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Abstract
It is easy to dismiss the work of “teaching students to apply formula” as a low-order
priority and thus trivialises the professional knowledge associated with this practice.
Our encounter with an experienced teacher—through the examination of her practices
and elaborations—challenges this simplistic assumption. There are layers of complex-
ities that are as yet under-discussed in the existing literature. This paper reports a case
study of her practices that reflect a complex integration of relevant theories in task
design. Through examining her praxis around the theme of “recognise the form”, we
discuss theoretical ideas that can potentially advance principles in the sequencing of
examples for the purpose of helping students develop proficiency in applying formula.

Keywords Mathematical formula . Instructional design . Cognitive load theory. Variation
theory

Introduction

We are part of a bigger project team that aims to distill the distinctives of mathematics
teaching in Singapore classrooms. This team focuses on Singapore mathematics
teachers’ use of instructional materials in their work of teaching.

It is now becoming our common experience—after numerous rounds of data
collection—to initially not detect anything particularly noteworthy about a teacher’s
instructional work at the point of interview or lesson observation; but only to find later
as we revisited the data through careful analysis—the detailed method of analysis will
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be explicated in a later section—that what appeared as uneventful instructional prac-
tices at first glance were actually localities of rich and intentional constructions by
competent teachers. In this paper, we report one such case: of how a teacher designed
her instructional materials to help students “recognise the form” (repeatedly, in her
words) within the context of learning to apply formula.

In the initial stages of analysis, we attempted to “fit” the profile of her instructional
work into analytic frames that we were familiar with. We experimented with variation
theory—as she mentioned repeatedly during interviews that she used “a variety of
questions” in the design of her instructional materials; cognitive load theory was also
referenced as “mak[ing] things easy” for her students was ostensibly a main goal of her
teaching work.

But it became clear to us that a single theoretical framing by itself did not do justice
to all the richness and nuances as captured in the data—which was the reason behind
the exploratory shifting of one theoretical lens to another. We think that, while her
instructional work yielded a surface structure that may appear to be an “application” of
one of these theoretical models, the distinctive lies in the practical integration at a
deeper level of a number of ideas derivable from these models. Before we present the
analysis of her practice, we review some of the constructs and theories related to the
case study.

What is a mathematical “formula”?

From anecdotal evidence, it seems the popular conception of doing mathematics is
“applying formula”. It is not uncommon in the literature to equate the experiences of
school mathematics as learning formulas and applying them to standard exercise items
(e.g., Flores et al. 2015; Grouws et al. 1996; Stipek et al. 2001). But what exactly is a
mathematical “formula”?

Within the formal discipline of mathematics, the language of “formula” is,
however, less common. We surmise the following reasons: (1) within the axiom-
atic approach commonly adopted in the development of mathematical content in
formal mathematics courses, “formula” has no place (or, its imprecise meaning
does not fit into) into the categories of axioms, definitions, lemmas, theorems, and
corollaries; (2) in academic mathematics programmes, the goal is to help students
focus on the rigours of logical development instead of merely using the end
product of the reasoning process—be it an algorithm, a rule (such as L’Hopital’s
Rule), or, more generally, a theorem.

Thus, we see that “formula” is not a term that is formally defined within the
academic discipline of mathematics; it likely emerged from a popular depiction of
working within school mathematics, roughly equivalent to steps to follow based on a
prescribed procedure. While formula is also usually associated with an algebraic
equation (such as A = L × B, as in area of rectangle equals the product of its length
and breadth), we take here a broader interpretation to include other mathematical results
(such as geometrical theorems) that are not usually captured in equation form. To add,
when used in this way, there is no distinction with respect to the epistemic status of the
formula—for example, a0 = 1 and am × an = am + n are both regarded as formulas, even
though the former is a definition and the latter a theorem.
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Defined this way, formula is ubiquitous in school mathematics: area of triangle is
half base times height, Pythagoras Theorem, Sine of an angle is “opposite over
hypotenuse”, angle at centre is half the angle at the circumference, method of solving
linear equations in one variable by elimination, among many others. As such, teaching
students to be fluent in the correct application of formulas remains a big part of
mathematics teachers’ instructional programme. In fact, the metaphor of “teaching
application of formulas” has become the representative imagery of traditional mathe-
matics teaching in the literature (e.g., Flores et al. 2015; Stipek et al. 2001).

Skill of applying formulas

But just because formula-application remains a common practice in mathematics
classrooms does not in itself justify its value in students’ learning of mathematics. In
fact, for some time now, the rhetoric has been to de-emphasise the (rote) application of
formulas and focus instructional work on the concepts involved in the development
of—and underlying the use of—the formulas instead (e.g., Crooks and Alibali 2014;
Rittle-Johnson and Alibali 1999; Skemp 1976). Implicit in this stance is that there is
little value in fluency with respect to the correct use of formulas compared to having
deep knowledge of “why the formula works”. This argument is also framed in the
literature as procedural knowledge versus conceptual knowledge talk (e.g., Baroody
et al. 2007; Byrnes and Wasik 1991; Crooks and Alibali 2014).

However, there has been a buildup of recent work (e.g., Rittle-Johnson et al. 2015;
Mann and Enderson 2017) that proposed a strong correlation between procedural
knowledge and conceptual knowledge, even a causal direction from the former to the
latter. Translated to students’ learning, when students work on procedures towards
fluency, they may not merely be developing procedural knowledge—in the process,
they may also co-develop the related conceptual knowledge. Rittle-Johnson et al.
(2015), in reviewing the research conducted in this area, asserted that, “Overall, both
longitudinal and experimental studies indicate that procedural knowledge leads to
improvements in conceptual knowledge, in addition to vice versa. The relations
between the two types of knowledge are bidirectional” (p. 591). This coheres with
the anecdotal experiences of many—including the authors of this paper—that our
learning experience in mathematics often begins with application of formula; and after
a while, when the procedure is automatised, we begin to shift our attention to particular
steps in the formula and uncover the conceptual underpinnings of them. In other words,
we can “get to” concepts through first training for fluency in applying formulas.
Moreover, fluency in a formula application allows us to see its connections (a form
of conceptual understanding) when used in conjunctions with other formulas. It also
attends—conceptually—to the required conditions and constraints under which the
application of the formula is valid (Klymchuk 2015).

