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Abstract This study compared the effects of reading-oriented tasks and writing-
oriented tasks on students’ reading comprehension of geometry proof (RCGP). The
reading-oriented tasks were designed with reading strategies and the idea of problem
posing. The writing-oriented tasks were consistent with usual proof instruction for
writing a proof and applying it. Twenty-two classes of ninth-grade students (N0683),
aged 14 to 15 years, and 12 mathematics teachers participated in this quasi-
experimental classroom study. While the experimental group was instructed to read
and discuss the reading tasks in two 45-minute lessons, the control group was
instructed to prove and apply the same propositions. Generalised estimating equation
(GEE) method was used to compare the scores of the post-test and the delayed post-
test with the pre-test scores as covariates. Results showed that the total scores of the
delayed post-test of the experimental group were significantly higher than those of the
control group. Furthermore, the scores of the experimental group on all facets of
reading comprehension except the application facet were significantly higher than
those of the control group for both the post-test and delayed post-test.

Keywords Geometry proof . Instruction . Reading comprehension

Introduction

Learning and teaching geometry proof

Understanding proof, including disproof, is always an uneasy task for most students.
Students may view an inductive argumentation as a validated proof because this
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argumentation makes sense, and use inductive reasoning to show what is right
(Morris 2002; Chazan 1993). Students may see a validated proof as a pseudo-
validated proof, which requires trying one or several examples for confirming its
correctness (Healy and Hoyles 2000). Moreover, it is hard for students to start a proof
or to write down a logical process of argumentation. The formal representation of
mathematical proofs is one factor resulting in students’ difficulties in learning
mathematical proofs. Explicitly, the content of proofs is related to both its precision
and status (Duval 2002), and the form of proofs follows the logical rule and the status
of each argument rather than the thinking process of producing proofs.

For learning geometry content, visualisation, and dynamic construction have been
suggested by some researchers (e.g., Hanna 2000; Leung and Lopez-Real 2002). For
learning to construct proofs, investigation of propositions or conjecturing has also
been considered to inspire the need for proof, to enhance understanding proofs and
further to construct a valid proof (e.g., Koedinger 1998). In addition, transforming the
verbal representation of dialogue into the literal and symbolic representation of proof
is an obstacle which students must overcome for understanding the nature of proof
(Harel and Sowder 1998; Sfard 2000). These kinds of activities are based on the
practice of mathematicians, and they require students to find some patterns or
properties from several numerical examples, geometric figures, or situational phe-
nomena, and to validate properties formulated by students.

We agreed that mathematical proof is not a generic logical process, but a substantive
methodological tool for developing concepts, for finding out properties, and for validating
theorems (Herbst 2002). In addition to conjecturing or inquiry, reading is a necessary
approach to learning what counts as a mathematical proof. The crucial question
should be not only whether students could express their arguments, but whether they
could read others' arguments. We need to develop learning tasks so as to keep a
balance between proof substance and proof form. Specifically, the challenge was how
to design tasks which could help students not merely write but also read proofs.

Accordingly, the purpose of this study was to design reading-oriented tasks
comparative to writing-oriented tasks in current mathematics classrooms, and then
compare the effects of reading-oriented instruction and writing-oriented instruction
on students’ reading comprehension of geometry proof (RCGP) by quasi-
experimental study. Two quasi-experimental questions were addressed in this study:

(1) Regarding a short-term effect, would students who get reading-oriented instruc-
tion perform better at the post-test on RCGP as a whole and on each facet of
RCGP than students who get writing-oriented instruction?

(2) Regarding a long-term effect, would students who get reading-oriented instruc-
tion perform better at the delayed post-test on RCGP as a whole and on each
facet of RCGP than students who get writing-oriented instruction?

