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Abstract
This paper describes and examines students’ shared construction of meanings while
learning about quadratic functions via digital artifacts that simulate real-world phe-
nomena, like the motion of a ball on an inclined plane, focusing specifically on the role
of the teacher in that construction process. The study follows the interactions of twenty
15-year-old students and their teacher during the completion of three sequential digital
tasks, analyzing how these interactions promote the students’ ability to construct the
mathematical meanings of the quadratic function. The study was guided by the theory
of semiotic mediation, which treats artifacts as fundamental to cognition and views
learning as the evolution from meanings connected to the use of a certain artifact to
those recognizable as mathematical. The data analysis showed students progressing
from the description of the real-world phenomenon toward a construction of the
meaning of the quadratic function that models the phenomenon. While marking the
“critical moments” in this progress, we analyze the communication strategies used by
the teacher to facilitate it. Our research findings showed evidence that certain types of
questions and the strategy “re-voicing” can be particularly effective in prompting
students’ construction of mathematical meanings.
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Introduction

Although students’ use of digital artifacts to learn mathematical concepts has been
extensively studied in mathematics education research (e.g., Artigue 2002; Goos and
Bennison 2008; Larkin and Calder 2016; Hoyles 2018; Swidan 2019), less is known
about the integration of digital artifacts in the classroom setting to stimulate the
students’ construction of mathematical meanings (e.g., Trouche 2004; Faggiano et al.
2017). Integrating digital artifacts into their teaching practices can present teachers with
a number of complex challenges. One of these challenges is understanding the artifact’s
potential and its relationship with the mathematical content (Falcade et al. 2007;
Swidan and Yerushalmy 2014; Faggiano et al. 2018). Another hurdle for teachers is
deciding how to use these digital artifacts to achieve the set pedagogical goals
(Arzarello and Robutti 2010; Mariotti 2013; Soldano and Arzarello 2016).

These and other challenges have been partially discussed in the literature devoted to
examining the use of digital artifacts to simulate real-world phenomena. Researchers
have focused mainly on student engagement (e.g., Bray and Tangney 2016), student
interaction with the digital artifacts (e.g., Geiger et al. 2010; Sokolowski et al. 2011),
and the effects that digital artifacts have on student mathematical achievements (e.g.,
D’Angelo et al. 2016). However, less attention has been paid to the students’ shared
construction of meanings in the classroom context, during learning processes in which
digital artifacts were used to simulate real-world phenomena (Lynch 2006), and to the
teacher’s role in facilitating that construction.

In this paper, we address this gap in knowledge by examining the students’ shared
construction of mathematical meanings while using digital artifacts that simulate real-
world phenomena, focusing particularly on the behavior of the teacher. We describe
and discuss the results of a teaching experiment in which a digital artifact that simulates
the motion of a ball on an inclined plane was assessed for the extent to which it can
promote tenth-grade students’ ability to construct a mathematical meaning of the
quadratic function. Employing the semiotic mediation approach (Bartolini Bussi and
Mariotti 2008), we analyze the evolution of the students’ personal meanings toward
shared mathematical meanings, noting how that evolution is elicited by the students’
interaction with digital artifacts and by the teacher’s communication strategies during
the collective discussions.

Understanding how digital tools can be used to teach complex mathematical con-
cepts, and what sorts of skills and strategies are required from teachers in order to use
them effectively, carries important theoretical and pedagogical implications. Theoreti-
cally, the study sheds new light on the role of the teacher as a “cultural mediator”
between the students’ everyday conceptions and the “culture” of mathematics (Radford
2008). Pedagogically, the study represents a valuable example of how digital artifacts
can be used to model real-world phenomena, demonstrating the specific teacher
practices that promote the construction of mathematical meanings.

Theoretical framework

To examine how students construct mathematical meanings of the quadratic function
when they interact with digital artifacts that simulate real-world phenomena, we use the
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semiotic mediation approach (Bartolini Bussi and Mariotti 2008). Accordingly, the
relationship between the artifact and the knowledge is expressed by culturally deter-
mined signs, and the relationship between the artifact and the learners while they
accomplish a specific task is expressed via speech, gestures, symbols, and tools. Our
choice to use the semiotic mediation approach as a theoretical tool in the current study
enables us to thoroughly analyze the interaction between the mathematical objects
deployed in the artifact and the subjective meanings ascribed to them by the students.

Bartolini Bussi and Mariotti proposed the Theory of Semiotic Mediation (TSM) to
model a learning process that exploits the educational potential of artifacts. The TSM
aims to describe how meanings related to the use of a certain artifact can evolve into
meanings recognizable as mathematical. Social interactions and semiotic processes are
assumed to play key roles in the learning, particularly in situations in which learners are
encouraged to use the artifact to solve a given task. In the context of artifact use, this
approach describes the relation between personal meanings and mathematical meanings
as a double semiotic relationship. On the one hand, the TSM focuses on the use of the
artifact to accomplish a task, recognizing that knowledge is constructed while solving
the task. On the other hand, it analyzes artifact use in the process, distinguishing
between the personal meanings constructed by individuals based on their experiences
with and use of the artifact to accomplish a task (top part of Fig. 1), and meanings that
an expert recognizes as mathematical (bottom part of Fig. 1) when observing the
students’ use of the artifact in the process of completing a task (left triangle in Fig. 1).

