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Abstract
Given the important role played by students’ spatial reasoning skills, in this paper we
analyse how students use these skills to solve problems involving 2D representations of
3D geometrical shapes. Using data from in total 1357 grades 4 to 9 students, we
examine how they visualise shapes in the given diagrams and make use of properties of
shapes to reason. We found that using either spatial visualisation or property-based
spatial analytic reasoning is not enough for the problems that required more than one
step of reasoning, but also that these two skills have to be harmonised by domain-
specific knowledge in order to overcome the perceptual appearance (or “look”) of the
given diagram. We argue that more opportunities might be given to both primary and
secondary school students in which they can exercise not only their spatial reasoning
skills but also consolidate and use their existing domain-specific knowledge of geom-
etry for productive reasoning in geometry.

Keywords Spatial reasoning . Domain-specific knowledge of geometrical shapes . 2D
representations . 3D shapes

Introduction

In a recent research review, Jones and Tzekaki (2016) summarise how research is
focussing on “the development of students’ knowledge regarding understanding of
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geometric figure, definitions and inclusion relations, identification of shapes and
language issues” (p. 109). In this, geometrical reasoning is a vital component in
students’ tackling of problems involving geometrical figures. In geometry, figures are
often in the form of diagrams (on paper or computer screen) and working with such
representations (including geometric figures imagined by students) is important
during geometric reasoning (Lowrie 2012; Fujita et al. 2017). When working with
problems involving 2D representations of 3D shapes, students use various skills to
solve the problems. Mulligan et al. (2018) say that an “integrated definition of
spatial reasoning” includes the skills related to mental manipulations of visual
stimuli, transforming spatial forms into other visual forms with analytical thinking
of structural features of spatial forms (p. 78). At the same time, research studies
also suggest that spatial skills such as manipulating given representations and
reasoning can be improved through certain training or interventions (e.g.
Fischbein 1993, p. 156; Lowrie et al. 2019).

Our goal is to identify students’ spatial reasoning skills, and how they use their skills
and knowledge to solve geometrical problems, in order to design interventions to
improve teaching. In this paper, we particularly focus on the following two research
questions:

& RQ1: How do students across the grades use their spatial reasoning skills and
domain-specific knowledge when tackling problems involving 3D geometrical
shapes represented in 2D?

& RQ2: What can be learnt from students’ use of such skills and knowledge in order
to design and implement future interventions to improve their skills and
knowledge?

We pose these questions because we speculate students’ use of spatial reasoning skills
might be related to their domain-specific knowledge around elements, properties and
concepts of geometrical figures (see next section). We study students from across the
grades from primary to secondary because in mathematics education research not so
much has been reported about students’ reasoning with 3D shapes across primary and
secondary schools. More research studies are needed, not only of the teaching and
learning of 3D geometry in primary schools (Sinclair and Bruce 2015; Sinclair et al.
2016) but also across primary to secondary schools to obtain a more comprehensive
picture of the development of students’ understanding. In particular, if common
patterns in student skills and difficulties can be identified, then such information is
likely to be useful for designing effective teaching interventions for improving stu-
dents’ spatial skills.

In what follows, we first construct our theoretical framework to consider the
relationships between, and student use of, spatial reasoning skills and domain-
specific knowledge of geometry. We then report findings from our survey of 1357
students from grades 4–9 in Japan and our observations of students’ thinking in a
classroom-based study with a lesson based on a sample of tasks used in the
survey. We then discuss what implications can be gained from our study which
we believe to be useful for designing effective teaching interventions for improv-
ing students’ spatial skills and knowledge. Finally, we suggest some ideas for such
teaching interventions.
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Theoretical framework

Spatial reasoning skills in 3D geometry problem solving with 2D representations

Pittalis and Christou (2010) identified four types of reasoning with 3D geometry: the
representation of 3D objects, spatial structuring, conceptualisation of mathematical
properties and measurement. These four types of reasoning are closely related to more
general spatial skills such as spatial visualisation, orientation (e.g. remaining unconfused
by changing orientations) or relations (e.g. mentally rotating objects) (p. 195). Lowrie
et al. (2018) also list mental rotation, spatial orientation and spatial visualisation as
spatial reasoning skills. In this paper, we particularly focus on the skills related to
manipulating internal/external representations of 3D shapes and reasoning with geo-
metric properties, because geometrical reasoning is characterised by the interaction
between these two aspects, the visual (figural) and the conceptual (Duval 2017, p. 63).

Fischbein (1993) proposed the notion of “figural concept” such that, while a
geometrical figure (such as a square) can be described as having intrinsic conceptual
properties (in that it is controlled by geometrical theory), a geometrical figure is not
solely a concept but rather an image too (ibid, p. 141). Various representations of
geometrical shapes, such as diagrams, are used in geometry problems so that problem
solving often involves encoding information from these representations (Lowrie 2012,
p. 151). In a study of students working with 3D geometric shapes, Pittalis and Christou
(2013, p. 676) identified the skills of coding information, e.g. manipulating and
constructing nets, constructing 2D drawings of 3D shapes, and translating from one
representation mode to another and decoding information, e.g. interpreting structural
elements of representations of 3D shapes and geometrical properties. Battista et al.
(2018, p. 195) also propose coding/decoding skills, taking spatial visualisation as
“mentally creating and manipulating images of objects in space, from fixed or changing
perspectives on the objects, so that one can reason about the objects and actions on
them, both when the objects are and are not visible” and refer to property-based spatial
analytic reasoning (“decomposes objects into their parts using geometric properties to
specify how the parts or shapes are related, and, using these relationships, operates on
the parts”).

Based on the above, in this paper we take the following two skills as core spatial
reasoning skills for problem solving with 3D geometrical shapes represented in 2D:

& Spatial visualisation (coding): mental manipulations of visual images of shapes
including rotating, transforming the given diagrams to another form, reorienting,
drawing nets and adding additional lines.