Related literature

Reading comprehension of geometry proof

The goals of learning mathematics proofs could be both to develop the abilities of
constructing knowledge and to enhance the understanding of deductive validation
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(Mariotti 2007). Many approaches are proposed to reach the learning goals. For
learning to understand deductive validity, validating proofs is suggested to be helpful
to unpack the logic of mathematical statements (Alcock and Weber 2005; Selden and
Selden 2003). Alcock (2009) designed a set of resources to demonstrate how one
might go about understanding proofs by examining their internal logical relationships
and overall structures. In addition, cognitive reading strategies for elaborating proof
and metacognitive reading strategies for planning what to identify and for monitoring
comprehension of logical coherence are suggested for teaching how to read geometry
proof (Yang 2011). For learning to construct knowledge, the construct of cognitive
unity is recommended as a tool for predicting and analysing some difficulties met by
students when they have to construct a proof based on the notion of making the
connection between conjecturing and proving (Garuti et al. 1998). On the other hand,
Leikin (2009) designed multiple proof tasks to build up students’ collective proof
spaces and then to develop more connected mathematical knowledge.

Unlike the integration of conjecturing and proving, our study focussed on the
understanding of deductive validation. Yang and Lin (2009) argued that reading to
learn the validity of proofs was complementary to listening, speaking, writing, and
doing to learn argumentation. Thus, they (2008) conceptualised and justified a model
of RCGP to investigate what could be comprehended by reading a geometry proof.
This model was composed of five facets of RCGP which were structured into four
levels. The four comprehension levels—surface, recognising elements, chaining
elements, and encapsulation—and the description of the five facets of RCGP—basic
knowledge, logical status, summarisation, generality, and application—are shown in
Table 1.

Comprehension of the surface level is characterised as epistemic understanding
without analysing the elements of an argument in a proof. The elements of an
argument could be premises, conclusions, or applied properties. Comprehension of
the recognising elements level is characterised as recognition of premises, conclu-
sions, or properties that may be implicitly applied in a proof. Comprehension of
chaining elements level is characterised in terms of understanding the logical chain-
ing of premises, properties, and conclusions in a proof and to view figures as
referential objects. The comprehension of encapsulation level is characterised as

Table 1 Comprehension level and facets of RCGP

Facets of RCGP Comprehension Level and Description

Surface Level (epistemic understanding)

Basic Knowledge the understanding of mathematical terms, figures or symbols

Recognising Elements Level (recognition of premises, conclusions, or properties)

Logical Status the recognition of the status of an argument

Summarisation the understanding of the given, the claim, or a critical proof idea

Chaining Elements Level (the logical chaining of premises, properties, and conclusions)

Generality the recognition of accuracy of a proposition or proof and what a proof proves

Application the ability of knowing how to apply a proposition in another situation

Encapsulation Level (interiorising a proposition and its proof as a whole)
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interiorising a proposition and its proof as a whole, which implies that one can apply
it, as well as distinguish different premises related to other similar propositions.

In other words, one who understands most of the terms and sentences (basic
knowledge) in a proposition and its proof is beyond comprehension of the surface,
and is towards comprehension of recognising elements; one who correctly identifies
the statuses of statements as premises, conclusions, or applied properties (logical
status), and catching the core of the proof or the critical proof idea (summarisation) is
beyond comprehension of recognising elements, and is towards comprehension of
chaining elements; one who correctly identifies what is validated by the proof
(generality) and knows how to apply this proposition or the proof (application) is
beyond comprehension of chaining elements, and is towards comprehension of
encapsulation.

Reading strategies

Few empirical studies have aimed at enhancing students’ understanding of proof by
reading strategies. Literature about reading strategies in language instruction may
shed some light on this issue. Sequencing events in a story, predicting outcomes of a
story, drawing conclusions, and finding main ideas are examples of comprehension
strategies (Smith 1965). Traditional strategy instruction assumes that a set of hierar-
chically ordered sub-strategies are sequentially acquired to improve reading compre-
hension. On the contrary, cognitive-based views of reading comprehension concern
the constructive and interactive nature of reading and assume that readers actively
construct the meaning of texts by integrating existing and new knowledge and flexibly
using strategies to plan, monitor, and regulate comprehension (Dole et al. 1991).

Kintsch’s (1998) construction-integration model also emphasises that knowledge
activation is a bottom-up, associative process, followed by contextual integration in a
situation model. Once knowledge has been activated and a text base has been
constructed, an integration process takes over to ensure that only related items play
a role in the final knowledge representation, and that all the irrelevant and contradic-
tory information that has necessarily been included in the bottom-up construction
process is rejected. Other researchers further emphasise the importance of text
processing strategies in reading comprehension. The findings from studies such as
those of Palincsar and Brown (1984) have provided important experimental evidence
that reciprocal teaching method can facilitate reading comprehension.