The TSM distinguishes among three kinds of signs that are generated as a result of
practical activity with the artifact: artifact signs, pivot signs, and mathematical signs.
Artifact signs, which refer to the artifact and its use, are produced via the social use of
the artifact to accomplish a task (upper right vertex in Fig. 1). These signs can be shared
and may evolve into mathematical signs that refer to the mathematical context.
Mathematical signs are associated with the mathematical meanings shared in the

Fig. 1 Semiotic mediation model (Bartolini Bussi and Mariotti 2008)
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institution to which the classroom belongs (right side of Fig. 1). The third type of
signs—pivot signs—play a pivotal role in the complex process of the evolution of
artifact signs into mathematical signs. According to Bartolini Bussi and Mariotti, a
distinguishing feature of these signs is their shared polysemy—that is, they may refer
not only to the activity being performed with the artifact, but also to the natural
language being used to describe the artifact and to the relevant mathematical domain.

The TSM assumes that any artifact can have valuable semiotic potential with respect
to particular educational goals. The semiotic potential of an artifact is thus defined as
follows (Bartolini Bussi and Mariotti 2008):

On the one hand, personal meanings are related to the use of the artifact, in
particular in relation to the aim of accomplishing the task; on the other hand,
mathematical meanings may be related to the artifact and its use. (p. 754)

The double semiotic relationship the authors describe above, referred to as the semiotic
potential of an artifact, is defined separately for each artifact, i.e., with respect to the
particular design and set of pedagogical goals associated with each artifact. The
determination of an artifact’s semiotic potential, therefore, is an essential and founda-
tional part of the design of any pedagogical plan that will rely on that particular
artifact’s use. The notion of the semiotic potential of an artifact constitutes a key
feature of our study, wherein it was exploited to develop the a priori analysis of the
characteristics of the artifact that facilitate the emergence and evolution of signs.

It is worth mentioning that, with respect to the aim of this paper, the semiotic
mediation approach is also a useful tool with which to examine the crucial role of the
teacher. Indeed, according to the TSM, the teacher, who is aware of the artifact’s
semiotic potential, can exploit it to help students overcome the cognitive roadblocks
they must negotiate when evolving from their personal meanings toward the mathe-
matical meanings (Mariotti 2009, 2013). Teachers can do this both when designing the
task to be accomplished with the artifact and, in particular, during collective discussions
and in-class communication with the students. For example, teachers can utilize the
artifact and pivot signs produced by the students in class and, through them, guide the
students toward the mathematical meanings.

The mathematical concept of the quadratic function

The mathematical concept under consideration in the teaching intervention analyzed in
this paper is the quadratic function. In what follows, we focus on the different aspects
and representations (geometric, symbolic, numeric) of the quadratic function and on the
connections among them that must be grasped to fully understand this important but
complex mathematical concept (National Council of Teachers of Mathematics 2000;
Duval 2006).

Geometrically, a quadratic function is a parabola, namely, a conic section
that is a curve formed by the intersection of a plane and a cone, when the
plane is at the same slant as the side of the cone. The parabola is a U-shaped
curve that can be defined as a locus of points such that the distance to a given
point, called the focus, equals the distance to a given straight line not through
the focus, called the directrix.
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Algebraically, the quadratic function of a single variable is a second-degree poly-
nomial that can be represented by the algebraic expression f(x) = ax2 + bx + c; a ≠ 0.
Graphically, it is a parabola, and the coefficients a, b, and c affect the shape and the
position of the parabola in the Cartesian system. The symbolic representation of the
quadratic function allows the identification of the key features of the parabola, namely,
the focus, the directrix, the vertex (minimum or maximum of the curve), and the
intersection points with the axes.

Numerically, the quadratic function can be represented by a set of ordered pairs of
numbers such that the first differences in the second numbers of the pairs are not
constant, as they are in the linear function. Furthermore, the first differences of the
quadratic function values constitute an arithmetic sequence of numbers such that the
difference between any two successive values in the first difference sequence—i.e., the
second differences of the quadratic function—is constant.

We claim that students should be able to connect the different aspects and repre-
sentations of the quadratic function. In particular, in this paper, we focus on the role of
the coefficient “a” which determines parabola dilation (see Fig. 2). Moreover, it is
worth noting that the constant value of the second differences of the quadratic function
is equal to 2a. Hence, in the particular case when the function has the form f(x) = ax2,
that is when the vertex is in the origin, in order to find the value of the coefficient a by
the numerical representation, it is sufficient to divide the second differences by 2.

Fig. 2 Effect of coefficient a on the dilation of the graph
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Method

Goals, methods, and research question

The teaching experiment presented and discussed in this paper consisted in the design,
development, and analysis of a teaching sequence according to the semiotic mediation
approach, and the research hypothesis that the use of digital artifacts simulating real-
world phenomena could promote, with the appropriate guidance from the teacher, the
shared construction of mathematical meanings. The students participating in this study
were given three sequential tasks, which were designed to first be tackled in small
groups, and then discussed collectively with the entire class.

In accordance with our theoretical framework, we first performed an a priori analysis
of the three tasks that the students were to be given, to determine the semiotic potential
of the artifacts that they employ. We then used the a priori analysis as a comparative
framework through which to analyze the students’ learning process, noting the ways in
which it corresponded to—and deviated from—our expectations. To this end, we
examined the transcripts of video-recorded classroom sessions and identified a series
of “critical moments” of shared construction within the learning process. We defined
“critical moment” as an activity in which the students sought to endow different kinds of
signs with mathematical meanings, and to build upon these meanings so as to progress
toward the intended didactic goal of the session. Based on this definition, we asked:

– What were the critical moments of these students’ learning process, and how were
these moments facilitated by the guidance of their teacher?