& Property-based spatial analytic reasoning (decoding): interpreting the structural
elements of shapes and decomposing objects into their parts using geometric
properties for reasoning and decision-making

Use of spatial reasoning skills and domain-specific knowledge

In geometry, it is known that certain images of geometrical shapes can disturb students’
geometrical reasoning. A well-known example is the effect of prototypical images such

Spatial reasoning skills about 2D representations of 3D geometrical... 237



as ‘slanted’ images for parallelograms in that through such images students do not
include rectangles or squares as special cases of parallelograms even if they can state an
appropriate definition of a parallelogram (e.g. Fujita 2012). Aspinwall et al. (1997)
conceptualized the limitation of the use of visual imaginary as an uncontrollable image,
described as “preventing the opening up of more fruitful avenues of thought, a
difficulty which is particularly acute if the image is vivid” (p. 301). Another example
is the dual process in which errors are “the result of either an uncontrolled intuitive
thought process (no conflict-detection) or an unsuccessful intervention of the analytical
processing system” (Van Hoof et al. 2013, p. 155, see also Gillard et al. 2009).

Llinares and Clemente (2019) refer to configural reasoning, which coordinates
visual/figural and conceptual aspects of geometrical shapes. In this paper, we
consider that students’ statement around elements, properties and concepts of
geometrical figures, i.e. domain-specific knowledge (Chinnappan et al. 2012)
might also be important for coordinating visual and conceptual aspects in
addition to general spatial reasoning skills described in the previous section. For
example, Ufer et al. (2008) studied procedural knowledge (e.g. simple calculations
in geometry) and declarative knowledge (e.g. recalling basic definitions, theorems,
and concepts) and problem solving skills. They identified declarative knowledge
to be the strongest influence on successful proving in geometry, with such
knowledge being in the form “A is B”, “in X, A is B”, etc., in students’ discursive
expression. In this paper, we take students’ statement around elements, properties
and concepts of geometrical figures as “domain-specific knowledge” of geomet-
rical shapes. Their property-based spatial analytic reasoning is represented by the
use of knowledge, often accompanying by verbal or written explanations that use
the word “because”. Whether correct knowledge or not, in principle domain-
specific knowledge in geometry (i.e. the concepts, principles and conventions
unique to that domain and represented by in X, A is B, such as “In a cube, all
faces are squares”) plays a kind of coordinating role between spatial visualisation
and property-based spatial analytic reasoning (of course, if students have incor-
rect knowledge about shapes then this can lead to incorrect answers).

Types of answers in 3D geometry problem solving

In 3D geometry, the use of spatial reasoning skills and domain-specific knowledge can
lead both to successful and unsuccessful problem solving. In our previous studies
(Fujita et al. 2017), by using data from 455 grades 7–9 students, geometric reasoning
with 3D shapes were classified into five types in terms of mental manipulations of
figures and reasoning based on geometric properties. In this paper, we also use the
categories to see students’ use of spatial reasoning skills and domain-specific knowl-
edge in more integrated ways, described as follows:

& Type 1: Incorrect answer led by two-dimensional or intuitive global judgments
without any explicit use of spatial visualisation and property-based spatial analytic
reasoning;

& Type 2A: Incorrect answer only led by property-based spatial analytic reasoning
but with logical gaps or influenced by visual information and/or incorrect/inappro-
priate domain-specific knowledge;
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& Type 2B: Incorrect answer with only spatial visualisations but influenced by visual
information and/or incorrect/inappropriate domain-specific knowledge;

& Type 2C: Incorrect answer with the use of spatial visualisation and property-based
spatial analytic reasoning but influenced by visual information and/or incorrect/
inappropriate domain-specific knowledge;

& Type 3: correct answer with valid use of spatial visualisation and/or property-based
spatial analytic reasoning with correct domain-specific knowledge

This classification enables us to identify what makes students’ problems solving
successful/unsuccessful in their use of spatial reasoning skills and domain-specific
knowledge, represented by various forms (e.g. verbal, written) of students’ an-
swers. For example, suppose a student answered “AB=CD” for Q2-(2) (Fig. 1).
Then, this student answered AB=CD because of the use of incorrect knowledge
“in a cube all sides and edges have the same length” (type 2B). If a student has
knowledge that ‘in a cube, diagonals of each face are equal’, then they might be
able to reason triangle ABC in Fig. 1 question Q3-(2) is equilateral, despite it does
not look like an equilateral triangle in the given diagram (type 3). Another student
might reason “CA=CB because they are diagonal” and conclude it is an isosceles
triangle but no further manipulations are used (type 2A), mentally rotate the given
diagram and then conclude isosceles, but not stating domain-specific knowledge
explicitly to reason why (type 2B), or mentally extract triangles but no manipu-
lations for the side AB and used “CA = CB because they are diagonal” but
conclude it is isosceles (type 2C). Also, knowledge about isosceles triangle is
“inappropriate” in this problem context as its use is unlikely to lead to a correct
answer.

Methodology

The survey

By selecting students in Japan, we were aware that the students would have had various
learning experiences involving basic knowledge about 3D shapes including cubes,
cuboids, prisms, pyramids, nets and how to represent 3D shapes in 2D, by following
the Japanese curriculum:

& In primary schools, cube and cuboid are introduced in G4, and then in G5, they
further learn prisms, cylinder, nets and 2D representations of 3D shapes. Also by
G4, they have learnt different triangles (equilateral, isosceles, scalene, right angled,
etc.), quadrilaterals (square, rectangle, rhombus, parallelogram), parallel/
perpendicular lines, angles, diagonals of quadrilaterals, etc. Although deductive
proofs are not studied, students are encouraged to explain their reasoning with
practical activities in mathematics lessons;

& In secondary schools, G7, students study geometrical constructions, symmetry
and selected properties of solid figures (names of 3D shapes, nets, surface
areas and volume) informally, but logically, to establish the basis of the
learning of proof which is introduced in G8 in a context of congruent triangles.
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In G9, students learn similar figures and properties of circles, drawing on their
consolidated capacity to use proof in geometry and Pythagorean Theorem with
both 2D and 3D shapes.

egdelwonkcificeps-niamoDslliksgninosaerlaitapSnoitseuQ

Q1 In a cube, find the size of the angle ABC in each cube. 