Reciprocal teaching refers to teaching students specific comprehension-fostering
strategies by which students can improve their reading comprehension and apply
these strategies to reading new texts, and has been one of the most outstanding
approaches of strategy instruction (Alfassi 1998; Rosenshine and Meister 1994). It
is designed to improve reading comprehension by teaching cognitive strategies, such
as question generation, clarification, summarisation, and prediction. Both reciprocal
teaching only (in which the instruction consisting of models, prompts and hints, and
instruction occurs in dialogues between the teacher and students) and explicit teach-
ing before reciprocal teaching (in which there is extensive teacher-led instruction in
cognitive strategies before dialogues begin) focus on the cognitive strategies in the
instruction and students’ practice of these strategies. Most of the reciprocal teaching
studies show that learning these strategies requires at least three lessons (Rosenshine
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and Meister 1994). It may be worth trying to use cognitive strategies to design tasks
instead of instructing students about these strategies if teachers are to improve
students’ RCGP with less teaching time. However, studies on students’ reading
strategies for comprehending geometry proofs are still scarce.

Method

Process for developing tasks

For designing reading-oriented instruction and justifying its effectiveness on RCGP
in this study, four phases were conducted. First, the literature about reading strategies
of reciprocal teaching method was reviewed. Second, an original task was designed
according to four cognitive reading strategies (question generation, clarification,
summarisation, and prediction) of reciprocal teaching methods and one metacognitive
reading strategy (reflection). Third, this task was then implemented in one class, and
it was found that students still had difficulty in RCGP (Yang and Lin 2009). Lastly,
the original task and the statement-posing task which could compel students to
distinguish the logical statuses of arguments and motivate their reading strategies
(Yang 2010) were combined to improve students’ RCGP.

The two reading-oriented tasks were carried out in two of the five lessons of the
unit for teaching secondary school geometric proofs in grade-nine classes of the
participating teachers. Why were the tasks set in only two 45-minute lessons? In
Taiwan’s junior high mathematics curriculum, there are five 45-minute lessons for
learning the unit of secondary school geometry proofs in grade nine, and 10 of the 12
participating teachers agreed to use at most two lessons for the comprehension
instruction of reading proofs under the pressure of limited instructional time. There-
fore, the design of a reading-oriented instruction in the study did not follow reading
strategy instruction which took much more time (Rosenshine and Meister 1994).
Practically, the reading-oriented tasks were expected to be integrated into the curric-
ulum and textbooks so the limited time—in the two 45-minute lessons for conducting
this quasi-experiment of the reading tasks—was a research constraint.

Iterative refinement of task design

According to schema theory (Anderson and Pearson 1984), a reader can derive
meaning from texts based on the reader’s preexisting knowledge, and can better
understand meaning when appropriate schemas are triggered. For example, informa-
tion must be processed in working memory before modified schemas are stored in
long-term memory (Nassaji 2002). Thus, according to reading strategies used in
reciprocal teaching methods, we designed a task of reading mathematics proofs for
triggering or structuring students’ schemas, and for revealing their cognitive process-
es which their peers can acquire during class discussion. One mathematics teacher
and her two classes of 66 ninth-graders (14 to 15 years old) participated in the quasi-
experimental study of 2009 (Yang and Lin 2009).

In our study of 2009, it was found that there was no significant main effect
of the task on the post-test for the two groups; however, there was a significant
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main effect on the delayed post-test for the two groups. We then reflected that the
reading task designed for the experimental group might be insufficient to initiate
students to think more carefully about what they had read, and that the reading task
should be re-designed to move students from a conception of focussing on the epistemic
values of each argument to one in which a logically validating process is embedded in
how they should read these arguments. Thus, we tried to refine the reading task.

