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Abstract
The study aimed at characterising the shift from configural reasoning to proof con-
struction in geometry. One hundred eighty-two preservice primary teachers solved two
geometry problems in which they had to generate a proof from the information
provided by a geometrical configuration. Results indicated that proof construction
was linked to the way pre-service teachers coordinated the different apprehensions,
as identified by Duval (1995), mediated by the existence of strategic knowledge.
Strategic knowledge is undertood as the ability to see some specific geometrical
statements as premises of a geometrical proposition that can be used to deduce
intermediate statements or the conclusion. We argue that pre-service teachers need to
be aware of the connections between specific geometrical facts when they construct a
proof by linking visualisation to formal reasoning. We conclude with implications for
teacher education programmes.

Keywords Configural reasoning . Deductive reasoning . Discursive and operative
apprehension . Geometrical thinking . Proof . Visualisation

Introduction

The relation between visualisation and knowledge of geometry highlights the
difficulty some students experience when they have to use previously acquired
geometry knowledge to build deductive proof (Battista 2007; Chinnappan and
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Lawson 2005; Clemente et al. 2017; Gal and Linchevski 2010; Prusak et al. 2012;
Weber 2001). We focused on characterising the shift students operate when
passing from associating configurations with mathematical statements, to building
a proof when solving proof problems in geometry. In the case of geometry poof
problems that provide a configuration, successful solving processes use true
statements, valid modes of reasoning and appropriate modes of representation
(Stylianides et al. 2016). Here, we considered deductive proof to be an appropriate
argument supported by valid reasoning. A number of different factors intervene in
the transition from configuration information (the association of the geometrical
facts to the configuration) to the construction of proofs (Duval 1998; Gal and
Linchevski 2010; Llinares and Clemente 2014; Prusak et al. 2012; Stylianides
et al. 2016). This is the case for example when students associate certain proper-
ties or definitions to the given geometric configuration (discursive apprehensions
in terms of Duval), and when the geometric facts are related via an Bif…then…^
deductive chain of inference. In this sense, the solving of proof problems is
initially based on giving configural meaning to geometric shapes by means of
discursive apprehensions (Duval 1998) and then turning these geometrical facts
into the premise of a geometrical proposition (Arzarello et al. 2008). Our knowl-
edge of how students identify which theorem to use to deduce intermediate
statements of a conclusion is still fairly limited (Miyazaki et al. 2017). Therefore,
the aim of our study was to investigate the characteristics of the shift from
configural reasoning to the construction of proof in geometry.

Background and theoretical framework

Existing studies on the shift from configural reasoning to generating a logical deductive
chain of reasoning have addressed different factors:

– The role of students’ knowledge and the levels of understanding of a deductive
proof structure as they attempt to build proofs and to use theorems to deduce
intermediate statements or a conclusion (Chinnappan 1998a, b; Chinnappan
et al. 2012; Miyazaki et al. 2017; Prusak et al. 2012), and

– The continuity and discontinuity between configural reasoning and deductive
proof, both from the epistemological and cognitive perspectives (Arzarello et al.
2008; Duval 1995; Torregrosa and Quesada 2007).

Chinnappan et al. (2012) identified three predictors of performance in proof
construction: (1) geometry content knowledge, (2) general problem-solving skills
and (3) geometry reasoning skills, with geometrical content knowledge
representing the major determinant of success. Nevertheless, general problem-
solving skills and geometry reasoning skills significantly contributed to the acti-
vation and utilisation of geometry knowledge during the resolution process. Ac-
cording to the authors, geometrical knowledge includes knowledge about geomet-
ric relationships and the visual representation of such relationships in addition to
geometric concepts. When associating geometrical facts with a configuration in
order to generate goal-directed new information, it is necessary to possess solidly
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organised knowledge to be able to access and retrieve the required theorems
(Prawat 1989; Lawson and Chinnappan 1994). From this perspective, the way in
which students have organised their geometrical knowledge (e.g. the different links
between concepts and theorems) could help or hinder the activation of knowledge
needed to construct a proof.

However, students need to understand the structure of proof to find and use
proper theorems to deduce new information in a goal-directed manner (Miyazaki
et al. 2017). One factor that seems to influence the capacity to retrieve some pieces
of geometrical knowledge and its activation in a deductive chain is the ability to
consider a geometric fact not only from a configural point of view, but also as part
of a sequence of deductive relationships. This implies recognising that a geometric
fact can play different roles (epistemological status) in the solution process
allowing students to progress from visual reasoning to deductive reasoning
(Duval 1998). In other words, to be able to construct a proof, students should be
able to organise premises, conclusions and theorems appropriately, linking singular
facts to universal propositions (Duval 2007; Miyazaki et al. 2017) illustrating the
relationships between the argumentative and the discursive side of a proof
(Arzarello et al. 2008; Clemente and Llinares 2015). These relationships reveal
the epistemological and cognitive gap between argumentation and proof.