In a departure from previous depictions of quality mathematics instruction in the
USA as one that pares down on procedural practices (e.g., National Council of Teachers
of Mathematics 1989; 2000), the model of mathematical proficiency proposed by
Kilpatrick et al. (2001) placed “Procedural Fluency” as one of five strands that need
to be developed in mathematics classrooms. It is defined as “knowledge of procedures,
knowledge of when and how to use them appropriately, and skill in performing them
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flexibly, accurately, and efficiently” (p. 121). This clearly squares with our notion of
being fluent in applying formula. In addition, they stated:

Procedural fluency and conceptual understanding are often seen as competing for
attention in school mathematics. But pitting skill against understanding creates a
false dichotomy. … [T]he two are interwoven. Understanding makes learning
skills easier … . By the same token, a certain level of skill is required to learn
many mathematical concepts with understanding, and using procedures can help
strengthen and develop that understanding (p. 122)

A similar positioning of “skill in applying formula” can be discerned in the literature on
mathematics problem solving. In Schoenfeld’s (1985) language, he classed the ability
to carry through the correct application of known formulas as “Cognitive Resources”
necessary for successful problem solving, alongside the other components—Heuristic,
Control, and Belief System.

We therefore argue that, mathematically, there is value in teaching students to be
proficient in applying formula correctly. This does not mean that we advocate the
exclusive goal of teaching application of formulas in mathematics classrooms. But it
means that learning the application of formula has its rightful place—when balanced
with other goals of teaching, such as mathematical reasoning, and conceptual
understanding—in mathematics classrooms.

Theories that inform task design for application of formula

Due to the mathematics education community’s emphasis on conceptual development
of formulas, and the concomitant paring down on “mere” application of formula, there
has been comparatively less research directly related to quality teaching with respect to
application of formula. Specifically within the area of designing task sequences to help
students gain proficiency with the application of formulas—the focus of our case study
in this paper—there are two main research streams: the work of cognitive psychologists
with an interest in conditions for improving students’ mathematics achievement, and
the development work of variation theorists.

Cognitive load theory

Within the research tradition of cognitive psychologists in this area, the studies adopted
mainly an experimental research design, where the manner in which mathematical tasks
were used were varied as treatment conditions, and the effects of treatment measured
using standardised mathematics tests on targeted topics of learning. In this area of work,
the empirical findings reported in these research publications supported the importance
of practice as a major independent variable in the acquisition of specific mathematical
skills, including the fluent application of formulas (e.g., Carroll 1994; Ward and
Sweller 1990; Zhu and Simon 1987).

On the theoretical side, a number of studies in this tradition are grounded in
cognitive load theory (e.g., Pawley et al. 2005; Phan et al. 2017; Paas et al. 2010). It
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is a “theory that was explicitly developed as a theory of instructional design based on
our knowledge of human cognitive architecture” (Sweller et al. 2011, p. v). Beginning
from the seminal paper by Sweller (1988), the theory has undergone significant
development. It is thus beyond the scope of this paper to review the full development
of the theory. We make here a brief reference to the theory insofar as it relates to our
focus on sequencing of tasks to help students acquire fluency in formula application.
The assumption of the theory is that “cognitive load” that is imposed on the working
memory can affect the ease in which the learner processes information and hence the
quality of skill proficiency. “Working memory load may be affected either by the
intrinsic nature of the learning tasks themselves (intrinsic cognitive load) or by the
manner in which the tasks are presented (extraneous cognitive load)” (van Merrienboer
and Sweller 2005, p. 150). The application to task design, in its most basic tenet, is that
while relatively little can be done to reduce the intrinsic cognitive load—as it is
essential to learning the targeted skill, research can be directed at intra-task construction
and inter-task sequencing in order to reduce the unnecessary extraneous cognitive load
that can cause overload and thus hinder learning.

The synthesis of research in this line of inquiry by Atkinson et al. (2000) provided
an overview of findings that can inform instructional principles with respect to the
design of example sequences to aid acquisition of skills. On intra-example features,
useful instructional principles include the need to integrate different modes of infor-
mation, such as diagram, text, and symbols, in a form that is easily accessible to
students; however, when the example is too complicated, there is tendency for cogni-
tive overload. In such cases, the example presentation should be accompanied with
explicit methods of directing students’ attention to pertinent features of the task and
solution(s).

On inter-example features, the findings favoured the use of more than one example
to illustrate a target formula for application; however, excessive varying of examples
along multiple dimensions can lead to cognitive overload. The recommendation was
that, for a set of examples illustrating a common formula application, a common
problem structure such as a unifying cover story be used. As to the sequencing of
practice examples and demonstrated examples, the interspersing of examples through-
out practice produced better outcomes than lessons in which a blocked series of
demonstrated examples is followed by a blocked series of practice examples.

Variation theory

Variation theory, on the other hand, has its roots in the phenomenographic tradition.
Within this tradition, the starting point in examining learning is not in the theoretical
cognitive workings of the individual, but in how one experiences with phenomena with
respect to a particular object of learning: “The structural aspect of a way of experienc-
ing something is thus twofold: discernment of the whole from the context on the one
hand and discernment of the parts and their relationships within the whole on the other”
(Marton and Booth 1997, p. 87). Further, the “the discernment of a feature amounts to
experiencing a difference between two things or between two parts of the same thing”
(Marton and Pang 2006, p. 199). In other words, in order to be aware of a particular
feature—within the context of education, a targeted aspect of an object of learning—
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one needs to discern that feature (otherwise, that feature would recede into the
background of one’s experience, since the limitations of our human experience is such
that we cannot be aware of all features in the same degree at the same time). A
necessary condition for discernment is the variation of the particular feature along a
dimension of change. “These aspects are more likely to be discerned as a dimension of
variation. A learner is more likely to experience what something is if it is contrasted
with what it is not” (Runesson 2005, p. 84). Moreover, the variation is to occur against
a backdrop of constancy for its variation to be more easily discerned. This aspect of the
theory was emphasised in Marton and Pang (2006) as they repeatedly purport “patterns
of variance and invariance” (emphasis added) as a condition necessary for learning.

