teaching practice through the lens of PTMs, pre-
service and inservice teachers can learn to recognize and act on these moments 
with their own students, with the aim of increasing their abilities to positively 
impact students’ academic achievement” (Sun & Hanna, 2013, p. 1031). Although 
some limitations exist within this study, one thing remains clear: the role that a 
teacher plays in the face of PTMs should never be underestimated. Teacher actions 
hold consequences for student thinking and can be used to steer the nature of stu-
dent discourse within individual classrooms.

Appendix 1. Lesson descriptions

In Lesson A, third grade students (n = 19), in groups, model measurement division 
of 15 by 3 using manipulatives, to solve the following problem: Joel makes fifteen 
pancakes for his friends. He wants to serve three pancakes on each plate; how many 
plates will Joel need? Before solving, students are challenged to decide what type of 
division (measurement or partitive) the problem represents. In lesson B, third grade 
students (n = 22) skip count by 2s or 5s to multiply. The students, in groups, discuss 
the following using paper and markers: What are different ways you can find out 
how many legs are in a group of nine chickens? What are some different ways you 
can find out how many fingers will there be in seven mittens?

The fourth grade students (n = 4) in lesson C use counters to practice single 
digit multiplication. The fourth grade class in lesson D explores how to model 
partitive division of 3 by 8 through the use of tortillas as a visual model and 
contextualized through the prompt: “What fraction of a tortilla each person 
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would get if eight people share three tortillas? In lesson E, fourth grade students 
(n = 22) use array and area models to multiply double digit numbers. In lesson F, 
a fourth grade (n = 17) whole class discussion considers the following problem: 
How much less would each friend pay if six friends shared the cost of a $36 item 
instead of four?

The objective in lesson G is to identify parts of a whole. Here, fourth grade 
students (n = 19) draw a model of fractions and discuss whether or not the model 
represents the given fraction. Fourth grade students (n = 6) in lesson H use coun-
ters to make a connection between multiplication and addition as they learn to 
multiply by 2. And in lesson I, fourth graders (n = 16) play a game in pairs to 
practice double by single digit multiplication. The students must manipulate digit 
cards to see who can get the largest product.

Appendix 2. Kruskal‑Wallis and Dunn’s test description

The Kruskal-Wallis test is a rank-based test used to investigate whether signifi-
cant differences exist between different groups of an independent variable on a 
continuous or ordinal dependent variable (Montgomery, 2013). In our case, the 
different types of teacher responses were the set of independent variables and 
the cognitive level of student discourse was the dependent variable. The null 
hypothesis for this test was that the mean ranks for all conditions being tested 
were equal.

Performing the Kruskal-Wallis test on our data began with a ranking of all 
discourse levels observed in the student response portion of the PTM episodes. 
These discourse levels were then replaced with their ranks and a test statistic was 
generated using the sum of the ranks in each teacher response group, the total 
number of observations, and the variance of the ranks (Montgomery, 2013). The 
Kruskal-Wallis test was performed using R programming language.

Following the Kruskal-Wallis test, we used Dunn’s test to further analyze the 
data. Dunn’s test examines all possible two-way comparisons within a set of data 
using rank sums in order to pinpoint which particular groups are statistically dif-
ferent. This test generates unadjusted and adjusted p values. Due to the increased 
risk of type I errors, errors of falsely rejecting a null hypothesis, that are possible 
when doing multiple comparisons, some researchers base their discovery of statisti-
cal significance using the adjusted p values. These adjusted values, however, may 
increase the likelihood of type II errors, errors associated with falsely accepting a 
null hypothesis. Since there is currently no consensus as to which p value should be 
used in drawing final conclusions from Dunn’s test, researchers must be careful of 
how they interpret the results of this test (Feise, 2002). In our study, Dunn’s test was 
performed in R programming language with p values adjusted using the Benjamini-
Hochberg adjustment (Benjamini & Hochberg, 1995).
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