Participants

The study participants consisted of an entire class of 20 tenth-grade (15-year-old) students
from a scientifically oriented school in Italy and their teacher, who is experienced with the
principles of the semiotic mediation approach. At the time the study took place, the
participants had already learned the concepts associated with the linear function, but not
yet those of the quadratic function. They were familiar with the concept of finite differences
and its representation. Linear functions had been taught to them based on their high school
textbook, which characterized this type of function as correlations with equal first differ-
ences. Nonetheless, the students were already familiar with the concept of the parabola from
their physics course, in which they learned about the parabola in connection with the
trajectory of a moving object. In that context, the students generally referred to the
geometrical shape of a body’s trajectory when they referred to the parabola, but some
students were also able to connect the shape to a symbolic expression. In addition, the
students were also familiar with conventional function graph software (e.g., GeoGebra),
which they had already used in the context of their school’s formalmathematics curriculum.

Overview of the artifacts and the tasks

A sequence of three tasks was designed based on the assumption that exploring
different characteristics of the same phenomenon may lead students to construct the
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mathematical meaning of the quadratic function in its different aspects. In particular,
the aim of the teaching intervention was to exploit the semiotic potential of artifacts that
simulate real-world phenomena in order to give meanings to different representations of
a quadratic function and establish connections among them. For our purposes, we
choose to use the motion of a ball on an inclined plane, which is indeed expressed by a
quadratic function.

Below, we describe the three tasks (see Fig. 3), and in the next section, we present
the analysis of the semiotic potential of the artifact in relation to the tasks.

The participants’ first task was to obtain the mathematical model of a ball rolling on an
inclined plane after viewing a short video (https://youtu.be/-c5GiXuATh4), i.e., artifact 1,
about the well-knownGalileo experiment. The video shows that both the elapsed time and
the distance traveled by the ball varied while the angle of plane inclination was constant.
Insofar as it demonstrates the rolling of a ball on an inclined plane, the video is effectively
an artifact with an important role in the process of the students’ construction of mathe-
matical meaning. Indeed, it functions as a mediator between the students’ general
understanding of the physical phenomenon of a rolling ball on an inclined plane and its
mathematical model, which is described by a quadratic function (Fig. 4a).

The participants’ second task entailed their interactive exploration of the same
situation analyzed in the first task. In this case, however, the artifact was a dynamic
digital environment that allowed students to simulate the rolling of the ball while
simultaneously observing the values of the distances moved by the ball while it is in
motion via a numerical representation of the distance-time relationship. The corre-
sponding values of the first differences of the distances with respect to the elapsed time
are also displayed. Finally, students could also vary the plane’s inclination, after which
they were asked to conjecture and then verify how plane inclination affects ball motion.
In addition, they were asked to find an equation that describes the motion of the ball.
The second artifact was chosen specifically for its potential to focus on: (a) the role of
the second differences in describing the phenomenon, (b) the effects of the variation of
the plane inclination on the coefficient a of the symbolic expression, and (c) the dilation
of the graph representing the phenomenon.

Fig. 3 Written tasks given to the students
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To accomplish the third task and successfully derive an equation describing ball
motion on the inclined plane, students used the same artifact they had used in the
second task. In this case, however, a different version of the artifact was used, in which
an additional kind of mathematical representation was displayed, namely, the graph of
the distances traversed by the ball with respect to time. Students were asked to derive
the properties of the mathematical model that describes the ball’s motion.

In addition to the three artifacts described above, the students were free to use other
artifacts, such as GeoGebra, Excel sheets, calculators.

Semiotic potentials of the artifacts

In line with the aim of the teaching intervention and task design, the first artifact was
used to draw each student’s attention to the distance-time relationship of the rolling ball.
Likewise, the second artifact was designed to familiarize the students with different ball
rolling scenarios by allowing them to alter certain characteristics of the phenomenon
while keeping the others constant. The students’ engagement with the second artifact
was thus intended to demonstrate to them the fact that the quadratic relation of ball
motion is unaffected by changes in plane inclination. Lastly, a third artifact, which
emphasized the graphical representation of the distance-time relationship, was also used.
Interaction with the third artifact acquainted the students with the different representa-
tions of the quadratic function to help them establish the connections between them.

The semiotic potential of each artifact was analyzed a priori with respect to the given
tasks to identify the appearance and evolution of signs during the teaching-learning
activity. Table 1 shows how the characteristics of the artifacts are connected with different
mathematical aspects and how the signs embedded in the artifacts may allow artifact signs
to appear during the students’ interaction and to evolve toward mathematical signs. The a
priori analysis of the semiotic potential of the artifacts, in accordance with the TSM, will
constitute the basis on which the teaching-learning activity will be analyzed in order to
answer our research questions, looking for the emergence of artifact and pivot signs and
their evolution toward mathematical signs.

Procedure

The study took place at a high school in Turin (Italy), where we observed the teacher as she
led two 1.5-h sessions. At the beginning of each session, the students were required to work
in small groups, each of which shared a worksheet (containing the task) and a computer.

Fig. 4 The three artifacts used in the study. a The video of Galileo experiment. b The simulation of the ball
movement on the inclined plane. c The simulation and its graphic representation
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Table 1 Semiotic potentials of the three artifacts

Mathematical aspects Semiotic potential of artifact 1

Sequence of the segments traversed 

by the ball in each period of time 

constitutes an arithmetic sequence.

The metal bells suspended above the inclined plane, the 

segments above the plane, and the numbers (segment 

lengths) may help the students notice that the numbers 

(which represent the distances moved by the ball in each 

time period) are all odd. In addition, students may notice 

that the differences between the lengths of two adjacent 

segments are constant, indicating that the numbers 

constitute an arithmetic sequence.