①
SV: Recognise faces of cube, 

extract angles, etc.  

PSA: 90 or 45 based on the 

properties of squares 

Faces are squares, all angles in 

square are equal or 90, diagonals of 

square bisect angles, etc.  

Q2 In a cube, which is longer, AB or CD? Choose your 

answers from a)-d) for each case. Also write your reasons 

why. 

①

a) AB is longer. 

b) CD is longer. 

c) AB=CD. 

a) I am not sure which is longer. 

SV: Recognise faces of cube, 

transfer AB and CD to the same 

face, mentally create a square, move 

mentally AB to compare CD etc. 

PSA: for Q2-②, deducing CD>AB 

because CD is a diagonal of cube 

and diagonals of square are longer 

than the sides, etc. 

AB is an edge of a cube but CD is a 

diagonal of cube, diagonals of 

square are longer than the sides, 

etc. 

Q3 In a cube, can you identify the shapes ABCD and 

ABC? Choose your answer from a)-e) for each case. 

① A, B, C & D are mid points of each edge 

b) Parallelogram. 

c) Rhombus. 

d) Rectangle. 

e) Square. 

f) Other quadrilaterals. 

SV: Recognise faces of cube, 

mentally dissect a cube with ABCD, 

mentally superpose ABCD to one of 

the faces of cubes, move ABCD in 

parallel etc. 

PSA: AD and BC, CD and BA are 

parallel, and all angles are equal, 

and therefore ABCD is a square. 

Mid points bisect lines, in cube, 

there are parallel edges and faces, 

etc.  

Q3 In a cube, can you identify the shapes ABCD and 

ABC? Choose your answer from a)-e) for each case. 

② 

a) Right angled triangle. 

b) Isosceles triangle. 

c) Right angled isosceles triangle. 

d) Equilateral triangle 

e) Scalene triangle.  

SV: Recognise ABC as a triangle, 

extract ABC mentally from cube, 

mentally compare AB, BC and CA, 

extract angle ABC etc.  

PSA: AB, BC and CA are diagonals 

of each face, and AB=BC=CA. 

Therefore, it is equilateral triangle. 

In cube diagonals of each face are 

equal. 

SV: spatial visualisation  

PSA: property-based spatial analytic reasoning 

A

B

C

A

B

C

D

A

B

C

D

A
B

CD

A

B

C

Fig. 1 Question items for primary and lower secondary schools
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In order to answer RQ1, a survey was conducted with 261 grade (G)4, 213 G5,
209 G6, 225 G7, 224 G8 and 225 G9 students (in total 1357 grades 4–9 students
aged from 10 to 15 years old) from state Japanese primary and lower secondary
schools. The survey items do not appear in Japanese textbooks and we consider
that, in using these, we would be able to identify “geometric thinking beyond that
which is typically elicited in conventional lessons” (Fujita et al. 2017, p. 100).
Q1–3 were answered by all the students. For each item, oblique parallel projec-
tions of cubes (as in Figs. 1 and 2) were used as such representations would be
familiar to students (Kondo et al. 2014; see, also, Parzysz 1991). They were
designed using cubes, because (a) it is a familiar shape for students and also (b)
it is possible to include mathematically challenging problems which can help
reveal students’ use of spatial reasoning skills, and domain-specific knowledge.
Expected use of spatial reasoning skills, and domain-specific knowledge, through
our a priori analysis, are summarised in Figs. 1 and 2 (note for some question, one
of spatial reasoning skills might be enough to answer a question correctly, e.g.
Q3-(1), Q4 etc.). Also, for each question, duplicating knowledge is omitted; e.g.
for Q5 “In a cube, the diagonals of each face are equal” might be used). Based on
our previous studies and theoretical framework, students across G4–6 might find
Q2-(2) or Q3-(2) to be difficult as they need to control their spatial reasoning
skills by using domain-specific knowledge, and similarly across G7–9 for Q5,
resulting more type 2A-2C answers to these questions.

While the survey provides an overall account of the students’ use of spatial
reasoning skills and knowledge with 3D shapes (characterised through the survey
questions with cubes), it has certain limitations. In particular, from the survey, we
could only judge the types of the answers from “written” responses, which might
influence students’ thinking processes. Also, some students might not be familiar
with writing their reasoning in a test situation. We are aware of these limitations in

egdelwonkcificeps-niamoDslliksgninosaerlaitapSnoitseuQ

Q4 R, P and Q are the mid points of AB, EF, and DC in a 

cube. What is the size of the angle RPQ? 

SV: Recognise RPQ as an angle, 

move RPQ in parallel, etc. 

PSA: AD//PR and AE//PQ, so the 

angle DAE and RPQ are equal, and 

therefore 90.  

Same as Q1-3. 

Q5 What is the size of the angle DEB in a cube? Write 

your reasons why. 

SV: Recognise DEB as a triangle, 

extract DEB mentally from cube, 

mentally compare DE, EB and BD, 

extract angle ABC etc.  

PSA: DE, EB and BD are diagonals 

of each face, and DE=EB=BD. 

Therefore, it is equilateral triangle 

and the angle is 60.  

In equilateral triangle, all angles are 

equal.  

SV: spatial visualisation  

PSA: property-based spatial analytic reasoning 

A
B

CD

E
F

GH

R

P

Q

A
B

CD

E
F

GH

Fig. 2 Additional question items for lower secondary schools
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our study, but we believe we managed to extract useful information on students’
use of spatial reasoning skills and domain-specific knowledge from the survey, as
shown in our results section.