To understand the shift from configural reasoning to a deductive chain in the
solving of geometrical proof problems (and the gap between epistemological and
cognitive aspects), Duval (1998) suggests considering different types of apprehen-
sions. Duval defines operative apprehension as the student modifies a figure
enabling to identifying sub-configurations. He defines discursive apprehension as
the student associate configurations or sub-configurations with mathematical state-
ments. Configural reasoning occurs when operative and discursive apprehensions
are coordinated: it highlights the relationships between visualisation and geomet-
rical knowledge interlinking figural and conceptual aspects (Torregrosa and
Quesada 2007; Zazkis et al. 1996). Coordinating operative and discursive appre-
hensions may lead to the Bidea^ for solving the problem generating a logical
deductive chain of reasoning, linking premises with conclusions (Torregrosa and
Quesada 2007; Torregrosa et al. 2010).

In this paper, to understand the shift from configural reasoning to the construction of
a proof, we focused on how students come to consider the geometrical facts identified
in a configuration, or given as hypotheses in the problem, as the premises of deductive
sequences. The key research question was:

& What features intervene in the transition from configural reasoning to the construc-
tion of a proof when pre-service teachers solve geometrical proof problems?

Method

Participants

A total of 182 pre-service primary teachers participated in this study (hereon
referred to as the students). These students had taken a geometry course (60 h;
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4 h per week for 15 weeks). The activities in this course were designed to develop
the ability to visualise and understand geometric properties of plane figures such as
polygons, triangles, quadrilaterals and parallelograms, and learn to relate geomet-
rical facts (comparing, manipulating and transforming a mental picture). The aim
was to generate deductive processes, to justify some construction processes and
explore and prove properties of triangles and quadrilaterals. This course led pre-
service primary teachers to recall geometry knowledge from their primary curric-
ulum and some properties from their secondary curriculum—such as congruence
and similarity of triangles—and thus support their explanations of why geometrical
properties are correct and deduce them from already-learned properties. The last
part of the course focused on proof. Problems such as those shown in Fig. 1 were
submitted to each student who had to solve them. Advanced solutions were
subsequently discussed by the whole group. The goal was to make explicit how,
during the problem’s resolution, geometrical facts were associated with the con-
figuration and how they could be linked to other geometrical propositions to
generate a logical deductive chain (as a way of recognising the relationships
between elements of a deductive proof). This geometry course was the students’
first encounter with proof in the teacher education programme.

The problems

At the end of the course, students individually solved two geometrical proof
problems as part of their assessment (Fig. 1). The problems were similar to those
solved during the course. Each problem included a geometric configuration and
information about the configuration, and asked students to prove the congruence
of two segments. In one of the two problems, it was possible to identify different
sub-configurations that could be used for the solution generating different resolu-
tion trajectories. To identify the geometrical content susceptible to be used in the
problem resolution, three mathematics teacher educators identified the geometric
facts that could be used to solve the problems from different approaches. The prior
analysis of the problems was justified by the coherent link between these problems
and the teacher education programme’s curriculum and research goals. Table 1
shows the geometric facts used by students in their different problem-solving
approaches. These items of knowledge come from the data provided in the

Fig. 1 Geometry problems used
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problem (or from the configuration given by discursive apprehension) and from
the information on configuration, that can be inferred using prior geometrical
knowledge.

It is possible to identify different sub-configurations in each problem (Fig. 2)
that can be used to generate different solution trajectories. Each sub-configuration
reflects possible factors triggering or inhibiting the relevant configurations: split-
ting in embedded sub-figures (in problem 1, sub-configuration SC3; and the sub-
configuration in problem 2), and double use of one sub-figure or overlapping
figures (in problem 1, sub-configuration SC1 and SC2) (Duval 1995). The iden-
tification of these sub-configurations through operative apprehension would allow
students to recognise some geometric facts more easily than others. In problem 1,
there are several possible figural modifications of the given figure, and three

Problem 1 Problem 2

Fig. 2 Possible sub-configurations when solving the problems (the F label of problem 1 was included by some
students when identifying the sub-configuration SC3)

Table 1 Geometric facts used in the different problem-solving approaches. GKi geometric knowledge item

Problem 1 Problem 2

Association of geometric elements with the
configuration:
• GK1- Triangle- identification of a
sub-configuration
• GK4- Opposite angles at the vertex are equal