Distances moved by the ball from a 

position of rest are proportional to the 

squares of the times. Hence, the relation 

between the distances and the times is 

expressed by a quadratic function.

The differently colored numbers and the corresponding 

arches, each representing the distance moved by the ball 

from a position of rest, may help the students realize that 

the distances moved are square numbers.

The arrangement of the row of differently colored numbers 

and the row of odd numbers on the screen may help the 

students realize that the differences between pairs of 

adjacent square numbers constitute an arithmetic sequence, 

i.e., the second differences are constant.

The ball’s motion is expressed by a 
quadratic function. 

The expression S:T
2
, which appears briefly at the 

beginning of the video clip and then disappears, may 

enable students to notice the relation between the distances 

traversed by the ball and the squares of the times.
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Table 1 (continued)
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While the students worked in small groups, the teacher walked around the classroom and
answered only students’ technical questions, such as how to insert a formula to calculate the
second differences in the simulation and how to reset or clean the graph. After the small
groupwork, the teacher held a discussionwith all of the students. She initiated the discussion
by asking the students to share with their cohorts the newmathematics ideas (if any) that had
been generated as a result of their participation in the small group work. In the first session,
the students worked on the first two tasks in groups for 50 min, after which 40 min was
devoted to the general discussion guided by the teacher. In the second session, the students
worked on the third task for 35 min while the general discussion lasted for 55 min.

Data collection

We video-recorded the sessions in their entirety, including the general discussion led by the
teacher. During the group work, we filmed all of the student groups (and their computer
screens) as they worked together to solve the task, and we filmed the interventions by the
teacher.

Data analysis

The videos were transcribed in Italian, the students’ mother tongue, and that transcrip-
tion was then translated into English. The findings presented below are the result of two
rounds of data analysis. In the first, we read the video transcripts multiple times to
identify the critical moments during the learning process with the strongest potential to
foster the students’ construction of the mathematical meaning of the quadratic function
(Swidan 2019). For example, the recognition that the distances the ball traversed do not
represent a linear relationship is considered a critical moment in the learning process.
The meaning given to the distances—not linear—may help the student to explore the
relationships between the distances, which may ultimately lead to the intended didactic
goal—the quadratic relationship. In the second round of data analysis, we investigated
the evolution of the students’ personal meanings into mathematical meanings by
distinguishing among the different signs, i.e., artifact signs, pivot signs, and mathemat-
ical signs. For example, terms that referred directly to the artifact and its use, such as
“pink line,” were coded as artifact signs. Words that are part of the natural language,
such as “doors”—a term used to refer to the metal bells, which resembled miniature
doors, in the Galileo apparatus (Fig. 4a) and that may also refer to the mathematical
meaning of interval endpoints—were coded as pivot signs. Mathematical terms such as
“first differences,” “second differences,” and “graph”were coded as mathematical signs.

To ensure the reliability of the data analysis, we (the paper’s two authors) indepen-
dently coded the data in both rounds, after which we discussed the analytical processes
that each of us performed.

Results

In what follows, we present the results according to the critical moments we found
throughout the learning process.
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Recognition of the regularity of the distances

After the students completed the first task, the teacher began a discussion by asking
them to list what observations were evoked in them while watching the video. Some of
these observations were related to the ball’s speed increments as it rolled down the
inclined plane, while others described the distances between the unevenly spaced metal
bells located on the inclined plane. In the conversation that follows, the teacher interacts
with a student who commented on these distances:

1. Matteo: The distance between the two doors was always two.
2. Teacher: Was it always two or always increased by two?
3. Matteo: The distance between the previous and the next one was always increased

by two.
4. Teacher: Did the distance between the two doors always increase by two? But two

of what?
5. Matteo: From the video we see that the distance from the first to the second was

three, from the second to the third it was five, from the third to the fourth it was
seven and from the fourth to the fifth it was nine.

At this stage of the experiment, the students mainly focused on describing the relation-
ship between ball speed and elapsed time. In contrast, Matteo directed his attention to
the metal bells via the sign “the doors,” and assigned a personal meaning to the
distances between the metal bells: “the distance was always two.” His comment
indicates that he was referring to the differences between the numbers displayed in
the video, which signify the distances between pairs of successive bells. Matteo’s sign
the doors is therefore a pivot sign because it refers, on the one hand, to the metal bells in
the video and, on the other hand, to the distance the ball moves in each unit of time.

The teacher, however, re-directedMatteo’s attention to the distances (traversed by the
rolling ball) between the metal bells, asking Matteo, “was it always two or always
increased by two?” To further prompt Matteo to clarify the meanings he ascribed to
these distances, the teacher re-voicedMatteo’s statement by using the same signs “door”
and “distance” and at the end of the utterance asking, “two of what?” In response to the
teacher’s questions, Matteo referred to another artifact sign, namely, the numbers
displayed in the video that signify the distances between each pair of adjacent bells.
This time he correctly associated the number between each pair of adjacent bells with the
distance traversed by the ball in the corresponding interval: “distance from the first to the
secondwas 3”, “from the second to the third it was 5”, “from the third to the fourth it was
7” and “from the fourth to the fifth it was 9”. Matteo’s statements suggest that he
associated this set of signs with the mathematical meaning of covariation.