Lesson observation

In order to gain further information which might have influenced our survey data, in
particular students’ thinking processes, we also conducted a classroom-based study in
which G6 students undertook Q5. We are aware that Q5 was probably too difficult for
such students but, as an exploratory stage in lesson implementation, we wanted to see
how the G6 students would tackle Q5.

A 45-min lesson was implemented in February 2019 by Mr. T with more than
20 years of teaching experience. Also the lesson was planned with the authors.
The 34 students undertook the pre-/post-survey (using the tasks shown in Figs. 1
and 2) in December 2018 and March 2019 respectively. The first four authors
observed the lesson and undertook their notes individually, video-recoded some of
individual/group work and then these notes were shared in the post-lesson discus-
sion and analysis. We focus on a student (SW) and examine her learning processes
by describing the use of spatial reasoning skills and domain-specific knowledge in
terms of the types of answers during the lesson. Student SW was randomly chosen
by two of the observers at the beginning of the lesson ad hoc, and we recorded her
thinking processes in lesson observation notes and video clips (a standard method
of lesson observation data collection in Japan).

Data analysis

We first identified groups of geometry problems with similar difficulty levels. We
created a 1357 × 6 matrix for both primary and secondary schools and a 674 × 8
matrix for secondary schools’ results with two variables (not correct, correct), and
conducted an analysis using the Item Response theory approach (Sijtsma and
Molenaar 2002) with R 3.3.3 with the packages “ltm” and “irtoys”. We undertook
2-parameter logistic (2PL) model analysis with the following two parameters:
difficulties and discriminations. We use the 2PL model because the model is
appropriate to see overall relationships of items in terms of the difficulties of
each item (the difficulties parameter), and differences between students at different
grade levels (the discrimination parameter).

Once we gained an overall picture of the students’ responses, we then examine
the students’ written explanations in the survey further as such explanations
represent evidence of what spatial reasoning skills and domain-specific knowledge
which students were using to try and solve the geometric problems (this addresses
RQ1). For the primary school students’ responses, we paid particular attention to
Q2 (for which G4–9 students were asked to write their explanation) and Q5 (for
which G7–9 were asked to write their explanation). In analysing the written
responses to Q2-(2) and Q5, we use the types of answers to account for students’
use of spatial reasoning skills and domain-specific knowledge as well as in what
ways some students had difficulties reaching correct answers for the given prob-
lems. Informed by our a priori analysis shown in Figs. 1 and 2, we first coded
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selected sampled examples individually, compared our preliminary coding, and
continued our discussion until we agreed. We also did lesson observations togeth-
er, and have had more than 5 h of face-to-face discussions to agree how to code
examples from the lessons. After this, we divided data into three sets and three of
the authors completed the coding for Q2-(2) and Q5. The examples from student
SW were coded by two authors independently, and no major disagreements were
found. Then the analysis was shared with the other authors and agreed. Finally, we
discuss our findings and, by integrating our findings from the survey and lesson
observation, we consider implications for designing future interventions (thereby
addressing RQ2). In this collaborative way, we are fairly confident of reliability of
data analysis and coding.

Findings from the survey

Overall performance

Analyses of the survey data for Q1–3 and Q4&5 are summarised in Tables 1 and 2 (%s
for correct answers).

From Table 1, showing the percentage correct for Q1–3, it can be seen that almost
all students from G4 knew that the angle between adjacent edges of a cube is 90
degrees (Q1-(1)), that the angle between an edge and the diagonal of a face is 45
degrees (Q1-(2)), and that all the edges of a cube are congruent (Q2-(1)). In general,
primary students found Q2-(2), Q3-(1), and Q3-(2) to be more difficult than the first
three questions. For the secondary schools, almost all students from G7 managed to
answer correctly Q1-(1), Q1-(2), Q2-(1) and Q4. For Q2-(2), there is a higher propor-
tion of correct responses in G9, but about 30% of G7 and 8 were not able to answer this
question correctly. About 40% of G7 students answered Q3-(1) incorrectly. About 20%
of G4, 30% of G5 and 20% of G5–8 students selected “rectangle” as their answers, but
more than 80% of all the grades selected either “rectangle” or “squares”. This indicate
almost all students can recognise angles such as DAB as 90 degrees, but those who
answered “rectangle” might have influenced by “how it looks”. All students found
Q3-(2) and Q5 to be fairly difficult to answer.

Tables 3 and 4 summarise details for Q2-(2) and Q3-(2).
Table 3, showing the details for Q2-(2), suggests that in primary schools (G4–6)

about 30% of students considered that the side of the cube (AB) is the same length as

Table 1 Percentage correct for Q1–3

1-(1) 1-(2) 2-(1) 2-(2) 3-(1) 3-(2)

G4 (N = 261) 94.3 74.7 91.6 47.5 63.2 12.6

G5 (N = 213) 95.8 86.9 87.8 51.2 49.8 16.9

G6 (N = 209) 94.3 85.2 95.2 59.3 68.4 36.8

G7 (N = 225) 97.3 89.3 94.2 67.1 61.8 34.2

G8 (N = 224) 96.4 90.6 95.5 70.1 66.5 35.3

G9 (N = 225) 99.6 96.0 95.1 84.4 78.2 52.4
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the diagonal of a face (CD); see Q2-(2). By G8 about 18% of students still answered
AB=CD in the given diagram.

Table 4, showing the details for Q3-(2), suggests that, up to G8, more than 30% of
students answered that the triangle was an isosceles but not equilateral, while more than
20% of students in G4–8 considered the triangle in the given diagram contained a right
angle. Table 4 also shows that the majority of students answered the triangle would be
an isosceles, or right-angled isosceles, indicating that they might have been influenced
by the visual appearance of the given diagram. Q3-(2) requires more than one step of
reasoning (identifying diagonals in each face→diagonals are equal→equilateral trian-
gle), and it is expected this problem might be difficult for G6, but it was rather
surprising there is no improvement until G9.