Howwould we modify the task for helping students to experience and understand the
deductive and validating method of formal proof? Students might evaluate arguments
whether they knew them or not, but might not evaluate their understanding based on
logical chaining of the arguments. On the other hand, students of instrumental compre-
hension performed better on applying a proposition than on identifying logical chains of
arguments. Thus, the idea of problem posing (Silver 1994) was adapted to mathemat-
ical proof, and statement-posing tasks were proposed to help students both distin-
guish the logical statuses of arguments and execute reading strategies (Yang 2010).

In a statement-posing task, a proof is given without its corresponding propositions
and students are asked to think what these arguments can prove. The potential
benefits of statement-posing tasks include guiding students to distinguish the logical
status from the epistemic status of arguments, which is necessary for readjusting
students’ understanding of proofs; providing them opportunities to understand the
logical function of proof methods; facilitating their dialectical reading strategies; and
giving them a generic example of reading tasks.

One the other hand, instructional designs that aim at increasing germane cognitive
load are beneficial for students’ learning because students are guided to focus on
cognitive processes that are necessary for accommodating schemas (Sweller et al.
1998), and increasing variability is one strategy to increase germane cognitive load
(Paas and Van Merrienboer 1994). The statement-posing tasks (SP) are one variation
of the tasks of reading mathematics proofs (RP), and the RP tasks provide more
complete information than do the SP tasks. Accordingly, a RP task is assumed to
more easily trigger relevant knowledge whereas a SP task is assumed to more easily
increase germane cognitive load.

Furthermore, some of the participating teachers in our previous studies believed
that students could easily lose focus when trying to understand proof by using the SP
task because the task required readers to evaluate each argument and predict what it
claims simultaneously, and this work might exceed students’ cognitive loads. Other
participating teachers further suggested that the original reading task should be used
first in instruction because this task was easier than the statement-posing task.
Therefore, on the basis of both theoretical and practical perspectives, the RP task
was used in instruction prior to the SP task.

The RP and SP tasks are given in Appendix A, and the ideas of using these reading
strategies to design the worksheets are described in the following
sections Questioning for structuring schemas to Reflecting for readjusting schemas
and revealing cognitive processes.

Questioning for structuring schemas

Questioning involves asking questions related to the text for the purpose of monitor-
ing and regulating comprehension of written materials. Students might have
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difficulties in creating their own questions while reading proofs. Therefore, in this
study we adopted this strategy to provide generic questions (e.g., Q1-1 and Q1-2 in
the RP task) to prompt students to recognise the logical statuses of related statements
and to determine whether students could identify them. In the RP task, students were
asked to determine what the given and the conclusion were. In the SP task, students
were asked to identify the key points in the arguments (Q2-3), or the properties or
definitions that were used in the proof (Q2-4). This might be helpful to structure
students’ schemas of understanding proofs regarding the logical instead of epistemic
value (Duval 2002). It should be noted that the initiating questions in the RP task are
designed to structure students’ schemas because the students are assumed to focus on
the content meaning of arguments in the task, and thus supporting them to structure
arguments based on the logical status is required.

Predicting for triggering relevant knowledge

Nolan (1991) demonstrated that a self-questioning plus predicting treatment is more
effective than a vocabulary treatment and self-questioning only treatment for facili-
tating reading comprehension. Predicting involves anticipating what will come next
in the text as one is reading. While reading a proposition and its proof, one should
predict what can be inferred based on the given (forward, Q1-3 in RP) or on the
conclusion (backward, Q1-4 in RP) in the RP task. In the SP task (Q1-1) of this study,
students were asked to predict what these arguments can prove at a macro level. This
might be helpful to trigger relevant knowledge. It should be noted that the initiating
questions in the SP task focus on predicting in order to trigger students’ relevant
knowledge because the students are assumed to focus on the logical status of argu-
ments in the task, thus triggering their relevant knowledge to understand the content
meaning of proofs is required.

Clarifying for modifying schemas

Asking for clarification if needed is one approach to modifying schemas in reciprocal
teaching methods. For example, readers should point out what they do not understand
or clarify whether their understanding is coherent. Questions are designed to check if
students understand the meaning of a proof through self-evaluation after questioning
and predicting guidance. In both of the RP (Q2-1 to Q2-3) and SP (Q2-1 and Q2-2)
tasks of this study, students were asked to identify which proof steps were not easy to
understand by themselves, and which proof steps were redundant or unnecessary.