Geometric elements that could be used to infer
additional information (using Bif ... and ... then ...^;
Bif …. then …^):
• GK2- Properties of an isosceles triangle (two
congruent sides, and therefore, two congruent
angles- considering the two directions in which
properties of isosceles triangles flow (as example
of Bif …then…^). In a triangle, angles opposite to
the two congruent sides are congruent and the sides
opposite to the two congruent angles are congruent
• GK3- If you take two congruent angles and
deduct the same part you will be left with two
congruent angles
• GK9- Criterion of triangle congruence A-S-A
(as example of Bif …and … then …^)

Association of geometric elements with the
configuration:
• GK1- Triangle- identification of a
sub-configuration
• GK5-Definition of an angle bisector
(ray by vertex of angle that splits angle into two
congruent parts)
• GK6-Definition of perpendicular lines
• GK7-Definition of right-angled triangle

Geometric elements that could be used to infer
additional information (using Bif ... and ... then ...^;
Bif … then…^):
• GK8- The sum of the interior angles of a triangle
is equal to 180° (If we know two angles in a
triangle, we know the third)
• GK9- Criterion of triangle congruence A-S-A
(as example of Bif …and … then …^)
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operations to work them out. In problem 1, the figure shown initially did not have
the F label, but some students named the intersection of sides BT and RC when
identifying the sub-configuration SC3.

Analysis

The data under analysis corresponded to the students’ written arguments. In
each individual answer to the problems, we identified how students constructed
their arguments based on operative and discursive apprehensions and their
coordination. We conducted the analysis in two phases. In phase 1, we identi-
fied (Fig. 3):

i) Evidence that the students had identified a relevant sub-configuration through
operative apprehension. For example, in problem 1, when the students indicated
that they were considering the triangles △RCB and △TBC (sub-configuration a);
△ATB and △ARC (sub-configuration b); or △CFB, △RFB and △TFC (sub-

Fig. 3 Student 16’s answer to problem 2 (A16P2E2)
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configuration c); similarly, in problem 2, when they had taken into account triangles
△ACM and △AMN.

ii) If, the students recognised a fact in the configuration and gave it a configural
meaning, for example, if in problem 1 and for sub-configuration c, they recognised
that angles ^RFB and ^TFC were congruent because they were opposite vertex F.
Similarly, in problem 2, if they indicated that the bisector of the angle ^CAB
created two equal angles in ^A; or that angle ^N is a right angle because MN is
perpendicular to AB.

iii) If the students used external knowledge beyond the data to infer additional
information. For example, in problem 1, if they used the following facts:

& If sides AB and AC are congruent in triangle △ACB it follows that △ACB is an
isosceles triangle, and therefore, angles ^TCB and ^RBC will also be
congruent;

& If angles ^FBC and ^FCB are congruent in triangle △CFB (a given fact since
these angles are the same as ^RCB and ^TBC), it follows that it is an isosceles
triangle, and therefore, sides BF and CF will also be congruent;

& If you take two equal angles (^TCB and ^RBC) and deduct the same part
(^RCB and ^TBC), you will be left with two congruent angles (^BAT and
^CAR).

Similarly, in problem 2, if they used the fact that the interior angles of a triangle add up
to 180°, therefore, it is possible to know the third angle in a triangle when we know two
angles.

iv) If the students used data and previously obtained information as premises in a
geometric proposition. For example, if they used the criterion of congruence of
triangles A-S-A once they had recognised the information given in the configu-
ration as premises for this criterion of congruence.

We identified the geometric facts and the relationships used as students coordinat-
ed their discursive and operative apprehensions (geometrical properties, and geo-
metrical propositions as the criteria of congruent triangles). Next, we grouped the
various steps of the solution process into two stages in order to identify configural
reasoning and the generation of a deductive process when considering some items
of knowledge as premises for a proposition or geometric theorem. In this way, we
were able to identify when the students were relating the geometric facts in the
configuration to a previously learned theorem to construct the proof. We could
therefore identify the points at which items of knowledge could play different
roles, from the configural to the logical status in a deductive process, in each of the
solution trajectories followed.

In phase 2 of the analysis, the answers to each problem were assigned a 3-vector
V[(1),(2),(3)] according to the criteria indicated in Tables 2 and 3 (Lin and Yang
2007). This analysis aims at identifying when a student performs an incorrect
identification based on a superficial similarity; when a student makes a correct
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statement but bases it on an unfounded logical claim; and when a student invokes
prior but incorrect knowledge, but provides a correct solution, for example, when
students reach a correct conclusion but based on an incorrect deduction. In this
latter case, the associated vector is V [1,2,0]. By assigning a 3-vector to each
problem-solving process, we can track down how the geometrical facts are used
and how they are linked.