The above data suggest that, overall, there might be gaps across the grades
between the set of questions (Q1-(1), Q1-(2), Q2-(1)), (Q2-(2), Q3-(1)) and
question (Q3-(2)) (and [Q5] in secondary schools). In order to confirm this, we
conducted 2LPM analysis in order to gain further insight into the findings, in
particular examining each question item in terms of their difficulties. Figure 3
(G4–9, Q1-(1)~Q3-(2)) and Fig. 4 (G7–9, Q1-(1)~Q5) show the relationships
between each question in terms of the difficulties, and discriminations, alongside
the best-fitted logistic curves for each question.

The relative difficulties listed in Figs. 3 and 4 indicate the following for G4–9
students: the relative difficulties for Q1-(1), Q1-(2) and Q2-(1) are similar; the diffi-
culties of Q2-(2) and Q3-(1) are similar and more difficult than the first 3 questions, and
Q3-(2) is confirmed as more challenging than the other questions until G9. Q5 is the
hardest question for secondary school students. These two figures and 2PLM suggest
that there are gaps between (Q1-(1), Q1-(2), Q2-(1)), (Q2-(2), Q3-(1)) and (Q3-(2))
(and [Q5] in secondary schools). The values of the discrimination for each questions
are above 1, indicating all the items discriminate relatively well between low-skilled

Table 2 Percentage correct for
Q4&5

Q4 Q5

G7 (N = 225) 92.9 8.4

G8 (N = 224) 91.5 13.8

G9 (N = 225) 95.1 37.8

Table 3 Details of answers for Q2-(2), percentages

Q2-(2) AB is longer CD is longer AB=CD I do not know No answer

G4 (N = 261) 11.1 47.5 33.3 2.7 5.4

G5 (N = 213) 12.2 51.2 31.0 4.7 0.9

G6 (N = 209) 7.7 59.3 30.6 1.9 0.5

G7 (N = 225) 9.8 67.1 21.3 1.8 0.0

G8 (N = 224) 9.4 70.1 17.9 2.2 0.4

G9 (N = 225) 9.3 84.4 4.4 1.8 0.0
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and high-skilled students. The overall analysis also suggests that there are difficulty
gaps in Q2-(2), Q3-(2) or Q5, and we further explore what spatial reasoning and
domain-specific knowledge were used to answer these questions correctly/incorrectly
by focusing on Q2-(2) and Q5.

Reasoning skills and knowledge used by G4–6 students for Q2-(2)

When we examined Q2-(2) (in which G4–6 students were asked to write their
reasoning), we noted that students whose explanations included the word “a diagonal
(of square)” or “slanting” tend to answer this question correctly, although not many
students provided such explanations. For example, 18/216 G4, 38/213 G5, and 57/209
of G6 students used a word “a diagonal of square” in their reasoning why CD>AB,
and of these students who used “a diagonal”, 61.1%, 89.5% and 75.4% of G4–6
students answered Q2-(2) correctly. This indicates that these students used their
domain-specific knowledge that “in a square, diagonals are longer than sides”, a type
3 answer (some of them might have also used spatial visualisation skills but we could
not see explicitly from the written answers). However, if students have “incorrect”
domain-specific knowledge for cubes such as “in a cube, all the sides including
diagonals are equal (in Japan, ‘sides (辺)’ for both 2D and 3D shapes but not ‘edge’),
then such students’ property-based spatial analytic reasoning was represented by
‘AB=CD’ as ‘AB and CD are ‘sides’ of cube, and in cube all sides are equal”. The

Table 4 Details of answers for Q3-(2), percentages

Q3-(2) Right angled Isosceles Right-angled isosceles Equilateral Scalene No answer

G4 (N = 261) 11.9 46.7 10.0 12.6 16.5 2.3

G5 (N = 213) 16.4 42.3 9.9 16.9 14.1 0.5

G6 (N = 209) 7.7 31.6 12.0 36.8 11.5 0.5

G7 (N = 225) 8.9 33.3 11.6 34.2 12.0 0.0

G8 (N = 224) 5.4 33.0 21.4 35.3 4.0 0.9

G9 (N = 225) 4.9 26.7 12.0 52.4 4.0 0.0

Fig. 3 Values in each question (left) & Item characteristic curves (right) for G7–9
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majority of the students who answered AB=CD gave this explanation, i.e. type 2A
answer. This might indicate that the use of correct domain-specific knowledge (in this
case “faces of cube are squares” and “in a square, diagonals are longer than sides”)
explicitly is important to solve this problem.

We also noted that some students additionally explicitly used spatial visualisation
skills as evidenced by students’ answers such as “It is easier to solve this question by
imagining a net of a cube” (G6) or by them adding further drawings, e.g. “when we
compare a side of square and other lines, then the line becomes more distant when it
goes middle”, as illustrated in Fig. 5 Although not many in our sample, such answers
were categorised as type 3.

Reasoning skills and knowledge used by G7–9 students for Q5

Table 5 summarises students’ answer for Q5 in terms of the types of errors:

& Type 1: Incorrect answer led by 2-dimensional or intuitive global judgments, e.g.
answers such as 90° with no reason stated, “looks like 90°”, “Maybe (90°)” without
stating any reasons or manipulations in their answers.

Fig. 5 An explanation for Q2–2

Fig. 4 Values in each question (left) & Item characteristic curves (right) for G7–9
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& Type 2A: Incorrect answer only led by property-based spatial analytic reasoning
but with logical gaps or influenced by visual information, and/or incorrect/inappro-
priate domain-specific knowledge, e.g. answers such as “∠AEF=90°. 90/2 = 45°”,
“the face ABFE and ADHE are perpendicular to each other, and BE and ED are on
these faces, so 90°”, “∠BEA + ∠DEA= 45° + 45° = 90°”, etc.