Recognition that the relationship is not a straight line

The students found it particularly difficult to determine the equation that describes the
ball’s motion. To help them overcome these hurdles, the teacher drew the students’
attention to the table of values in the simulation (Fig. 5). The students explained that the
numbers in the third column of Fig. 5 were the differences between the lengths of the
distances traversed by the ball.
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Then, the teacher again asked the students how to describe the ball’s motion on the
plane. The following excerpt represents a fundamental step in the evolution of the signs
among the students:

6. Teacher: So how do I write a relationship between this space and time? Is it a
straight line?

7. Chorus: No!
8. Teacher: Why?
9. Maria: Because otherwise we would have had all the same differences
10. Teacher: Because we would have had all the same distances. And what [do we

have] in this case?
11. Chorus: In this case there is no [same distances]
12. Teacher: In this case there are not and therefore it is not a straight line.

In asking the students to focus on the table of values, the teacher made them aware that
this phenomenon cannot be described by a linear relationship. Doing so, she used the
“relationship” as a pivot sign and referred to artifact signs “time” and “space” as two
variables. The students focused on the artifact sign, the column of the first differences,
and observed that these numbers are not equal. From this observation, they concluded
that the distance-time relationship is not linear. Although in line 12 the teacher
rephrased the students’ answer, she used the mathematical sign “straight line” to
confirm the mathematical meaning assigned by the students to the relationship, i.e.,
that it is not a straight line.

Emergence of the notion of the parabola

The excerpt above shows that the students rejected the possibility that the ball’s motion
can be described by a linear distance-time relationship. The teacher’s subsequent aim in
the discussion, therefore, was to prompt the students to identify the relationship as a
quadratic one. Since she had seen another group (Andrea’s group) using GeoGebra, she
asked them to report on their experiences to the whole class. Andrea explained that to

Fig. 5 Second artifact
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determine what type of relationship correctly describes the rolling of a ball on an
inclined plane, he and his group had plotted several points from the table of values in
the second artifact by using the straight-line tools included in GeoGebra. Upon entering
the first two points, the students in Andrea’s group discovered that the line did not pass
through the other points, thus determining that the relationship was not a linear
function. Moreover, Andrea conjectured that the points in the table of values were
points of a parabola, and therefore, he and his group had tried to plot a graph by using
the GeoGebra command “Conic through five points”:

13. Teacher: What did you do?
14. Andrea: We created a list of points on the spreadsheet and we created a parabola.
15. Giulia: A parabola is obtained. But we stopped because we cannot find the

relationship. We are at this point.

In this excerpt, the students independently decided to use GeoGebra, to plot some
coordinates from the simulation to graphically represent the relationship. To share
Andrea’s group endeavor with the whole class, the teacher asked “what did you do?”
Answering the teacher’s question, Andrea introduced the sign “parabola,” which can be
considered an “artifact sign” because it referred to the graphical distribution of the
points on the artifact. In that framework, however, it was devoid of the mathematical
meaning of a quadratic relationship: “But we stopped because we can’t find the
relationship”.

Emergence of the symbolic expression of the parabola

In the previous section, we showed how Andrea used the sign parabola. The next
excerpt shows how Sofia, a student from another group, associated mathematical
meaning with the parabola sign:

16. Sofia: If it is a parabola, there must be a term to the second.
17. Teacher: Right. If it is a parabola, there will be something to the second. Is there

something “to the second”?
18. Francesca: In the upper part of the video there was written s:t2

19. Teacher: So?
20. Sofia: The sum of all the differences was the square of time, for example, when

the space was sixteen, the time was four, when the space was nine, it was three...

In the first utterance, Sofia used the parabola sign introduced by Andrea and, based on
her statement “there must be a term to the second,” endowed it with the mathematical
meaning of a quadratic formula (Fig. 6b). In doing so, Sofia introduced a new sign that,
insofar as it is connected to the previous sign (the parabola), can be considered a pivot
sign because it refers, on the one hand, to the graph connecting the points and, on the
other hand, to the symbolic expression of a quadratic relationship. The polysemous
meaning of the new sign introduced by Sofia, a term to the second, allows the sign
parabola to evolve into a pivot sign.

In line 17, the teacher used the same signs that Sofia did. The teacher’s interventions
were intended to coax the students to further explore the artifacts until the symbolic
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expression emerged: “is there something to the second?” Francesca referred to the
artifact sign, “S : T2”, which was displayed in the video (Fig. 6a). To involve other
students in the discussion and to foster it, the teacher asked the question “so?” Sofia,
another student, referred to the video, but she focused her attention on the numbers
representing the sums of the distances moved in each unit of time, in the process
making sense of the connection between the distances and the squares of the time. To
this end, she linked the sign term to the second with the squares of the time. Sofia’s
consideration of both the symbolic expression of a quadratic relationship and its
connection with the real-world phenomenon of a ball rolling on an inclined plane
suggests that, for her group, the parabola sign evolved from a pivot sign to a mathe-
matical sign.

Emergence of the coefficients of the symbolic expression

The students agreed with what Sofia said about the quadratic relationship that
appeared in the video. Soon after, Andrea pointed out the simulation, empha-
sizing that the distances, the numbers in the second column, were not the
squares of the times, the numbers in the first column. The excerpt that follows
shows the emergence of a new idea—the relationship between the time and the
distances traversed needs to be expressed by a quadratic formula containing a
coefficient:

21. Matteo: We set the angle to be 25°. At 1 it was 2.13, at 2 we got 8.51, and at 3 we
got 19.15.

22. Teacher: okay, and so?
23. Matteo: And now if we calculate 19.15 over 3 to the square, it gives us 2.13. And

we did it with all the others and we got always 2.13.
24. Teacher: You got 2.13 ... And then?
25. Matteo: S

T2 always gives me a constant value. I do not think it’s a random result.