An example of how the analysis process was carried out is given below. Figure 3
shows the result of the process followed in phase 1 of the analysis. Next, we placed
it in a 3-vector (using Table 3, as it is problem 2). For that, we first checked
whether the student identified a relevant sub-configuration assigning a score of 1 in
the first grid box if the answer was yes. We then looked for evidence in the written
answers that the student had recognised the problem’s data in the configuration

Table 2 Criteria for generating vectors V [(1),(2),(3)] associated with the solution to problem1

V Description Activated geometrical knowledge

(1) Identification of a relevant
sub-configuration
(SC1, SC2, SC3)

0: Does not identify/make an
incorrect identification
based on a superficial
similarity

1: identified

-Triangle (GK1)

(2) Identification of items of knowledge
that could be used as hypotheses
for applying a theorem (premises
in a deductive chain). Two types
of items:

- Obtained directly from the facts of
the problem and linked to a
specific sub-configuration:

BSC1^ BSC2^ BSC3^
H1: BC≡BC H1: AB≡AC H1:

^RFB ≡ ^TFC
H2: ^RCB≡ ^TBC H2:

^BAT≡^CAR H2: ^FCB ≡ ^FBC
- Obtained from prior geometric

knowledge:
BSC1^ BSC2^ BSC3^
H3: ^TCB≡ ^RBC H3:

^ACR ≡ ^ABT H3: BF≡CF
H4: ^RBF≡ ^TCF

0: Does not identify/make an
incorrect identification
based on a superficial
similarity

1: Identify H1 and H2
2: Identify H1, H2 and H3

(BSC1^ and BSC2^),
identify H1, H2, H3 and
H4 (BSC3^)

-Isosceles triangle: congruent angles
and therefore two congruent
sides // Two congruent sides and
therefore two congruent angles
(GK2)

-Angle (if you take two equal angles
and deduct the same part you
will be left with two congruent
angles). (GK3)

(3) Conclusions reached:
BSC1^ BSC2^ BSC3^
C1: △RCB≡△TBC C1:

△ATB≡△ARC C1: △RFB≡△TFC
(mentions use of criterion A-S-A) to

derive…
C2: RC≡BT (mentions the use of

criterion of congruence of
triangles)

0: No conclusions
reached/correct
conclusions based on
incorrect fact/

uses correct data and reaches
a correct conclusion but
based on an incorrect
deduction.

1: Get C1 and C2

-Congruence of triangles
(criterion A-S-A) (GK9)
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(evidence of discursive apprehension). In this case, we assigned 1 to the vector’s
second coordinate. When the student also considered some geometrical facts or
previously learnt proposition, we assigned a score of 2 in the vector’s second
coordinate. Finally, we verified the conclusions in this case, via the correct
application of the criterion of congruence of triangles A-S-A; and we scored 1 in
the vector’s third coordinate (Table 4).

Table 4 Vector grid generated in phase 2 of the analysis, using student 16’s answer to problem 2

Student V Description
(problem 2)

Score Geometrical
knowledge activated

Vector

A16P2E2 (1) Identify:
△ACM and △AMN

1 GK1 V [1,2,1]
Passage from configural reasoning

to deductive process(2) Obtain:
H1: AM≡AM
H2: ^ACM ≡ ^MNA
H3: ^CAM ≡ ^MAN
H4: ^AMC ≡ ^AMN

2 GK5
GK6
GK7
GK8

(3) Obtain:
C1: △ACM≡△AMN
C2: CM≡MN

1 GK9

Table 3 Criteria for generating vectors V [(1), (2), (3)] associated with the solution to problem 2

V Description Geometrical knowledge
activated

(1) Identification of a relevant
sub-configuration

0: Does not identify
1: Identify

-Triangle (GK1)

(2) Identification of items of
knowledge that could be used as
hypotheses for applying a
theorem (premises in a
deductive chain). Two types of
items:

-Obtained directly from the facts of
the problem:

H1: AM≡AM
H2: ^ACM ≡ ^MNA
H3: ^CAM ≡ ^MAN
-Obtained from prior geometric

knowledge:
H4: ^AMC ≡ ^AMN

0: Does not identify/or makes an
incorrect identification based on
a superficial similarity

1: Identify H1, H2 and H3
2: Identify H1, H2, H3 and H4

-Bisector (ray that cuts the
vertex of an angle and
divides it into two
congruent parts) (GK5)

-Definition of perpendicular
lines (GK6)

-Definition of right-angled
triangle (GK7)

-Angle (the sum of the
internal angles of a triangle
is equal to 180°) (GK8)

(3) Conclusions reached:
C1: △ACM≡△AMN (mentions the

use of the criterion A-S-A) to
derive…

C2: CM≡MN (mentions the use of
the criterion of congruence of
triangles)

0: No conclusions reached/correct
conclusions based on incorrect
fact/uses correct data and
reaches a correct conclusion but
based on an incorrect deduction.