Summarising for restructuring schemas

Summarisation involves summarising, in one or two sentences, several statements or
paragraphs. The ability to summarise information requires readers to identify the
important concepts, pick up ideas, and develop a holistic view of the text. To help
students understand a proof structure and synthesise the proposition and its
proof steps in this study, we provided a proof mapping as a visual display.
Students were asked to identify important proof steps and chain proof steps
logically by structuring the critical elements of a proof through the proof
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mapping. In both of the RP and SP tasks (Q3-1 and Q3-2), students were asked
to use brief sentences to write down the main elements of the proof in the
mapping (see Fig. 1) and discuss with each other.

Taking Q 3-1 of the SP task in Appendix A as an example, the given is “O is the
circumcentre of △ABC”; the claim is “OA ¼ OB ¼ OC ”; and properties or defi-
nitions include “O must lie on the perpendicular bisector of each side of △ABC.”, and
“The distance between a point lying on the perpendicular bisector of one segment and
one endpoint of this segment is equal to that between this point and the other endpoint
of this segment.”.

Reflecting for readjusting schemas and revealing cognitive processes

In addition, in this study we designed reflecting questions to ask students to think
over the predicting questions again and to compare their answers with the initial
answers, to describe the logical relationship of a proof mapping and to reflect upon
their reading strategies based on their metacognition of what they had understood and
how they had read. In the RP task (Q4-1), students were asked to answer the question
of, if they were teachers themselves, what problem they could pose that would be
answered by the arguments in the proof. In the SP task, students were asked to rethink
about their answer of what these arguments could prove (Q4-1). In both of the RP
(Q4-4 to 4-6) and SP (Q4-2 to 4-4) tasks, students were asked to describe the
relationship between the given, properties/definitions, and the conclusion, to point
out what one should notice while applying the properties or definitions, and to
suggest how one should read for comprehending proofs. All of the reflecting ques-
tions were designed to reveal and acquire cognitive processes of reading geometry
proofs.

Taking Q4-1 and Q 4-2 of the SP task in Appendix A as an example, students
might find they misunderstood “O must lie on the perpendicular bisector of BC ” as
the given, and notice that “the given refers to original premises which warrant if some
properties could be applied,” and “the claim refers the final conclusion which is
derived from the given via some properties.”

In sum, the design of reading-oriented proof instruction in this study did not
actually follow reading strategy instruction, but the four reading strategies emphas-
ised within reciprocal teaching were adopted in designing the RP and SP tasks for
RCGP.

Dependent measures

The geometrical content chosen to develop the instrument for the pre-test and the
post-test in this study was the same (see Appendix B). The proposition and its proofs

The given: 
Properties or 

Definitions: 
The claim: 

Fig. 1 A proof mapping for
summarisation
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were adopted from one standard Taiwanese Grade 9 mathematics textbook. The
structure of the designed items in the test regarding the operational definition of
RCGP and its scoring scheme were developed in a previous study on RCGP (Yang
and Lin 2008) (see the outline in Table 2), in which it took about 30 minutes for
students to complete this test. Moreover, the teachers spent about 15 minutes discus-
sing the answers of this test with the students in their experimental or control classes.

Sixteen items from RCGP were included in the instrument (see Table 2 and
Appendix B). Except for Items 1 and 2, all were in the multiple-choice format. Some
items contained multiple correct choices, so partial scores of 1, 2, or 3 were given. For
example, Item 7 asked which properties are applied in the proof. There are three
correct answers among the four choices. If students selected just the three correct
choices, they would get a score of 3. If students selected the three correct choices and