& Type 2B: Incorrect answer with only spatial visualisations but influenced by visual
information and/or incorrect/inappropriate domain-specific knowledge, e.g. answers
such as “(drawing a net), and then 45°+45°=90°”, “(changing the orientation of the
given figure) 90°”, “Looking the given from the above (mentally), it will be 90°”,
etc.

& Type 2C: Incorrect answer with the use of spatial visualisation and property-based
spatial analytic reasoning but influenced by visual information and/or incorrect/
inappropriate domain-specific knowledge. Here, triangle BDE is (mentally or on the
diagram) extracted and seen as isosceles, and then inappropriate knowledge is used,
e.g. “in △BDE, because ∠D=∠E=45° and it will be 90°”, “∠DAB is 90° and ∠BED
is just an adjusted from ∠DAB, so it is 90°”, “in a triangle BDE, ∠B=90°, ∠D=60°
and therefore 30°”.

& Type 3: correct answer with valid use of spatial visualisation and/or property-based
spatial analytic reasoning with correct domain-specific knowledge, e.g. answers
such as “in triangle BDE, DE = EB = BD and therefore ∠BED = 60°”, “EB, ED and
BD are all the diagonal of the same square. Since all the sides are equal to each
other, it is an equilateral triangle (and therefore 60°)”.

From Table 5, giving the percentages of types of answers for Q5, students in G7 and
G8 did use various approaches to solve Q5, but they relied either on only property-
based spatial analytic reasoning (type 2A) or only spatial visualisation (type 2B) as
well as being influenced by the perceptual appearance of the given diagram. More G9
students answered Q5 correctly (37.8%) compared to G7 and 8, but 18.7% of them still
relied on global judgement or provided no explanation for their answer.

When we examined the students’ explanations for their answers, it seems that
students who used “in a cube, diagonals of each face are equal” were likely to give a
correct answer. In G9, for example, 89 (37.8% of G9) students answered this question
correctly, and within these 89, 50 of them explicitly used such knowledge to deduce the
triangle is an equilateral. For G8, 32 students answered Q5 correctly, and 15 of them
used “diagonals” in their explanations (in G7 but 6 of 26 who answered Q5 correctly
did so). This might imply, similar to the case for Q2-(2), that domain-specific knowl-
edge coordinates between spatial visualisation and property-based spatial analytic
reasoning.

Table 5 Types of answers for Q5, percentages

Type 1 2A 2B 2C 3 No answer

G7 (N = 225) 20.0 41.3 12.0 5.3 8.4 12.9

G8 (N = 224) 21.4 35.3 11.6 2.7 13.8 15.2

G9 (N = 225) 18.7 17.8 13.3 3.1 37.8 9.3
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Summary of the survey results

Reflecting on the survey results and analyses described above, the following matters
are suggested in terms of the use of spatial reasoning skills and domain-specific
knowledge and types of answers:

& Descriptive statistics and 2PLM analysis that we present suggest that gaps (in the
context of our survey questions) exist between (Q1-(1), Q1-(2), Q2-(1)), (Q2-(2),
Q3-(1)) and (Q3-(2)) (and [Q5] in secondary schools) across the grades.

& Examining the students’ explanations for Q2-(2) and Q5 further in terms of the
types of answers, one of the spatial reasoning skills (such as Type 2A or 2B), or
two skills without domain-specific knowledge (Type 2C), might not be enough to
answer this question correctly. In other words, to support students’ successful
problem solving from type 1/2A/2B/2C to 3, it is important to encourage them
not only to use spatial reasoning skills but also to make it explicit what knowledge
can be used.

These findings imply (a) more research is needed to understand further the processes
when students use spatial reasoning skills and domain-specific knowledge; in particu-
lar, considering how to support students successful with types 1/2A/2B/2C to develop
to be successful with type 3, and (b) learning opportunities could be provided much
earlier than G8 as data from Q3-(2) point to 3 years of no improvement. This is
important as in G9 students learn the Pythagorean theorem and apply this to find the
lengths of diagonals in a cube, but about 30% of the students might not be able to
answer Q2-(2) and 65% unable to answer 3-(2) at the end of G8 respectively, which can
lead G9 students to learn superficial procedures to find the length by using the theorem
without seeing the structure of cubes, for example.

Findings from lesson observation

Overall lesson progressions

As stated in the methodology, 34 students worked with Q5 during a 45-min lesson. In
the lesson, Mr. T first introduced the problem (Q5), confirming that the objective of the
lesson was to find the size of angle BED. The first stage of the lesson was for the
students to attempt to solve the question individually. As expected, at this stage, they

90 / 2 and then 45 /2 (type 2A) Drawing a net (type 2B) Changing orientations (type 2B)

Fig. 6 Students’ initial attempts
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used a range of different spatial reasoning skills but almost no student concluded the
angle might be 60°. Many of them used only property-based spatial analytic reasoning
(type 2A) or spatial visualisation skills (type 2B) (Fig. 6). At this stage, it is not clear
what domain-specific knowledge was used for many students.

The next stage of the lesson was for the students to start exchanging their ideas and
answers, but the diversity of answers and approaches they had used meant that they
could not improve their answers or extend their initial ideas through discussions.

SW, our case students, first visualised a pyramid from the given representation, and
then rotated it to another pyramid (spatial visualisation, Fig. 7 left). After this, she
seemed to visualise BDE as “an isosceles triangle” on the given diagram (Fig. 7 centre),
and then tried to determine the size of the angle EDA, which she thought was 45°
(indicating type 2C answer). She then had a quick conversation with student AO who
sat in front of her, whose answer was 90°. SW was not convinced by this as the angle
“did not look like” 90°. During their conversation, SW and AO extracted a triangle
(spatial visualisation), and, interestingly, almost identified the triangle would be an
equilateral in order to deduce the size of the angle (property-based spatial analytic
reasoning) as follows:

SW: (pointing the two lines the diagram) They are the same (lengths)…
AO: An isosceles triangle?
SW: An equilateral triangle?
AO Then, the sum of the angles is 180°. Then because all the angles are equal in
equilateral, so 60, 60, 60, and this area (incorrectly used ‘area’ to say an angle), we
can see this from the front (mentally rotating the given diagram) … (then looking
again the extracted triangle, and showed a confused face without any words).