1: Get C1 and C2

-Congruence of triangles
(criterion A-S-A) (GK9)
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Results

Our findings are grouped into two sections. The first section describes students’
solution trajectories and shows how geometrical knowledge intervenes in configural
reasoning. The second section shows how students used geometrical facts as premises
of a proposition to deduce intermediate statements or the conclusion (i.e. what has been
asked to be proven).

Solution trajectories from the identified sub-configuration

The coordination of discursive and operative apprehensions linked to a specific sub-
configuration led to defining possible solution trajectories, thus to the use of a sequence
of knowledge items. A solution trajectory is the sequence of geometric facts
(knowledge) and their relationships. Table 5 displays the sequence of knowledge items
defining the solution trajectories identified for each problem. The solution to problem 1
was started by 164 of the 182 students (116 from sub-configuration SC1, 39 from sub-
configuration SC2, and 9 from sub-configuration SC3), and the solution to problem 2
by 165 of the 182 students.

The way in which the geometrical facts and propositions were organised into a
deductive step as well as the arrangement of deductive steps seems to indicate that
some type of mental association exists between prototypical figures and mathematical
concepts determining students’ performance. Differences in the success levels appear to
support the existence of a mental association between certain prototypical figural
configurations and geometric concepts that apply to them in the proof process.

From configural reasoning to deductive reasoning

Table 6 shows the vectors identifying the features of the solution trajectories. Figures 4
and 5 present the graphs of frequency showing the shifts from configural reasoning to
deductive reasoning. The trajectories reveal that prospective teachers use and infer
geometrical facts from their discursive and operative apprehensions, but they also use
previously learned geometrical facts. The relationships between geometrical facts (from
configural reasoning and from remembered geometrical facts) seem to govern the shift
to deductive reasoning. We identified three groups of trajectories that characterised
these transitions.

Table 5 Percentage of sub-configurations identified for each problem and possible sequences of mobilised
knowledge items. GKi = items of geometric knowledge active in the solution trajectory

Problem Sub-confi-
guration

Solution trajectories
(Geometry Knowledge)

Students Total % About
n = 164

% about
n = 182

P1 SC1 GK1 +GK2 +GK9 116 164 70.7% 90.1%

SC2 GK1 +GK2 +GK3 +GK9 39 24.8%

SC3 GK1 +GK2 +GK3 +GK4 +GK9 9 5.5%

P2 Only one GK1 +GK5 +GK6 +GK7 +GK8 +GK9 165 165 90.6%
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The first group (V [0,0,0]) corresponds to students (n = 18 in problem 1 and n = 17
in problem 2) who failed to identify a relevant sub-configuration and did not employ
configural reasoning.

The second group is made up of students who associated at least one geometric fact
with the configuration without generating a deductive process. This is performed.

& when the student only identified the initial triangles as a relevant configuration (V
[1,0,0]), and.

& when the student generated discursive apprehensions through direct associations of
geometric elements to the configuration from the data (V [1,1,0]), but were not
capable of generating any deductive processes.

The third group of students moved from configural reasoning to deductive reasoning.
In this case, we identified two subgroups:

Table 6 Classification of the solution trajectories adopted by students

Group Vector P1 P2

Unable to identify relevant
sub-configuration

V [0,0,0] 18 (9.9%) 17 (9.4%)

No deductive process generated Relevant sub-configuration

SC1 SC2 SC3 TOTAL

V [1,0,0] 16 3 1 20 (11%) 11 (6.1%)

V [1,1,0] 50 7 5 62 (34.1%) 47 (25.8%)

Passage from configural reasoning
to logical deductive chain

V [1,2,0] 4 3 0 7 (3.8%) 13 (7.1%)

V [1,2,1] 46 26 3 75 (41.2%) 94 (51.6%)

TOTAL 116 39 9
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Fig. 4 Bar chart of 3-Vectors associated to the resolution trajectory of problem P1
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& those who tried to generate new information (V [1,2,0]), but failed to identify any of
the items of knowledge as premises for Bif…then…^ propositions (in these prob-
lems this was the criterion of congruence of triangles A-S-A), and

& those who considered the geometric facts associated with the configuration as
premises in an already known proposition (congruence of triangles, A-S-A) en-
abling them to generate a deductive process (V [1,2,1]).