In recent studies that employ Variation Theory as a guiding theory (e.g., Pang et al.
2016; Sullivan et al. 2016; Vale et al. 2017, the axioms translate into principles of
designing tasks, including sequencing of examples, to help students become aware of
aspects of learning through systematic variation of tasks along desired dimensions. For
illustration of its application, we summarise a teacher’s use of such a pattern of variance
and invariance as reported in Cheng and Lo (2013): The focus was on “the method to
calculate the perimeter of compound rectangles” (p. 9). A sequence of exercises was
designed using the principle of “a pattern of variation and invariance”. There were 3
items of the same diagram of a rectangle with a rectangular indentation at the top left
corner. Figure 1 shows the three diagrams corresponding to the three exercises—the
common task is to calculate the perimeter of the “compound rectangle”. The identified
feature to be discerned—and hence the focus of deliberate variation—is that the
combined lengths of the two horizontal segments at the top of the rectangle equals
the length of the horizontal base. Thus, the lengths of the two segments were varied
across the three items—4 and 3, to 6 and a, to b and a, while keeping invariant the
shape of the figures and the length of the base as 7. To variation theorists, a critical role
of a teacher is to design sequences of items of such a nature as to systematically “open
… a space of variation that enable[s] the learners to discern those particular aspects of
the object of learning” (Runesson 2005, p. 77).

Within this tradition of research but taking on a more disciplinary-based standpoint,
some researchers (e.g., Watson and Mason 2006; Zaslavsky and Zodik 2007) broad-
ened the inquiry into the “example space” in which mathematics teachers drew upon
for their instructional practice. In the study conducted by Zodik and Zaslavsky (2008),
they found common principles that teachers adopted when choosing examples, which
included: start with an easy example, draw attention to relevant features, and include
uncommon cases. Our study here can be seen as taking a further step in learning about
how teachers utilize the example space and integrate these principles in actual con-
struction of instructional materials.

Fig. 1 Sequence of three items
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Back to Teacher Beng Choon

Interestingly, the sequences of items that Beng Choon prepared for her students
reflected the principles of design derivable from both cognitive load theory and
variation theory. By this, we do not claim that she had explicit knowledge of these
theories. It is possible that she built these principles independent of these theories. This
is acknowledged by Marton and Pang (2006):

We are not saying that such patterns of variation and invariance cannot be
brought about by teachers who are ignorant of the framework because it is
impossible to teach without using variation and invariance, and many
teachers often intuitively create the necessary conditions for mastering the
specific object of learning they are dealing with. (p. 217).

But Beng Choon’s design work provides us a concrete case of an integration of design
applications in both cognitive load theory and variation theory—an integration we have
yet to come across in the literature. Her goal of “recognise the form” brings together
elements from both of these theoretical streams, in a way that is rooted to the practical
considerations of teaching in a Singapore mathematics classroom. The deep analysis in
this case study also affords us a portrait of the complexity of managing other goals of
actual classroom teaching in ways that studies located purely within each of the
theoretical tradition rarely provides.

Thus, instead of trying to ‘fit’ Beng Choon’s design work into preset theoretical
moulds, we formulated a method of analysis that can account for her own constructions
of the design process and how she viewed their utility in her lessons in the classroom.
Theoretically, it was a refinement of the method of progressive widening of analytical
lens as developed by the first author (Author 2008) and applied in another study
(Authors 2019) that was similar in nature to the current one. In-depth grounded
approach was first carried out within a rich region of analysis to obtain preliminary
conjectures. These conjectures were then tested and refined as the analyses broadened
to increasingly wider regions of data. The methodical details are given in the proceed-
ing sections.

Method

Like other participants in the bigger project, Beng Choon was identified as an experi-
enced and competent teacher. “Experienced” is defined as having taught the same
mathematical course at the same level for a minimum of five years; and “competent”
selection is based on recognition by the local professional community as a teacher who
is effective in teaching mathematics.

As mentioned briefly at the start of the paper, the choice of Beng Choon as a subject
of deeper study was largely due to her own reference to help her students “recognise the
form” within the context of learning to apply formula. In addition, a number of other
factors about Beng Choon’s practices lends itself to a rich unpacking of her work—a
characteristic feature of case study: (1) During interviews, she was able to articulate
comprehensively her goals for many tasks. This allows us to uncover her intents behind
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the activities we recorded in her classroom; (2) she produced a full set of handouts for
students’ use in class (hereafter referred to as “Notes”) before the start of the module
and supplemented these along the way in the form of additional practice items. In other
words, her work yielded a rich set of instructional materials on which to ground our
study; (3) she constantly made references among her goals, her actual activity in class,
and her use of instructional materials. This enabled us to study the interactions among
these major pieces of her instructional processes.

The class that Beng Choon taught was a Year 9 Express class. In Singapore, students
progress to secondary level based on the scores they obtain at the end of Year 6 in the
Primary School Leaving Examination (PSLE) conducted nationwide. Using the PSLE
score, pupils are streamed into three ability streams. The streams are known as Express,
Normal Academic (NA), and Normal Technical, and the percentage of students in each
of these streams is roughly 60, 25, and 15 respectively. Unlike the NA course which
stretches over a duration of 5 years, students in the Express stream cover the same
content in 4 years.

The module that Beng Choon taught was “Differentiation”. The contents—as
stipulated by the Ministry of Education (2012)—that she covered during our study
were (i) derivative of f(x) as the gradient of the tangent to the graph of y = f(x) at a
point; (ii) derivative as rate of change; (iii) use of standard notations f’(x), f”(x), dydx
, d2y
dx2 ¼ d

dx
dy
dx

� �� �
; (iv) derivatives of xn, for any rational n, sinx, cosx, tanx, ex, and

lnx, together with constant multiples sums and differences; and (v) derivatives of
products and quotients of functions. The module was taught over nine lessons, two
of which were 30-min lessons while the rest were 60-min ones.

Data

Under instructional materials, Beng Choon used mostly the set of Notes she
designed. During the course of the lessons, she also consolidated students’ learn-
ing by assigning items for short practices. These related materials form the first
primary source of data.

The next source of data is the interviews we conducted with Beng Choon. We
conducted one pre-module interview before her lessons and three post-lesson
interviews after each of three lessons she selected—Lessons 04, 08, and 09. All
interviews were video recorded. We designed an interview protocol with two sets
of questions and probes respectively for the pre-module interview and post-lesson
interviews.

The pre-module interview was conducted to find out what Beng Choon’s instruc-
tional goals were and how she designed and planned to utilise her instructional
materials to fulfill her goals. Some prompts in the pre-module interview were as
follows:

& Please share with me what mathematical goals you intend to achieve for this set of
materials that you will be using.

& Are there any other specific instructional materials that you are going to prepare for
this module?
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The post-lesson interviews were conducted to find out if she had met her instructional
objectives with the instructional materials she designed and planned to use. Some of the
questions were as follows:

& Did you use all the materials that had you intended to use for the lesson?
& How did the materials help you achieve your goals for this lesson?