Table 2 Structure of reading comprehension of geometry proof (RCGP) test

Facet Object of Facet Operational Definition Item Number Scorea

Basic
knowledge

Content of premise
or conclusion

Recognising the meaning
of a symbol in figure

(1) 0,1

Explaining the meaning
of a property

(2) 0,1,2

Recognising the meaning
of a property

(3) 0,1

Total Score of Basic
Knowledge

4

Logical status Status of premise Recognising a condition
applied directly

(4) 0,1

Logical relation between
premise and conclusion

Judging the logical
order of statements

(5) 0,1,2

(6) 0,1,2

Property applied to
derive conclusion
from premise

Recognising which
properties are applied

(7) 0,1,2,3

Total Score of Logical Status 8

Summary Multiple arguments
and critical ideas

Identifying critical
procedures, premises,
or conclusions

(8-1) 0,1,2

(8-2) 0,1

Identifying critical
ideas of a proof

(10-1) 0,1,2

(10-2) 0,1,2

Total Score of Summary 7

Generality Proposition or proof Judging the correctness (11)(12) 0,1; 0,1

All arguments and
attached figure

Identifying what is
validated by the proof

(9)(13-1) 0,1; 0,1

(13-2) 0,1

Total Score of Generality 5

Application Knowing to apply
in other situations

Application in
the same premises

(14)(15) 0,1; 0,1,2,3

Identifying the
different premises

(16) 0,1

Total Score of Application 5

a Some items require multiple right responses or choices, so partial scores of 1, 2 or 3 are given.
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one wrong choice, they would get a score of 2. If students selected one of the three
correct choices and one wrong choice, they would get a score of zero. The geomet-
rical content chosen to develop the items in the instrument for the delayed post-test
was shown in Appendix C. The 16 items of RCGP for the delayed post-test were
modified from the items in Appendix B but according to the problem and its proof in
Appendix C.

Quantitative measures regarding the five facets were derived from the 16
corresponding question items: basic knowledge comprehension, logical status com-
prehension, summarisation comprehension, generality comprehension, and applica-
tion comprehension (see Table 2). The Cronbach alpha reliability coefficients of the
pre-test, the post-test, and the delayed post-test were respectively 0.834, 0.866, and
0.856 for the Grade 9 participants in this study.

Participants

Twenty-two classes of 683 ninth-graders (14- to 15-years old), who were learning
geometry proof in school participated in this quasi-experimental classroom study. Each
class was randomly assigned to either the experimental group or the control group.
Eleven classes of ninth-graders (n0345) in the experimental group were instructed
with the innovative worksheets with reading-oriented tasks while the other 11 classes
of ninth-graders (n0338) were instructed with regular proof instruction. The numbers
of students in the two groups who completed the pre-test, the post-test, the delayed
post-test, and all three tests are shown in Table 3. Only 295 and 311 students,
respectively, of the experimental and the control groups completed all the three tests.
The rate of complete data among the 683 participants in this study was 88.7 %.

Twelve mathematics teachers participated in this study. Eight teachers taught the
11 classes in the experimental group while nine teachers taught the 11 classes in the
control group. Of these 12 participating teachers, five teachers instructed both the
experimental and the control classes. All the 12 participating teachers had experience
of teaching geometry proof for ninth-graders. In addition, the first author discussed
two instructional methods—how to implement the two types of tasks, RP and SP, in
the experimental group; as well as how to guide students to write proofs and apply
properties related to proofs—with the twelve participating teachers before this study.

Instruction

In the experimental group, there were two types of tasks. For the RP task (see
Appendix A), students were asked to answer questions 1-1 to 1-4. The instructor
asked one or two students to show their answers to the class, and then discussed with

Table 3 Numbers of participants
that completed pre-test, post-test,
delayed post-test and all three tests

Group Pre-test Post-test Delayed
post-test

All three
tests

experimental 345 310 324 295

Control 338 323 323 311

Total 683 633 647 606
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all students in the class the plausibility of the answers; questions 2-1 to 2-3 were
adopted to check if students had sufficient pre-knowledge for understanding the
proof. The instructor could explain to the students some properties of the proof
(e.g., ASA) if they did not know those properties. Questions 3-1 and 3-2 provided
a framework for summarising proof steps and asked students to discuss this with their
peers. After peer discussions and presentations, the instructor explained how to
summarise proof steps with the given, the applied properties, and the conclusions.
Questions 4-1 to 4-4 asked students to rethink what the proof proves and to
clarify their initial understanding and their summarisation. For students to
reflect upon their strategies of comprehending proofs, questions 4-5 to 4-6 asked
them to point out the conditions for applying a property and to describe how to
understand proofs.