Next, we illustrate the difference between V[1,1,0] and V[1,2,1] for problem 1. Figure 6
displays an answer to problem 1 assigned as V[1,1,0] since the prospective teacher
generates discursive apprehensions (link to the sub-configuration SC2, identifying
△ATB and △ARC - codified as GK1-) and makes direct associations of the given
geometric elements with the configuration: AB≡AC; ^A is common; and finally
^ABT ≡ ^RCA, but this last affirmation was unsubstantiated.

Figure 7 shows an example of a solution to problem 1 assigned to V [1,2,1], in
which the student relates the figural geometric facts with an already known proposition.
The student infers from the AB≡AC data that the ΔABC is isosceles; hence, the angles
^ABC and ^ACB are congruent. Through operative apprehension, the student identifies

Fig. 5 Bar chart of 3-Vectors associated to the resolution trajectory of problem P2

Fig. 6 Example of problem 1 answer assigned as V [1,1,0]
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the triangles ΔRBC and ΔBCT (sub-configuration SC1) and marks the congruence of
angles ^RCB and ^CBT (data given by the problem). Next, the geometrical knowledge
item GK3 is used (if you take two congruent angles and deduct the same part you will
be left with two congruent angles) to infer that the angles ^ABT and ^ACR are
congruent. At this point in the solution process, the student changes the status of these
geometrical facts from figural to formal. This change is evidenced by the fact that the
student uses the geometrical fact associated with the configuration as premises of an Bif
... then ...^ relationship (the criteria for A-S-A triangle congruence). This student
indicates the change with the symbol B→^. The student therefore proves the thesis
(RC ≡BT).

Trajectories in problem 1

In problem 1, a total of 18 out of the 182 students (9.9%) failed to identify any relevant
configuration (V[0,0,0]). Of the remaining 164 students who identified a relevant sub-
configuration, 82 initiated a deductive process by shifting from configural reasoning to
a logical deductive chain (V[1,2,0] and V[1,2,1,]), and of these, 75 successfully solved
the problem (V[1,2,1], 41,2%).

Fig. 7 Example of problem 1′ answer assigned as V [1,2,1]
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Considering the relevant sub-configurations that provide the starting point for the
different trajectories, of the 116 students that started the trajectory linked with sub-
configuration SC1, only 50 were able to shift from configural reasoning to a logical
deductive chain, and of these, 46 successfully solved the problem (40%, 46 of 116). In
this trajectory (GK1 +GK2 +GK9), students identified the triangles △RCB and △TBC
of sub-configuration SC1 (GK1); they also used the «properties of an isosceles
triangle» (GK2) on the basis of the problem statement (sides AB and AC are congruent)
to infer that the △ABC is an isosceles triangle, and consequently, that angles opposite
congruent sides are congruent (H3: ^TCB ≡ ^RBC). This fact is also used in trajectories
linked with sub-configurations SC2 and SC3. At this point in the solution process, these
students related this fact with hypothesis H2 (^RCB ≡ ^TBC) and H1 (BC≡BC)
through a previously learnt proposition, the criterion of the congruence of triangles
A-S-A (GK9). Establishing this relationship allowed them to infer that RC≡BT. Having
established this latter relationship, and once the students considered the geometric facts
as premises for one of the criteria for triangle congruence, these geometric facts
changed from having a configural meaning (facts linked to the configuration) to being
used in a deductive chain that allowed students to construct a proof.

In the sub-configuration SC2, of the 39 students who started, 29 initiated their shift
from configural reasoning to a logical deductive chain, and of these, 26 succeeded in
solving the problem (67%, 26 of 39). In this trajectory (GK1 +GK2 +GK3 +GK9), the
students identified triangles △ATB and △ARC of sub-configuration SC2 (GK1). They
also used Bproperties of an isosceles triangle^ (GK2) based on the problem statement
BAB and AC are congruent^, deducing that the triangle △ABC is isosceles, and
consequently, the angles opposite the congruent sides were congruent. With this new
information and the hypothesis H2 (^BAT≡^CAR), they used the «addition property of
congruent angles» (GK3) to derive the new information H3 (^ACR ≡ ^ABT). This way
of proceeding was also used in the solution trajectory linked with sub-configuration
SC3. They then considered these two geometric facts, along with H1 (AB≡AC), as
premises for the «criterion of congruence of triangles» (GK9), which allowed them to
leave the configural reasoning and generate the deductive reasoning that solved the
problem. Students leave configural reasoning when they change the epistemic status of
the knowledge items from the configural (fact relating to the configuration) to their
consideration as premises in a deductive process that allows them to construct a proof.