However, SW was not convinced as the triangle on the diagram still did not “look like”
an equilateral, but visualised the extracted triangle as an isosceles (Fig. 7 centre). At this
point, both of them also did not use explicit domain-specific knowledge specifically
related to cube (e.g. diagonal), but those related to triangles which is inappropriate to
reach a correct answer (indicating Type 2C answer). SW remained unsure about her
answer, and exchanged various opinions with other students who sat around her,
including by holding paper (Fig. 7, right). Then AO started explaining why 90°, which
is her answer, can look “narrower” in the given diagram:

Fig. 7 SW’s attempts
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AO: If you see my pencil from the above, it looks longer and from the side, it looks
shorter. It is like that.
SW: Ah, I see now… I see, I need to open it (meaning to write a net, drawing
additional diagrams, Fig. 6 right). So, it is 90°?

At this point, the statement “If you see my pencil from the above, it looks longer and
from the side, it looks shorter. It is like that.” by AO spurred SW to draw additional
diagrams (spatial visualisation) and she used the property of an isosceles triangle to
deduce the angle would be 90° (property-based spatial analytic reasoning). This can be
seen as type 2C as her answer was influenced by visual information and inappropriate
knowledge in this problem context.

SW thenwent to see studentOKYwho explained to her that his answerwas 60° because
of the equilateral triangle (Fig. 7 left, OKY drew another triangle to visualise an equilateral
triangle, type 3). SW seemed to be quite satisfied with OKY’s answer and explanation.

SW then tried to explain to student AO what she heard from student OKY, but SW
was confused as she could not reproduce (Fig. 8 right) what she saw in OKY’s answer.
Our observational notes recorded her statements which were related to spatial visual-
isation such as “we can draw from the front (meaning the other direction)”, “How did
he do? How?”, “Something was turned to an equilateral”, etc. (Fig. 8 right) She also did
not use statements such as “In cube, diagonals of each face are …” at all, but used
indicative words such as “there” or “here” to point the elements of the shapes out. At
this point, she wrote 45° and 60° on her sheet. The thinking processes observed from
SW indicate that SW managed to use both/either spatial visualisation and/or property-
based spatial analytic reasoning but because of the lack of domain-specific knowledge,
her reasoning remained up to 2C, and could not advance to type 3 by herself.

Soon after, Mr. T asked the student to stop working individually/with groups, and
invited a few students to explain their reasoning. Student CA showed his answer as follows:

CA: First, here, first it is written from here (D and B) to there, the angle is written
there, but when we rotated it …
Students: (whispering) (my answer is) 22.5…
CA: … then it (the angle BED) will be the same angle of this one (in the rotated
triangle in red in the figure below). When we consider with the rotated shape, then
when we connect diagonals, diagonals, and diagonals of a square, and this is an
equilateral triangle. The sum of the angle is 180°, and since their angles and sides
are equal, we divide 180° by 3, and then it will be 60°.

Fig. 8 OKT (left) and SW (right)’s answers
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In his explanation in Fig. 9, CA rotated the given diagram (spatial visualisation, also on
the board it is written “回して見ると (rotating and then see)”, indicating thinking by
rotating, next to the diagram) and then used the diagonals of a square and the properties
of triangles (sum of the angles and equilateral triangle) to deduce the angle is 60°
(property-based spatial analytic reasoning), type 3 answer. Here, domain-specific
knowledge “in cube, diagonals of each face are equal” explicated and represented by
“the diagonals of a square” coordinate his spatial visualisation and property-based
spatial analytic reasoning and enabled him to identify the triangle is equilateral. This
explanation (type 3) by CA seemed to be accepted by other students in the class,
including SW who nodded during CA’s explanation of his reasoning. After the
explanation, SW managed to reproduce OKY’s answer of 60° (Fig. 10).

Fig. 9 CA’s explanation why the angle BED is 60°

Fig. 10 SW’s final answer
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Mr. T praised the student’s efforts and CA’s answer, asked them to finished their
work, and complete the post-lesson problem (which, rather than finding angle BED,
was to find the size of angle FCH). With that, the lesson finished.

Pre-/post-survey results

Prior to the research lesson in February 2019, students took the pre-survey (Fig. 1) in
December 2018. One month after the lesson, the students took the post-survey (using
the same survey). They were also asked to solve Q5 with the different angle (FAH). We
do not claim that only one lesson make a positive impact on students’ spatial reasoning
skills, but we are interested in how the learning experience of the lesson made any
changes in the students’ answers. Table 6 summarises the results from the both surveys.

From Table 6, while the pre-survey results by this class was a bit lower than our main
survey result, in the delayed post-survey their performance was generally an improvement
on the pre-survey and the main survey. There was a significant difference in the pre-test
(M = 3.89, SD = 1.64) compared to the post-test (M = 4.7, SD = 1.5), t(33) = 3.1, p < .005).

What is more, 41.2% of the students answered Q3-(2) correctly, which is higher than G8
performance (35.3%) in the main survey. For the Q5 (finding FAH), 70.6% of the students
answered correctly. Considering that the post-survey was undertaken 1 month after the
lesson, the results suggest that about 17 students (of 34) demonstrated good spatial
reasoning skills as well as retaining what they learnt well after the lesson. Nevertheless,
there were 6 students who did not show much difference from before to after the lesson.

Reflecting on the lesson observation, the pre/post-survey and its analyses described
above, the following matters are suggested:

& G6 students used various spatial reasoning skills to tackle Q5. Similar to secondary
school students, five types of answers were observed. It seems many students
initially showed type 2A and 2B answers without extracting the triangle BDE.