The third source of data is Beng Choon’s enactment of her lessons in the module. We
adopted non-participant observer roles during the course of our study—one researcher
sat at the back of the class to observe Beng Choon’s lessons. This is so that the
researcher will be able—during the post-lesson interviews—to make relevant and
specific references to her teaching actions when pursuing certain threads during the
interviews. A video camera was also placed at the back of the class to record Beng
Choon’s actions. All nine lessons were video-recorded.

Analysis of data

We proceeded with the analysis along four stages. Figure 2 summarises the procedure.

Stage 1: identification of units of analysis of the Notes We took the sections of the
Notes as prepared by Beng Choon (e.g., “Basic Formula”, “Chain Rule”) as the basic
units of our preliminary analysis. We broke down the units further to examine the
specific mathematical contents targeted in each section. For example, under the “Basic
Formula” unit, we studied each exercise item listed in the unit to posit the intended
instructional goal for each of them. We matched the comments in Beng Choon’s
interviews according to the references she made to these units and exercise items.
Together with the coded content, we were better able to verify the instructional goals
intended for each unit.

Stage 2: composition of chronological narratives For some of these selected units with
rich related data on Beng Choon’s enactment and interview comments, we crafted
chronological narratives (CN) for each of them. In each CN, we integrated a number of
data sources—pre-module interview transcriptions, post-lesson transcriptions, tasks in

• Examined teacher's 
Notes for segments 
that are intertwined.

• Divided segments 
into "units" to 
analyse separately.

Identification of
Units of Analysis

• Organised data from 
each unit of analysis 
according to 
timeline to form 
respective 
Chronological 
Narratives (CN).

Composition of
Chronological

Narratives • Identified themes 
from CN by coding 
data.

• Synthesised themes 
that emerged and 
formed conjectures.

Formation of
Conjectures

• Refuted and refined 
conjectures on first 
unit.

• Corroborated with 
second and third 
units to finalise 
conjecture.

Testing of
Conjectures

Fig. 2 Analysis procedure
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her Notes, and her classroom vignettes. The CN of Unit A for the Basic Formula, for
instance, was composed by first examining the text in the pre-module interview. We
found that she commented at length about how she planned to help students “recognise
the form” using her Notes. This intention cohered with the contents of the Notes in the
“Basic Formula” unit. We also proceeded to locate the video recordings of the related
lessons she conducted for evidence to corroborate her use of the instructional materials
in this unit. She started with the unit in the middle of Lesson 01 and continued to
develop it in Lesson 02. During Lesson 02, she assigned students to work on some
items to consolidate their learning. Thereafter, she explained the answers to the practice
items and reinforced the unit by highlighting common errors. In other words, the CN
for the unit is a coherent chronology that is drawn from these data sources: interviews,
Notes, and videos of her lessons. The CN for this unit is summarised in Table 1.

Stage 3: formation of conjectures related to “recognise the form” We begin specifi-
cally to look for themes related to how Beng Choon help students “recognise the form”
by closely examining the CN for Unit A. This CN was chosen as a first-entry study
because it is one where Beng Choon articulated that her main goal was to help her
students “recognise the form”. This CN became an intensive source of analysis for
emerging themes related to this central theme. After several rounds of discussions,
conjecturing, and refuting, we arrived at a point where there was stability in agreement
among the members of the research team—where the conjectures could be substanti-
ated from all the data sources.

Stage 4: testing of conjectures In the final stage of analysis, we repeated this process in
Stage 3 on another unit of analysis so as to develop our conjectures, refute previous
ones, or substantiate/revise those generated earlier. After going through further refuta-
tions and refinements of conjectures, we managed to refine the conjectures into a form

Table 1 Overview of the chronological narrative (CN) of unit A

No. Event/activity Data

1 Pre-module
interview

• Explained that the examples she crafted were from Levels 1 to 3 on a scale of 1 to
5—whereby 5 is the most difficult—so as to build confidence among students

• Explained that she planned to teach students to “recognise the form” of functions so
that they could “apply the formula”

2 Lesson 01
Notes
Basic formula

(p. 2)

• Utilised four examples in Task 1 to teach students to apply the basic formula for
differentiation

• Rewrote y ¼ 1
x as y = x

−1 and y ¼ ffiffiffi
x

p
as y ¼ x

1
2 for Items (c) and (d) in Task 1

respectively so that students can see that they have the same form as y = xn

• Emphasised that students have to rewrite expressions to obtain the form of y = xn so
as to apply the basic formula d

dx xn½ � ¼ nxn−1

• Reiterated that students have to “recognise the form” by rewriting y ¼ 2ffiffi
x

p as y ¼ 2
x−

1
2 for Item (b) in Task 2

3 Lesson 02
Notes
Basic formula

(p. 3)

• Recapped the basic formula d
dx xn½ � ¼ nxn−1 at the beginning of the lesson by

eliciting students’ responses
• Proceeded to d

dx af xð Þ½ � ¼ a d
dx ½ f xð Þ and d

dx f xð Þ � g xð Þ½ � ¼ d
dx f xð Þ½ � � d

dx g xð Þ½ �
• Within exercise items (b)—(d) in Task 3, she emphasised the importance of

rewriting the expressions in the form of y = xn
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that contribute to theory generation. In the next section, we present our findings on the
processes of analysis under Stages 3 and 4 by first detailing the CN on Unit A, followed
by the other CN on Unit B.

Chronological narrative on unit A: basic formula of d
dx xnð Þ ¼ nxn−1 For context, the

unit before this was an introduction to differentiation. She started by presenting the
graph of y = x2, and students were asked to find the gradient at various points on the
curve. She then drew the students’ attention, through observing a pattern, that the
gradient at these points are twice that of the x-value of the points. This observation was
generalised into “the gradient function of x2 is 2x”, followed by a formal introduction to
the various notations of the gradient function. She continued by stating, without further
exploration, that if the same procedure was used for the functions x3, x4, …, the
respective gradient functions were 3x2, 4x3, … . Clearly, she was leading the students
towards the formalisation of the basic formula which was the highlight in the next unit
of her Notes. In fact, she wrote the formula on the board at the end of this section of the
lesson.