Finally, the trajectory defined by sub-configuration SC3 was followed by 9 students,
of which 3 were able to leave configural reasoning and succeed in solving the problem
(33%, 3 of 9). In this solution trajectory (GK1 + GK2 + GK3 + GK4 + GK9), the
students identified the triangles △RFB, △TFC and △BFC of sub-configuration SC3,
allowing them to use the «properties of an isosceles triangle» having two congruent
sides/angles (GK2); the use of the «addition property of congruent angles» (GK3) and
the «congruence of angles opposite the vertex» (GK4) to obtain H1: ^RFB ≡ ^TFC.
These geometric facts, when considered as premises for the «criterion of congruence of
triangles A-S-A» (GK9), allowed students to leave configural reasoning and to initiate a
process of deductive reasoning making it possible to solve the problem.

These data indicate that the success rate in problem 1 was greater for students who
identified the sub-configuration SC2, and the success rate was lower for students who
identified the sub-configuration SC3.
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Trajectory in problem 2

In problem 2, a total of 165 of the 182 students identified the relevant sub-configuration
and continued on a solution trajectory that involved the activation of six geometric
knowledge items (GK1 +GK5 + GK6 +GK7 +GK8 +GK9). Of these 165 students,
107 left configural reasoning, and of these, 94 successfully solved the problem
(51.6%). In this solution trajectory, students identified the triangles △ACM and
△AMN (GK1). They also employed discursive apprehensions with H3: ^CAM ≡ ^
MAN derived from the problem statement (AM is a bisector of angle ^CAB). They
then used the knowledge item GK8 («the sum of the interior angles of a triangle is
equal to 180°», and consequently: if we know two angles of a triangle we know the
third), to derive the information H4: ^AMC ≡ ^AMN. The relationship between these
three knowledge items H1: AM≡AM; H3: ^CAM ≡ ^MAN; and H4: ^AMC ≡ ^AMN
through a previously learnt proposition (congruence of triangles A-S-A) allowed them
to leave configural reasoning and to start a process of deductive reasoning to solve the
problem.

Discussion

The objective of this study was to identify features characterising the transition from the
identification of geometrical configurations and its association with mathematical state-
ments to the construction of a proof during the solving of proof problems in geometry.
We focused on the interaction between figural and conceptual aspects during the
coordination of discursive and operative apprehensions (Duval 1995) when students
had to construct a proof. The passage from configural reasoning to the construction of a
proof was linked to the way in which students integrated figural and conceptual
knowledge in a mental model (Fischbein 1993). The hypothesis underlying this research
is that in order to teach geometry in primary education, pre-service primary teachers must
know the geometry content in such a way that allows them to go beyond the simple
recognition of properties and geometric facts of plane figures (Nason et al. 2012;
Stylianides and Ball 2008). Our results provide information that enables us to improve
our understanding of what Duval (1998) called a double gap in the transition from
configural reasoning to the construction of a proof, BThere is a double gap between naïve
behaviour and mathematical behaviour. The one is about visualisation and the other is
about reasoning. Thus, some specific skills must be developed from the common way of
looking at figures and from the natural discursive reasoning. It would be a pedagogical
illusion to presentmathematical behaviour through the appearance of naïve behaviour (or
in continuity with it) because of the visualisation^ (Duval 1998, p.49) (emphasis added).

Our findings reveal a barrier between configural reasoning and deductive proof
(Figs. 4 and 5) and a link between the identified sub-configuration, the mobilised
knowledge items and the success rate (Tables 5 and 6). Based on the data, we advance
two possible reasons for this barrier: (1) students need to change the epistemological
status of geometrical facts (from a figural to a logical status) to consider them as
premises in some previously learnt geometrical proposition to generate a deductive
chain (via a logical link Bif … then…^); and (2) to perform this change, students need
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Bstrategic knowledge^ allowing them to choose the geometrical fact (theorem) that has
to be applied. These latter claims are developed in the two sections that follow.