In this excerpt, Matteo referred to the sign S : T2 and conferred on it the
meaning “distance over time to the square.” After calculating several values
of the ratio between the distances and the squares of the times, he noticed that
all calculations of the ratio yielded the same value. In this way, he conferred
on the sign S : T2 the mathematical meaning of constant value. Also, in this
episode, the teacher used questions from the form “and so?”, “and then?” to
foster the discussion to help the students explain their thinking.

Fig. 6 Locations in the video clip referred to by Francesca (a) and Sofia (b)
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Recognition of the relationship between the angle and coefficient

Next, the students found a way to identify the constant value:

26. Giulia: In this case, it could be y = 2.13x^2, but only in this case, in which we
have 25°. Perhaps changing the angle, the constant may change

27. Lucia: Yes, because space changes.
28. Teacher: Let us try!

This excerpt demonstrates how, as a result of the calculation of the ratios, the meaning
of the sign “constant value” evolved to become a coefficient in the symbolic expression
of the relationship. Giulia noticed that the constant may vary as a result of changing the
inclination of the plane, eliciting the need to verify the conjecture for other plane
inclinations.

The students thus verified that for many values of the inclinations, the ratio between
the distances and the squares of the times was constant. Accordingly, Giulia introduced
a new sign, the coefficient “k”:

29. Giulia: So, it could be y = kx^2, where k is a constant that varies based on the
variation of the inclination.

In this excerpt, although Giulia associated the value of the coefficient with
plane inclination, she did not mention how the inclination affects the coeffi-
cient. It is worth noting that this excerpt also illustrates how students do not
only interpret signs but may introduce new personal signs coming from their
shared cultural environment.

Recognition of the relationship between the coefficient and second differences

At this stage of the experiment, the teacher focused on how the coefficient may
vary as the angle of the inclined plane changes. Some of the students argued
that the coefficient can be found by looking at the distance value at t = 1. As
the following excerpt shows, others noticed a relationship between the coeffi-
cient and the second differences:

30. Carlotta: We noticed that k is given by the second differences divided by
two.

31. Teacher: k is given by the second differences divided by two, why?
32. Carlotta: Because, as the second differences are all constant, then dividing all

these by two, we get k.

As the first utterance of the excerpt above shows, Carlotta argued that the coefficient k
can be found by taking the value of the second difference, which is constant, and
dividing it by two. The teacher asked Carlotta to explain how she reached this
conclusion. In her answer, it seems that Carlotta used the sign “constant” to refer to
both the “second differences” and to “the coefficient k”, thus expressing the relation-
ship between them.
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Recognition of the relationship between the angle, the graph dilation,
and the coefficient

As mentioned above, in the second session, the students used a new version of the
simulation (that includes the distance-time graph) to work on the third task. The teacher
tried to guide the students toward focusing on how the inclination of the plane affects
the distance-time graph. Carlotta said that the more the plane is inclined, the closer the
curve is to the y-axis and, answering the teacher’s request for an explanation, added
what follows:

33. Carlotta: If the inclination is bigger, the ball traverses more distance in the same
time, so the triangles subtended by the curve have the vertical cathetus which is
always bigger and so they always go toward the y-axis.

34. Teacher: (Drawing a parabola on the blackboard and adding some of the
triangles subtended by the curves) Carlotta is saying that it approaches the y-axis
more because the triangles subtended by the curve, this is what we have called
these triangles, have the vertical segment which is always bigger, while…

35. Carlotta: The ones on the bottom remain fixed.

Carlotta linked the inclination of the plane with the dilation of the parabola by means of
the subtended triangles. These triangles are geometrical objects that the students already
encountered during their school lessons on the linear function, and can therefore, in this
context, be considered shared mathematical signs. With regard to them, the students
learned that the ratio between the two perpendicular sides represents the slope of the
straight line. Here, Carlotta used these triangles to support her explanation of why the
curve approached the y-axis with increasing plane inclination. Carlotta’s utterance—“If
the inclination is bigger, the ball traverses more distance… so... the vertical cathetus… is
always bigger”—suggests that she recognized the relationship between the inclination
of the plane and the distances traversed, which she signified with the vertical sides of the
subtended triangles. Thus, it seems that the subtended triangles were used by Carlotta as
a mathematical sign to connect the distances traversed by the ball to the graph that was
generated and to describe the graph’s dilation. To share this knowledge with the whole
class, the teacher drew a parabola on the blackboard and added the triangles subtended
by the curves as mathematical signs that signified the rate of change.

The teacher then tried to connect the graph with the symbolic expression:

36. Teacher: And from the point of view of the equation, what will happen?
37. Giulia: The coefficient increases. That is, if the coefficient increases as a conse-

quence the distances are bigger, and that if the second differences are bigger, then
the number k is always bigger… if the angle increases the differences increase and
the coefficient increases too.

38. Teacher: Okay and so?
39. Giulia: As a consequence, the graph always becomes more inclined towards the y-

axis because in the same unit of time the values are always greater.

In this excerpt, the teacher initiated the connection between the different signs that are
in the artifacts. Giulia, to give the graphs meaning, focused on three different levels of
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representation. The first was the symbolic expression she exploited to connect the
distances to the coefficient. The second was a table of values by means of which she
connected the coefficient to the second differences. The third is the simulation of the
real-world phenomenon by means of which she connected the angle with both the first
differences and the coefficient. This allowed her to conclude how plane inclination
affects graph dilation: “the graph always becomes more inclined towards the y-axis
because in the same unit of time the values are always greater”.