Beng Choon then proceeded to show how it can be applied to the items given in the
next unit (the focus of the current inquiry) of her Notes, as shown Fig. 3:

For item (a), she pointed to the formula that was written on the board and reminded
the students that “it was done already”. One of the students readily volunteered the
answer, “three x-squared.” Beng Choon wrote the answer on the board and did not say
anything more. She did not seem to think that any student would have difficulty with
this item. From the point of view of design of the instructional materials, we are
interested in her selection of this as the first item in this unit. From her response, we
surmise that she intended the first item to be a very direct and obvious application of the
formula to build confidence in her students, especially in this early stage of the topic
(that is, the first lesson). That this was the general approach taken by Beng Choon is
attested by the following:

When I took them [as students in the beginning of last year], I checked [that they
were] always failing [in mathematics] so you find that they lose confidence,… In
fact the very first test I gave them, after the test they all said, “Oh man, if only I
can get [a score of] two digits.” … I was quite shocked [at their lack of

Fig. 3 Extract of Beng Choon’s Notes on application of the basic formula
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confidence] … So that’s why, for them … my approach to them is that it's
actually not that difficult, helping them to build up their confidence. [Pre-module
interview, emphases added]

Notice that she wanted to present mathematics to students that render it “not that
difficult”. Elsewhere, within the same interview, she reiterated that she intended to
“make things easy” for her students. It appears that, especially at the beginning of the
set of exercise items, she wanted students to feel comfortable—without excessively
heavy cognitive load—and confident to move along.

Moving on to (b), even before she finished writing “y = 5” on the board, Student
Don voiced, “zero”. Here, unlike the case of Item (a) where she simply accepted the
answer, she responded, “Why is that so?” which signaled an intention to help students
go beyond merely a correct answer. The student offered the expected explanation of
applying the formula of “bringing down the power of zero” when you write 5 as 5x0,
which results in the product giving zero as the final answer. [Note: to prove the formula
from first principles in the case for n = 0, one will need to do it differently from the
more usual starting case of n as a positive integer; the same is true for n as a negative
integer and n as rational. Here, it was not the intention of the teacher to prove the
formula rigorously, but merely to apply it]. That this was not the purpose of the “why is
it so” question was made clearer when she followed on with an alternative explanation,
“In fact, when you draw the horizontal line of y = 5 [her both hands moving left to right
repeatedly, gesturing an imaginary horizontal line] … the gradient right – you can also
see that the gradient is zero”.

The manner in which she directed students to visualizing y = 5 as a horizontal line
graphically indicates that she likely intended to connect to the emphasis of differenti-
ation as finding gradient in the previous unit. Here, she saw the opportunity—since y =
5 as a horizontal line is easy to recall and visualise—to reinforce this foundational
concept and seized upon it. [As an aside, this connection to “finding gradient” becomes
significant as later items—Beng Choon termed them “word problems”—were set
within the context of finding gradients. The detailed discussion of these items is beyond
the scope of this study].

For Item (c), there is a deliberate variation from the xn surface form. Beng Choon
wrote y = 1

x on the board and asked the class, “What is the power of x here?” Student
Jon offered the answer as − 1. She then rewrote the expression as x−1. That this was
intended during the design of the Notes was clear in the space allocated on the right
side of the “=” sign of y = 1

x (see Fig. 1). She then proceeded—asking students’
responses at every step—to show the application of the basic formula, writing
dy
dx ¼ −x−2 ¼ − 1

x2. She stressed that the formula applies not only for positive integer n;
it also applies for negative integer n. We also noticed that, compared to the previous
two items, the time spent explaining this item is longer (52 s compared to 35 s for Item
(b) and 15 s for Item (a)). This was due not only to more steps involved but also more
deliberate points of pause to look at students’ expressions—presumably to check that
the steps were sensible to the students. In other words, it appeared that Beng Choon
judged that this item was becoming less easy for students and so was more willing to
slow down for students to keep cognitive resonance with her. This is in line with her
goal of “building confidence” in this group of students, as stated earlier.
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Unpacking further, we may extend our inquiry into the actual “difficulty” that Beng
Choon was seeking to address as she slowed down. She revealed it in the pre-module
interview:

I need to teach them to recognise. So that – [for example in] trigo there are a lot of
formulas, so how do I know which formula to use? So I have to teach them to
recognise… So that you know that this is the form [to apply correctly]… . I find
that a lot of times I have to teach them to recognise the form (emphases added).

From the repetition of the phrase in a short section of the interview, we know that Beng
Choon puts priority in her teaching to helping students “recognise the form” that fits the
formula-use. Seen through this lens, the deliberate and fore-planned re-writing of 1x to x
−1 is an example of how a change of the external representational form of a function can
help the students connect to and “recognise” it as a case of xn and hence satisfying the
condition, thus triggering the application of the correct formula. Perhaps, the later re-
writing of −x−2 to − 1

x2 was yet again a reinforcement of this skill of toggling between
“forms” of representation of such functions, since she identified this “recognition of
form” was a difficulty among these students.

This fundamental goal of “teach students to recognise the form” is extended to Item
(d), and so was the intention of providing further variation of the form xn—in this case,
away from integer exponents. The whole process in which Beng Choon discussed Item
(c) was essentially duplicated for Item (d). She took an even longer time to demonstrate
the steps (73 s) as she slowed down further at two points: (i) when determining the

power after differentiation; (ii) in obtaining 1
2
ffiffi
x

p from 1
2 x

−12 . For (i), her voice accented

both in volume and pitch when she asked, “And the power is?” When some students
gave the answer as negative half, she further asked, “Do you know why it is negative
half?” For (ii), she guided the students by using the language of numerator and
denominator, showing items that should go to either. In short, Beng Choon continued
to slow down as she expected Item (d) to be even more “difficult” for the students—as
she mentioned in the second interview, “Especially terms that contain square root. From
experience, I find that students always have problem with one term with a square root”;
at the same time, she wanted to “teach students to recognise”—in this case, the

recognition that
ffiffiffi
x

p
can be written as x

1
2 and hence belonging to the form of xn and

so valid to apply the results of the formula.

(a) apply 

formula

(b) 5 gesture hor. line find

gradient
0

(c) rewrite apply 

formula

rewrite

(d) rewrite apply 

formula

rewrite

Figure 4 summarises the CN enacted by Beng Choon for each of items as discussed in the preceding
paragraphs in this section.
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Fig. 4 Summary of the chronological narrative of unit A
The length of the chain of procedures as shown in Fig. 4 shows a gradual increase in

“difficulty” in the sequencing of the items, beginning with the easiest (to “recognise the
form” in order) to apply the formula directly, and ending with that which she consid-
ered most difficult for students. The insertion of (b)—while providing the option also to
apply the formula—was meant to connect back to the concept of “differentiation as find
gradient”. To help students “recognise the form”, in the cases of (c) and (d), she
deliberately provided space in her Notes to signal the scaffold of rewriting into a form
that was easier to see it as a case of xn and thus fulfil the condition for applying the
formula.