& Discussions between the students were useful to exchange various ideas and
answers, and this encouraged the students to think deeply about what they have
done in terms of spatial visualisation and property-based spatial analytic reason-
ing, making them decide what triangle BDE would be. However, their answer
remained as type 2C. In order to harmonise the two spatial reasoning skills, the
explicit use of domain-specific knowledge appropriate in the problem context might
be more encouraged, exemplified by the case of student SW.

In the next section, we explore and integrate what our findings from the main survey and
lesson observation imply in terms of our research question and the theoretical framework.

Table 6 Pre-/post-survey results

1-(1) 1-(2) 2-(1) 2-(2) 3-(1) 3-(2) Q5 (FAH)

Pre-survey 91.4 82.9 80.0 60.0 45.7 22.9 –

Post-survey 94 91.2 91.2 76.4 64.8 41.2 70.6

G6 (N = 209) 94.3 85.2 95.2 59.3 68.4 36.8 –
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Discussion

The importance of the spatial reasoning (e.g. Lowrie 2012; Lowrie et al. 2018;
Mulligan et al. 2018; Lowrie et al. 2019) and relationships between different spatial
skills and reasoning (Pittalis and Christou 2010, 2013) are documented in existing
studies. The aim of this paper was to explore how the students across the grades use
spatial reasoning skills and domain-specific knowledge to solve geometrical problems
(RQ1), and what can be learnt to inform future interventions to improve students’
spatial skills and reasoning (RQ2). By following Battista et al. (2018), we took spatial
reasoning skills as spatial visualisation and property-based spatial analytic reasoning,
and domain-specific knowledge which coordinates these two skills. We then
categorised the types of answers and analysed the survey data from 1357 students
across G4–9, and lesson observation from a G6 class.

Similar to existing studies, our survey results and lesson observation revealed that
both spatial visualisation and property-based spatial analytic reasoning play important
roles, but that, without appropriate domain-specific knowledge, students’ reasoning can
be influenced by the visual appearance of the geometrical objects in the problems (e.g.
Ufer et al. 2008; Chinnappan et al. 2012). In particular, when problems have more than
one step of reasoning (e.g. Q3-(2) or Q5 in our case), such problems remain challenging
across the grades.

The contribution of our analysis of our data is that we found that the categorisation
of five types of answers accounted for the ways students could not answer the survey
problems correctly. For example, when students solved, for example, Q5, they might
manage to use spatial visualisations such as rotating mentally the given diagrams,
extract triangles, change their points of view etc. (type 2B for example), but they
struggled to determine what the triangle would be. Similarly, they could use reasoning
based on properties of shapes (property-based spatial analytic reasoning) but they still
reached incorrect answers (e.g. type 2A or type 2C), because they were incorrect/
inappropriate. This might be caused by the given diagrams’ visual appearance, i.e. the
dual process (Van Hoof et al. 2013) or uncontrollable images (Aspinwall et al. 1997).

What is more, our findings suggest that the students who explicitly used domain-
specific knowledge which was appropriate for the problem (e.g. “in cube, diagonals of
each face are equal”) were likely to reason correctly for the given problems (e.g.
students’ explanations for Q2-(2) or Q5 in the main survey or the case of CA). In
particular, the effective use of domain-specific knowledge might enable students to
break an impasse of reasoning (2A-2C) for successful reasoning (2C).

Given our findings discussed above, our answer to our RQ1 is that the students
across the grades can use spatial reasoning skills, but for problems with more than one
step of reasoning, students need to make their domain-specific knowledge explicit in
problem solving, in particular which knowledge should be chosen and why. Fischbein
(1993) calls this productive reasoning (also what Llinares and Clemente 2019, call
configural reasoning), and we argue that it is domain-specific knowledge that coordi-
nates visual and conceptual aspects in 3D geometry problem solving.

Our study reveals that although there are some improvement across the grades,
certain problems such as Q3-(2) do not improve much from G6–8. Also many G9
students struggle to answer correctly Q5. This is an issue for, say, upper secondary
schools in trigonometry, when students might be asked to solve various questions in
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trigonometry, e.g. finding areas of triangles formed in a cube, etc. However, existing
studies also suggest that spatial reasoning skills can be improved by certain interven-
tions (e.g. Lowrie et al. 2019). A positive result in the post-survey result (Table 6)
suggests that it is possible to implement a lesson with a problem even G9 students find
difficult, and even though it was only one lesson, about half of the G6 students retained
what they experienced in this lesson well even after 1 month. This implies that current
Japanese curriculum for 3D geometry should be re-examined, and more learning
opportunities might be given to both primary and secondary school students in which
they can not only exercise their spatial reasoning skills but also consolidate and share,
discuss and explicitly use what they have as domain-specific knowledge for productive
(or configural) reasoning (in this paper this was exemplified as encouraging reasoning
based on type 2A, 2B or 2C to type 3), which is an answer to our RQ2.

Conclusion and limitation of the study

We consider that our findings are significant as this is one of the first studies to use the
same survey questions to see how students in each grade perform certain geometry
problem solving, and what kind of difficulties they show. In this paper, we mainly
relied on students’ written evidence and thinking processes observed in one lesson, but
our approach has certain limitations. Amongst the limitations, our data and approach is
not enough to scrutinise why and how students chose particular spatial reasoning skills
and domain-specific knowledge. Such metacognitive aspects are missing in this paper
and are worthy of consideration in future research.

While we have deepened insight into the use of spatial reasoning skills in geometry
across the grades, our findings are based on the survey questions used in this study.
Taking a factor analysis approach, as Pittalis and Christou (2010) did in constructing a
model for specific and general spatial reasoning skills with a wider range of different
question items, is something to consider for future research. Gaining further insights
into how the spatial reasoning skills revealed in our study might be related to other
areas of mathematics such as proving or algebraic reasoning is also something we
would like to undertake in our future research.
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