At this stage, as this excerpt illustrates, the students were starting to use mathemat-
ical signs to endow the motion of the ball with meaning. For example, in her argument,
Giulia used different mathematical signs, such as “coefficient,” “distances,” “[first]
differences,” “second differences,” “angle,” and graph. Moreover, Giulia formed some
important connections between these different mathematical signs, showing that she
was aware of how any one of the signs affects the others. She also used them to
describe a real-world phenomenon.

Discussion

This study was designed to examine the shared construction of the mathematical
meanings of the quadratic function when it is learned by using digital artifacts that
simulate real-world phenomena. We analyzed the students’ interactions with the digital
artifacts and the effect of the teacher’s intervention during the class discussion by using
TSM to describe the shared construction of mathematical meanings. In this section, we
will discuss the evolution of the mathematical meanings of the quadratic relation by
comparing the a priori analysis (Table 1) with the a posteriori analysis and by focusing
on the instructional strategies used by the teacher to prompt the evolution of the signs.
Lastly, we will state our conclusions and propose directions for future research.

The first assumption we made with the analysis of the semiotic potential of the
artifact was that the students would first notice the metal bells on the inclined plane and
the square numbers that appear above the plane, after which they would notice the
differences between the square numbers and would find the relationships among them.
Our first assumption was only partially confirmed. In the first phase of the experiment,
the students’ attention was indeed focused only on the metal bells and on the differ-
ences between adjacent square numbers. The students used the word door to signify the
distance between two adjacent bells. Thus, the pivot sign doors quickly evolved to
acquire the mathematical meaning of the “extremes of a segment,” and the distance
between adjacent doors took on the mathematical meaning of the “length of the
segment.” Furthermore, the meaning given to the arithmetic sequence that signifies
the distances moved was that the differences between two adjacent numbers are fixed
(line 1). This meaning is important to identifying the quadratic relationship that models
the ball’s motion on the inclined plane. It was elicited by the students when they
attributed the value 2 to the differences of the distances between adjacent metal bells
(line 1). However, this meaning was not connected to the quadratic relationship,
perhaps as a result of the teacher’s intervention. The aim of the teacher was indeed to
prompt the students to describe the arithmetic sequence as a sequence in which each
subsequent element can be obtained by adding a constant to the previous one (line 2).
In this case, the teacher missed the opportunity to connect the second differences with
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the quadratic relationship. To form this connection, one must look at the arithmetic
sequence as a sequence in which the difference of two constitutive elements is constant.

Our second assumption—that using the dynamic simulation, the students would
construct mathematical meanings of the quadratic relation based on what they can see
in the table of values, namely, the distances or the first differences—was also partially
confirmed. The students constructed mathematical meanings of the quadratic function,
but not according to the processes we anticipated. Students did not use the distances or
the first differences of the distances to identify the quadratic relation. The first differ-
ences of the distances helped the students recognize that the distance-time relation is
not a straight line. This was due to the teacher’s interventions, which prompted the
students to use the “logic of not” strategy (Arzarello and Sabena 2011), namely, if the
first differences of the distances are not constant then the distance-time relation is not a
straight line. Their use of the logic of not assisted the students, with the teacher’s
support, in their investigation, which sought to answer the question, “If it is not a
straight line, then what is it?”

To answer this question, the students introduced a new artifact that enabled them to
plot a graph after inserting ordered pairs of points. At this moment, a new sign was
produced by the students: parabola. The sign parabola is a pivot sign because initially, it
was endowed with the meaning of trajectory, possibly because the students who
participated in this study were familiar with parabolic trajectories from their physics
lessons. Later on, the sign parabola was endowed with mathematical meanings due to
the prior knowledge of one of the students who argued that a parabola is related to the
second degree.

It seems that the evolution of the sign parabola and its endowment with the
mathematical meanings prompted the students to identify the quadratic relation. The
identification process of the quadratic relation happened due to two artifact signs in the
video: the text S : T2 and the square colored numbers that are displayed upon the
inclined plane. Although it appears in the videos just for 3 s, the sign S : T2 attracted
the students’ attention, possibly because of the algebraic nature of this expression. It is
worth noting that the students initially encountered these two signs during the first
meeting of the experiment, but they activated them during the second meeting. It seems
that the students had paid attention to these signs, even though they did not express
their meanings verbally. We concluded that for the students to express the meaning of
signs, they have to meet the intellectual need (Harel 1998) for using them.

Our third assumption—that the graph, which signifies the distance-time relation of
the rolling ball on the inclined plane, will prompt the students to identify the dilation of
the graph and associate it with the physical phenomenon—was fully confirmed. To do
so, the students leveraged the subtended triangles, a mathematical sign that was part of
the classroom culture, to explain the graph’s dilation. In this case, the vertical side of
the subtended triangles takes on the mathematical meaning of Δf, and at the same time,
it takes on a physical meaning—the distance the ball travels in a unit of time (line 28).
This physical meaning, and the mathematical meaning of the ratio between the value of
the vertical side to the value of the horizontal side of the subtended triangles, did not
evolve into the mathematical meaning of rate of change. Although the complexity of
learning the rate of change concept is well known in the literature (Thompson 1994;
Johnson 2012), the teacher did not contribute enough to the development of the
mathematical meaning of the rate of change. Instead, the teacher pushed the students’

807Constructing shared mathematical meanings in the classroom with...



discussion toward describing how the change in the graph is reflected in the algebraic
expression. In fact, this was not the only moment the teacher missed the opportunity to
foster the evolution of mathematical meanings among the students. It is known that one
of the main characteristics of the quadratic relation is that the second differences are
constant. Though the students referred to the second differences several times in
different contexts, as described above, the teacher never introduced the possibility of
associating the second differences with the quadratic relation.