Changing the epistemological status of geometrical facts

The different trajectories linked to the configuration initially identified by students
(Table 5) which characterise the shift from visual to discursive anchorage (Duval 1998)
shows that different mental associations can exist between the configurations and the
geometrical facts. However, this first discursive anchorage is not sufficient to construct
a proof, understood as the organisation of premise, conclusions and intermediate
propositions, as shown by the difference between trajectories V[1,0,0], V[1,1,0] and
trajectories V[1,2,0] and V[1,2,1] (Figs. 4 and 5). These trajectories show the difference
between identifying information from the configuration (or given by the problem) and
using it as a premise in a deductive chain, to infer new information via intermediate
propositions. In our research, and considering the characteristics of the problems used,
the passage from configural reasoning to generating logical deductive chains occurred
when students were able to make connections between geometric facts in the config-
uration and the criteria for the congruence of triangles (they selected the part of their
geometrical knowledge they deemed suitable) (Vector [1,2,2]). However, the logical
relationship between geometrical facts is not immediate as shown by the vector [1,2,0]
(3.8% in problem 1 and 7.1% in problem 2). For the relationship to come about, the
geometric fact associated with the configuration must change its status, from having a
configural meaning to being used as a premise in a theorem to infer new information
(Heinze et al. 2008). The proof is generated when students can make connections
between various geometrical facts and consider them as premises in a proposition (in
this case, triangle congruence criteria) supporting the development of a logical-
deductive chain. We contend that students need to assign different roles to geometrical
facts during the solving process to construct a mental model (Miyazaki et al. 2017). For
this to happen, Duval (1998) argues that the given information must be processed at
both a representational and symbolic level, thus demonstrating that with mathematical
behaviour in a problem-solving process, Breasoning starts only from the discursive
apprehension and is independent from visualisation. The purely configural change does
not give the steps and the organisation of deductive reasoning for the proof, BUT it
shows some key points, or an idea which allows them to select the main theorem to be
used^ (Duval 1998, p.48). This explanation has a bearing on the fact that the shift from
configural reasoning to the construction of proof is based on the ability to establish
connections between geometrical facts through an already known proposition, and does
not only depend on knowing the facts and the propositions (Bthe bridging process^ of
Heinze et al. 2008). This aspect highlights the importance of strategic knowledge for
constructing proof allowing students to select the part of their geometrical knowledge
they judge meaningful for the proof process (in the words of Duval, B... which allows
them to select the main theorem to be used^ (Duval 1998, p.48)).

The existence of strategic knowledge

Some students were capable of recognising the geometric facts in the figure, but failed
to construct a proof (the difference between V [1,2,0] and V[1,2,1]). Analysis of proof

274 S. Llinares, F. Clemente



construction processes in different domains of mathematics and at different educational
levels has shown the need for students to possess Bstrategic knowledge^ to be able to
construct proofs successfully (Chinnappan 1998a, b; Chinnappan et al. 2012; Weber
2001) and to recognise the logical relationship between the premises and the conclusion
(Heinze et al. 2008). Here, strategic knowledge should be understood as Bknowledge
about the situation^ that allows students to see the proof situation in which they find
themselves as a particular case of a more general situation. In our study, this strategic
knowledge is the student’s recognition of the usefulness of triangle congruence criteria
when dealing with the type of problem they were solving (allowing them to shift from
configural reasoning to deductive reasoning). In this way, the change of a geometric
fact’s epistemic status, from being linked to a configuration, to being considered as the
premise of a theorem that is necessary to initiate a deductive process, can be seen as
evidence of this strategic knowledge. This prior knowledge involves mental actions that
shift students’ focus as they remember that a particular theorem or geometric fact can
be relevant for relating data-hypothesis with the thesis. Here, once students recognise
one of the criteria for triangle congruence as a pertinent property, they only used the
geometric facts linked to the configuration that had a configural meaning, as the
premises of an Bif…then…^ theorem adopting another epistemic meaning. Regarding
our results, the failure to recognise the relevance of the theorem Bcriteria of congruence
of triangles^ hindered the students’ ability to leave configural reasoning to construct a
proof. This is the key aspect that characterises strategic knowledge: the possibility of
recognising the problem as a particular case of a more general situation. This issue
opens new research paths on the nature of the difficulties encountered by students in
recognising the problem as a particular case of other general situations. Interviews
could be conducted with students who fail to perform this shift to obtain insights into
the nature of their difficulties and to characterise students’ thought processes as they
struggle to pass from configural reasoning to deductive proof.

Some implications for teaching

Our findings contribute to research on the factors that deserve attention and lead to two
inferences of didactical nature concerning primary teacher education programmes.
Firstly, pre-service primary teachers need to be aware of the use of geometrical facts
to establish relationships to construct a proof (as a means of changing the figural value
of the geometrical facts). Thus, instruction aimed at enabling students to learn how to
construct proofs should focus on developing this strategic knowledge in specific
geometrical domains to favour the bridging process in their proof-building (Miyazaki
et al. 2017; Heinze et al. 2008). In Duval (1998)‘s words, Bsome specific skills must be
developed from the common way of looking at figures and from the natural discursive
reasoning^ (Duval 1998, p.49). Secondly, teacher trainers should consider different
types of problems (with or without figures in the problems, and with or without names
to different configural elements in the configuration) to support different trajectories
and students’ understanding of the structure of deductive proofs. Our results suggest
that by using problems with different hypothetical sub-configurations it would be
possible to create contexts that favour the generation of different trajectories. These
different work spaces during a problem’s solution could help pre-service primary
teachers become aware of the figural and conceptual meanings of the geometrical facts
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and the structural relationships between premises and conclusions. These, however,
constitute future lines of research.
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