Also, the different surface forms—positive exponents, constant, reciprocals, and
square root—were varied systematically in order to serve the purpose of drawing
students’ awareness that they were merely rewritings of the same underlying form of
xn. Beng Choon mentioned this intention repeatedly in the first interview:

I … give [them] exposure to different types of questions that this topic can come
up with. I always look for a variety of questions … So I told them that I give
[them] a variety of questions. But when the question is different, something new
... [they] have to fall back to basic … (emphases added).

Based on the analysis as explicated in the CN of this unit, we advance the following
conjectures with respect to Beng Choon’s design of the instructional materials to help
students develop fluency in formula-application:

(1) To build confidence in students of their ability to apply the formula, the exercise
items are sequenced such that the first item requires easiest recognition of form,
and gradually increasing in difficulty, with the items considered the most difficult
at the end of the set of exercises;

(2) The surface forms of the items are varied in order to help students discern the
underlying invariance;

(3) Where appropriate, items are inserted within the set to help students connect to
concepts (in this case, differentiation as finding gradient)—that were introduced
earlier and which would be required later in the topic;

(4) “Recognise the form” is a prerequisite to applying the formula, and items are
crafted to require a rewriting of the initial ‘form’ (e.g.,

ffiffiffi
x

p
) so that it becomes

easier to recognise this form (i.e., x
1
2 ) that fits the formula.

As described under the “Method” section, we proceed to Stage 4 of the analysis by
examining the CN of Unit B on Chain Rule. The focus in the next section will be less
on the detailed description of the how the narrative was produced, but the evaluation of
the conjectures—examining, in particular, whether they are refuted, substantiated, or in
need of refinement.

Chronological narrative of unit B: Chain Rule In between unit A and unit B, Beng
Choon taught two other formulas: d

dx af xð Þ½ � ¼ a d
dx f xð Þ½ �, and

d
dx f xð Þ � g xð Þ½ � ¼ d

dx f xð Þ½ � � d
dx g xð Þ½ �. Again, a set of exercise items followed the
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introduction of each of the formulas. Also, “word problems” were given to help
students maintain the connection of differentiation to finding gradient

She started unit B with a motivational activity: How would you obtain dy
dx for

y = (2x + 1)2? After briefly recalling that one can expand and then apply the formulas

learnt earlier, she proceeded with dy
dx for y = (2x + 1)10. She used this development to

motivate that a different technique was needed. She then demonstrated how she would
do the differentiation on the first item on the Notes: y = (2x2 + 1)10. Figure 5 is a
reproduction of Beng Choon’s work on the whiteboard for this segment of the lesson.

She then demonstrated the same procedure for y = (3x2 + 2x)7. Following this
segment, she told the students that the technique she used for both items was

officially called Chain Rule and she formalized it as dy
dx ¼ dy

du� du
dx on the whiteboard,

which was also printed in the Notes.
As in other units in her Notes, this introduction of the formula was followed by a set

of exercise items, as shown in Fig. 6.
For (a) and (b), she reproduced the items as they appeared in the Notes on the board,

and left spaces in between for the working. She asked the students to try on their own—
as she walked from table to table to monitor and guide. She added, “The first two are
easy, yes – super easy”. After 51 s, students were asked to present their working on the
board. Beng Choon then pointed out a mistake on the student’s working of (b)—he
missed out a negative sign—and did not elaborate further before asking students to
proceed with the other items. This segment of her follow-up explanation lasted 65 s.

For (c), she started by saying, “Again, it is easier to make it to the form of something

to the power…”, before showing on the board that d
dx

6
2−xð Þ2

h i
¼ d

dx 6 2−xð Þ−2
h i

. Like in

(a) and (b), she left a space on the board after this line—to signal to students that she
expected them to attempt the working by themselves. She proceeded after the space to
do a similar verbal emphasis, “Again, if I have square root, what is the power?”

Fig. 5 Reproduction of whiteboard working
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followed by rewriting for (d): d
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2xþ 2

p ¼ d
dx x2 þ 2xþ 2ð Þ12, before leaving off

to check on students’ seatwork.
After 91 s, she asked one student to present the solution for (c). At the same time, after

observing the seatwork of the students for these items, she noted in class, “Okay, quite a
number of you are confused already”. She immediately proceeded to go through the
student’s solution for (c). The student’s working started with this: −12(2 − x)−3(−1). She
noted that the student “skipped [a step]” and proceeded to insert a line prior to this: 6 (−2)(2
− x)−3(−1), explaining each factor of this expression – “6 I leave it, … he brings down -2,
…”. The reason for BengChoon to further break down by inserting the step becomes clearer
as she continued to explain, “the power becomes -3,… now I notice some of you – you start
to differentiate here [pointing to “(2 – x)”] already, which is wrong… take care of the power
first… then differentiate “2 – x” to get -1”. Some students were beginning to misapply the
formula by collapsing the two separate steps—do dy

du followed bymultiplication of
du
dx – into a

single mesh, as in 6(−2)(−1)−3. Beng Choon’s insertion of the additional step was meant to
help students see each distinct step in the application and, in particular, to highlight the
collapsing mistake.

She proceeded to show a similar procedure for (d), again warning against the tendency to
collapse: “… the term [pointing to (x2 + 2x+ 2)] – do not change anything to the term [pause],
alright do not change anything to the term…”. Due to her slowing down to break down the
steps and repeatedly emphasising on not confusing the steps, her explanation for (c) and (d)
took 490 s, significantly more than the teacher explanation component for (a) and (b).