While the teacher did not give particular attention to the conceptual meaning of the
second differences and the rate of change, she did play a crucial role in endowing the
parabola sign with its mathematical meaning: by associating it with its algebraic
expression, by giving meanings to the coefficient of the quadratic expression, and by
associating the physical phenomenon with its mathematical meanings. This was done
primarily through the use of two communication strategies: questioning and re-voicing.

The importance of teachers’ questions as prompts for students’ mathematical think-
ing has been acknowledged for many years (e.g., Wood 1998; Fraivillig et al. 1999;
Stein et al. 2008). Wood (1998), for example, has categorized teachers’ questions into
two types: funneling and focusing. Funneling occurs when teachers ask questions that
guide the students to the desired end or to perform a certain procedure for solving
problems (Herbel-Eisenmann and Breyfogle 2005). Focusing questions, in contrast,
require teachers to listen carefully to the students’ responses and to guide them based
on their own understanding rather than how the teacher would reach the desired
solution.

In our study, most of the questions asked by the teacher were focusing questions,
i.e., questions that aimed at revealing and building upon the students’ understanding.
Focusing questions in the form of “why-questions” and “what do we have?” proved
effective in prompting the construction of mathematical meanings (lines 3, 27, 5).
Questions of the form “and so?” encouraged the students to continue describing the
meanings they held, but it did not help the students to change their personal meanings
in favor of mathematical ones. Only once in our recorded sessions did the teacher use a
question that confronted one student’s personal meaning with the mathematical mean-
ing of a sign. This question helped the student to change his personal meaning of the
sign and give it a mathematical meaning. Since this finding is based on just one case,
however, drawing conclusions from it should be considered very carefully.

Another type of questions that were found to be effective in the evolution of
mathematical meanings was questions aimed at linking representations. These kinds
of questions not only helped the students transition from one representation to the other
and to connect them, but they also helped students draw out their thinking, and may
help teachers to achieve their didactical goals (Herbel-Eisenmann and Breyfogle 2005).
In all the cases where the teacher asked such questions, the students focused their
attention on the representation to which the teacher directed them. In these situations,
the students interpreted and endowed with meanings the representation to which they
had been directed, while retaining the meanings they had already associated with the
other representations. Transitions between the multiple representations and the endow-
ment of each of them with mathematical meanings are a crucial activity, necessary to
developing students’ understanding of the mathematical concept (Duval 2006).

The second strategy the teacher used was “re-voicing.” Re-voicing is a communi-
cation strategy which involves the re-uttering of another person’s speech through
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repetition, rephrasing, expansion, and reporting (Forman et al. 1998). With re-voicing,
“the teacher essentially tries to repeat some or all of what the student has said” (Chapin
et al. 2009, p.14). Our findings showed that the teacher used re-voicing with two
functions: (a) to share and eventually emphasize one student’s idea with the others in
the classroom and (b) to add knowledge to what was said. The latter is in tune with
what Arzarello et al. (2009) called the semiotic game, through which the teacher
intentionally used the signs produced by the students, endowing them with mathemat-
ical meanings. The findings also showed that both the functions of re-voicing contrib-
uted to the evolution of mathematical meanings. Apparently, sharing the idea of one
student with the class encouraged the others to contribute their part to the discussed
issue, and these contributions bestowed a multitude of meanings to the sign. This
function is in accordance with Enyedy et al.’s (2008) claim that: “One of the primary
purposes of re-voicing is to promote a deeper conceptual understanding of mathematics
by positioning students in relation to one another, thereby facilitating student debate
and mathematical argumentation” (p. 134). The second function, re-voicing and adding
knowledge to what was said, confirms the students’ statements. Moreover, the added
knowledge serves to remind the students of some previous shared meanings.

To conclude, this study highlighted the complexity of endowing mathematical
concepts with meanings, as they are learnt in a dynamic environment that simulates a
real-world phenomenon. The research findings showed that being aware of the semiotic
potential of artifacts is just one step in the process of endowing mathematical concepts
with meanings. In addition to the semiotic potential of the artifact, the interactions
among the students and the student-teacher interactions in the process of constructing
mathematical meanings should be taken very seriously. To the best of our knowledge,
the role of the two instruction strategies used by the teacher to construct mathematical
meanings (i.e., questioning and re-voicing) has not been extensively discussed in the
literature of semiotic mediation. Our research findings showed evidence that certain
types of questions and re-voicing can be particularly effective to prompt students’
construction of mathematical meanings. We believe that the findings of this study can
be the basis for a professional development course for teachers, aimed at the construc-
tion of mathematical meanings. Of course, both the interventions in which the teacher
successfully assisted the students in constructing mathematical meanings, and those
that ultimately proved unsuccessful can be useful elements for discussion within a
professional development course.

Finally, as we mentioned early in the “Method” section, this teacher is familiar with
the principle of semiotic mediation, and the students are familiar with the teacher’s
teaching style, which emphasizes classroom discussion and pays special atten-
tion to identifying and interpreting different kinds of signs. These characteristics
of the teacher and the students are considered one of the study’s limitations,
since other teachers, with different theoretical and pedagogical backgrounds, are
likely to produce different results. To support and expand upon our findings,
especially regarding the instructional strategies that prompt the evolution of
mathematical meanings, more research is needed, with a more diverse sample
of participating teachers and students.
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