The process she adopted for (e) and (f) is similar to (c) and (d). She rewrote the
expressions into a form where the exponents become clear, before applying the Chain

Rule, again stressing the separation of steps between dy
du and the multiplication of dudx. The

time taken for the teacher explanation was 583 s.
For (g), Beng Choon again introduced this as a “word problem”. The solution

process is longer than the earlier items; as such, we will not detail each step. Instead,
we focus on those segments that relate directly to our conjectures. First, we noted that
Beng Choon used the language of “notice that the gradient is zero” twice in her

Fig. 6 Extract of Beng Choon’s Notes on application of Chain Rule
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explanation although the text of the item merely states “dydx ¼ 0”, neither does the

solution process require such a connection between dy
dx and “finding gradient”. It appears

to us that Beng Choon had intended to make connection at every opportunity. When we
asked during the post-lesson interview if this was indeed her intention, her reply was, “Yeah,
yeah, yeah. I always have to check- yeah, I always have to check back [to this connection
made in my earlier lesson], because when they learn something now … they may have
forgotten something [taught] before”. Second, when she obtained the expression for
dy
dx ¼ x−1ð Þ x2−2xþ 5ð Þ−12, she proceeded to do something she had not done in the workings
for (a) – (f), which was to explain and rewrite the expression as x−1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2−2xþ5
p , giving the reason

for doing so as “you will find it is easier [to see] if you write it this way”. This statement

became clearer when she proceeded to help students see the justification for how dy
dx ¼ 0

would result in x = 1. It is by re-writing the expression into a rational expression that it is
easier for students to recognise the fraction in the reasoning: that if a fraction equals zero, the
numerator equals zero (and the non-zero denominator doesn’t play a part at all). Although
the study here is about recognising the form in order to apply a formula, it is interesting to
note that helping students to recognise the form—in this latter case, the form of a fraction—
was also seen as useful by Beng Choon to teach a deductive reasoning process. Figure 7
summarises the CN in this unit.

We include here brief clarifications of the terms/symbols used in Fig. 7. The “double
arrow” used in (c)–(f) is to highlight how Beng Choon intentionally slowed down to
emphasise the two steps in the application of the Chain Rule—focus on seeing y in

terms of u for dy
du then seeing u in terms of x for du

dx. This process differs from the more
straightforward one-step application of the formula in (a) and (b). The term “double
rewrite” was used for (f) because, unlike in the earlier items, the re-writing into

exponents occur at two places in the expression—from
ffiffiffi
u

p
to u

1
2 (where u ¼ x− 1

x),

and from 1
x to x

−1. This could be judged by Beng Choon to be more difficult for students
and therefore placed towards the end of this set of exercises.

We do not know why there was no re-writing for (f) after the application of the
Chain Rule; we surmise that she did not want to impose extraneous cognitive load on
the students, since her focus for this set of exercises was correct application of the
Chain Rule. As such, she dealt with only rather straightforward post-application re-

(a) (2 − 1) apply formula 4(2 − 1) (2)
rewrite

8(2 − 1)

(b) (2 − 3 ) apply formula 6(2 − 3 ) (− 6 ) rewrite − 36 (2 − 3 )

(c)
6

(2 − )

rewrite
6(2 − )

apply formula and 

separate steps 6 (− 2)(2 − ) (− 1)
rewrite

12(2 − )

(d) + 2 + 2
rewrite

( + 2 + 2)
apply formula and 

separate steps

1

2
( + 2 + 2) (2 + 2)

rewrite

( + 1)( + 2 + 2)

(e) (2 − √ )
rewrite

(2 − )
apply formula and 

separate steps
4 2 − (−

1

2
)

rewrite
− 2 2 −

(f) −
1 double rewrite ( − )

apply formula and 

separate steps

1

2
( − ) (1 + )

(g) − 2 + 5
rewrite

( − 2 + 5)
apply formula 1

2
( − 2 + 5) (2 − 2)

rewrite − 1

√ − 2 + 5

Fig. 7 Summary of the Chronological Narrative of Unit B
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writing, as were in the case for Items (a)–(e), and in the case of (g) where the rewriting
has the utility of helping students recognise the fraction form for the deductive step

x−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2xþ5

p ¼ 0⇒x−1 ¼ 0.

Similar to the increasing lengths and complications of the working chains as seen in
Fig. 4, Fig. 7 strengthens Conjecture (1) that Beng Choon intentionally built into the
sequence of items a principle of gradated levels of difficulty. Also, the manner in which she
varied the items in the set of exercises to help students “see” the underlying aun structure
amidst the different surface forms strengthens Conjecture (2). As for Conjecture (3), the way
Beng Choon deliberately connected to “gradient” in Item (g) supports it.

Conjecture (4) would require further refinement based on the analysis of this Unit.
Although “recognise the form” was implicitly built into the design of the exercises as
seen from Beng Choon’s consistent use of rewriting (see Fig. 7) to a form that
explicitised the exponents, a closer examination reveals that there were at least two
“levels” of “forms” involved that students would need to recognise in order to correctly
apply the Chain Rule formula: (1) recognise that y is linear combination of u with
exponents; and (2) (nested within u) recognise that u is a linear combination of x with
exponents. [Using Item (c) to illustrate, student has to first recognise that y is 6u2 (linear
combination of u2) which is in the form that triggers the application of earlier formulas,
then recognise u is 2 – x (linear combination of x) which is again in the form that is
rendered easier for application of earlier formulas. Chain Rule essentially takes the
product of these two results]. This need for two-level recognition was not crafted ostensibly
into the Notes in this unit. Rather, it was in the enactment in class that she made it explicit,
and in a flexible manner—she did not emphasise the two-level recognition in the first two
items, but only from Item (c) when she detected that this separation of recognition was
needed to address some students’ tendencies to wrongly collapse the two concomitant steps.
In otherwords, theNoteswere crafted in such away as to allow her to flexibly emphasise the
type and level of “forms” she wanted to help students to recognise, depending on the
emerging needs of the students during the lesson. We therefore refine Conjecture (4):
“recognise the form” is a prerequisite to applying the formula. There may be nested forms
within a form that correspond to various other formulas. The items are crafted so that the
teacher can flexibly attend to different combinations (or levels) of forms during the lesson
according to the difficulties students face in correctly applying the formula.

Reframing the conjectures

In this section, we attempt to integrate the various conjectures with respect to Beng
Choon’s design of items to help students in formula-application. Conjectures (1) and
(2) provide the principles that Beng Choon drew upon consistently in the sequencing of
items. To her, it is important to consider gradation of item difficulty as a way of taking
into consideration the cognitive load the task would pose to the students. The gradation
allows students to enter into the set of tasks with minimal cognitive load, and as they
become more familiar, the cognitive demand is gradually increased with each
succeeding item in the sequence. At the same time, the items—taken together as a
set—are deemed by her to present necessary variation of surface forms in order for
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students to experience a “pattern of variation and invariance”. Relating these conjec-
tures to the earlier literature reviewed, we may say that Beng Choon drew upon and
integrated principles derivable from cognitive load theory and variation theory in her
design of item sequences. [We reiterate here that we do not claim that she was
cognizant of the specifics of these theories; but one can apply self-generated ideas that
coincide with principles derived from established theories]. Represented in diagram-
matic form, we view these two principles as feeding into Beng Choon’s deliberate
consideration in the construction of her item sequences, as shown in Fig. 8.

In terms of the outcomes she intended from the carefully-sequenced items, her main
goal was to help students “recognise the (nested) form(s)” because she saw it as a
prerequisite to applying the required formulas (Conjecture 4). Where necessary, she
would emphasise this goal in the classroom enactment of the instructional materials,
including the specific technique of rewriting in order to make the “form(s)” more
explicit to the students’ awareness. But apart from this goal, she also slipped in
connections to other ideas insofar as that they were easily derivable from the recogni-
tion of the related form(s) (Conjecture 3). These conjectures and observations were also
included in the representation of Beng Choon’s overall design conception in Fig. 8.

Discussion

From the analysis of the case of Teacher Beng Choon, we unpack the underlying
considerations in designing sequences of items for her students to learn formula-
application. In popular conceptions of studying mathematics as primarily “apply-
ing formula”, the ascent is naturally on the verb “apply”. The accompanying
image is thus one of students repeatedly and mechanically ‘applying’ the formula
on numerous almost-identical practice items. However, this study uncovers the
nuance behind the act of “apply”. Prior to students’ being able to “apply”, they
need to “recognise” the form that fits the condition for application. At least,
application should include recognition as a pre-requisite, or perhaps the verb

Apply FormulaConnect Ideas

Recognise the Form

Sequence of ExamplesCognitive Load

gradate the forms

Variations

vary the forms

Fig. 8 A model of Beng Choon’s design considerations
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needs to be modified to account for this realisation, such as “recognise-apply” the
formula. This suggestion to include the significance of recognition is not merely a
play of words. In the case of Beng Choon, the weight of her design efforts was
indeed on recognition—as presented in the findings. [For this reason, the central-
ity of “recognise” is reflected in Fig. 8]. The systematic variation of surface forms
and difficulty in the sequence of items was to help students first to recognise the
form in order to correctly apply the formula.

This shift of emphasis has practical implications for task design. If design of item
sequences is naively based only on the act of mere “applying”, then it is no wonder that
items produced have identical surface forms for the purpose of unreflectingly repetitive
practice. But once the designer is cognizant of “recognising-applying” as a two-step
conjoined process, there is a slant in design orientation away from mere repetition;
there would be a deliberate varying of surface forms to target recognition. The leverage
on recognition is not only in serving the needs of formula-application. As illustrated in
Fig. 8, it pays other dividends. Interestingly, teachers can seize upon the recognition of
certain standard forms to connect to related and useful ideas.

To concretise this point, we reflect on its relevance on the design of another
“formula”: the Pythagoras theorem. The goal is students’ fluency in the application
of the theorem. If we are merely focused on “applying”, we may provide a set of
diagrams of random right-angled triangles, each comprising a task that requires stu-
dents to calculate the length of one side given the dimensions of the other two sides.
But once “recognising” comes also to the foreground of designing, we consider how
right-angled triangles can be recognised within varied contexts—in different orienta-
tions, and when composite with other shapes (such as with other triangles and within
circles)—or even non-right-angled triangles to highlight the dangers of mis-recogni-
tion. When opportunity presents, we might also make connection to how when two
sides of a right-angled triangle are given, the triangle is fixed by congruence (SAS or
RHS) and so it is unsurprising that the third side is also determined. This transference of
principle to another formula illustrates the practical usefulness of reconceptualising
“apply” as “recognise-apply” in task design.

On the theoretical side, we learn about how Beng Choon integrates ideas derivable
from cognitive load theory and variation theory into the design of her instructional
materials. Although she managed the enterprise from a realistic-pragmatic
perspective—that is, with the goal of helping students gain fluency and in a way that
aligns with her assessment of the contextual needs of her students—it contributes to our
understanding of how an eclectic approach to theories can translate into design
principles. Not only did she demonstrate a complementary praxis that ties both these
theoretical streams together, our analysis unravels the depths of her craft knowledge (to
borrow a term from Hiebert et al. 2002) that she brought to bear in this enterprise of
task design. Figure 8 alone in its summarised form illustrates that there are more than
meets the eye in what most would cursorily consider easy work for teachers—to
prepare “practice items” for students. But the domains of knowledge and the multi-
faceted considerations that Beng Choon drew into this work challenge a simplistic view
of theory-practice link. The genesis of her craft knowledge is beyond the scope of this
study; the point is: the integrated and goal-oriented (towards building students formula-
application fluency) nature of her craft knowledge provides us with a starting model to
view the enterprise of basic task design.
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There is a direct lesson for mathematics teacher education. To date, we are not aware
of mathematics methods courses that would prepare teachers to design for students’
procedural fluency. Often, this is taken as trivial work left to pre-service teachers to
figure out in the field. This study challenges this common assumption; it argues for a
place in teacher preparation courses for a more in-depth discussion of this piece of
professional work, perhaps beginning with Figure 8 as a theoretical starting point.
Pursuing this line of thought further, most would consider teaching formula-application
as the most basic work of teaching. We see in this study that even so, there are potential
layers of complexities undergirding its design and implementation. Thus, in designing
for more ambitious goals of teaching, such as teaching reasoning or teaching problem
solving, we can imagine the challenge at task design to be far more onerous. This
perhaps partly explains the persistent lack of success at scale for ambitious educational
innovations; it also reminds interventionist researchers of the need to carefully examine
the cognitive loading into the craft knowledge of teachers when supporting the design
of ambitious tasks.

Conclusion

This case study provides us a peek into the way a competent mathematics teacher in
Singapore designs sequences of items for the goal of students’ fluency in formula-
application. The picture that emerges from the study is one that challenges the
conventional conception—that it is boring uninteresting work; rather, it reflects the
deliberate integration of knowledge strands coherently so that the sequence of items
used in the classroom would fulfill the teacher’s goal while meeting the contextual
needs of the students. The theorisation of the teacher’s conception is summarised in
Fig. 8. Regardless of whether similar characteristics of task design are shared by other
Singapore mathematics teachers—a follow-up study to the one reported here—this
conceptualisation can serve as a provisional model for professional development in task
design.
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