For the SP task (see Appendix A), the role of the instructor was the same as the
role in the RP task. The questions in the SP task were also divided into four parts—
predicting what the proof proves; questioning if students understand relevant con-
cepts in the proof by themselves; summarising proof steps; reflecting what the proof
proves, the conditions for applying a property, and how to understand proofs. The
main difference between the SP task and the RP task was the predicting questions.
The RP task asked students to think what could be inferred based on the given or the
conclusion, and the SP task asked students to think what could be proved according
to these arguments.

In the control group, teachers firstly guided students to write a proof for the
proposition in the RP task. Then, teachers directed students to validate each proof step
for explaining proof ideas and its meaning. Next, students were given the following task:
“Given that O is the circumcentre of △ABC, prove that OA ¼ OB ¼ OC ”. About five
to ten minutes later, one correct answer was written on the blackboard. Students were
then asked to discuss their answers with each other. Lastly, some application ques-
tions were provided for students to practise how to apply the two proofs. The
instruction in the control group was similar to teachers’ usual instruction.

Procedure

The reading-oriented and writing-oriented instructions were conducted about two
weeks after the pre-test. Next, students did the post-test. After post-test, centroid,
orthocentre, and circumcentre of a triangle were taught in about four weeks. Then,
after the three weeks of the winter vacation, the graph of a quadratic function was
taught in the first week of the new semester, and the students took the RCGP delayed
post-test in the second week.

Analysis

In order to express the students’ score on each facet as a percentage, their score on
each facet of RCGP was divided by the total score of that facet, and then the sum of
the students’ five facet scores represented their performance of RCGP. The method of
generalised estimating equation (GEE) is particularly well suited for testing hypoth-
eses regarding the influence of factors on binary and other exponentially distributed
response variables collected within participants over time, because it adjusts for the
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inherent correlation in scores on longitudinal dependent measures and covariates
(Zeger and Liang 1986).

In this study, GEE was used with the model of a log link, gamma distribution, and
the covariate of pre-test. Wald chi-square statistics (Rotnitzky and Jewell 1990) were
used to judge whether the two groups had different performance on their mean scores
of RCGP and those of each RCGP facet. For all tests performed, the significance level
was set at 0.05, two-tailed. Repeated measures ANCOVA approaches to the problem
were inadequate in this study because our data sets were not complete, and students’
scores with respect to each facet were not normally distributed.

Results

Performance on reading comprehension of geometry proof (RCGP)

Although the experimental and control groups have different mean scores of RCGP at
pre-test, students’ scores of RCGP at the post-test and the delayed post-test could be
adjusted for their pre-test scores. The adjusted means and standard deviations on the
total RCGP scores of the two tests for the experimental and the control groups are
presented in Table 4. The estimated marginal mean RCGP scores of the two tests for
the experimental group were higher than those mean scores for the control group. The
Wald chi-squared test revealed no significant difference between the two groups for
the post-test (Wald chi-square02.299, p00.129) but a significant difference between
the two groups for the delayed post-test (Wald chi-square05.831, p<0.025).

Performance on each facet of reading comprehension of geometry proof (RCGP)

The means and standard deviations of the pre-test scores on each facet of RCGP for
the experimental and the control groups are presented in Table 5. Because students’
scores on each facet had been divided by the total score of that facet, their scores
could be interpreted as their percentages of comprehension on each facet. For
example, the control group comprehended about 69 % of the meaning of mathemat-
ical terms and symbols in this proof, about 50 % of the meaning of the logical order of
properties (logical status), or of the identification of critical ideas of the proof

Table 4 Adjusted means and standard errors on the total RCGP scores of post-test and delayed post-test
with pre-test as a covariate for experimental and control groups

Group Test Mean* S.E. 95 % Wald C.I.

Lower bound Upper bound

Experimental Post-test 2.259 0.064 2.138 2.387

Delayed post-test 1.813 0.055 1.709 1.925

Control Post-test 2.136 0.050 2.040 2.234

Delayed post-test 1.632 0.051 1.536 1.735

*Adjusted by pre-test scores as covariates.
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(summarisation), but comprehended below 50 % of the identification of the general-
ity, or of correct application.

Although the experimental and control groups have different mean scores on each
RCGP facet at pre-test, students’ scores on each RCGP facet at the post-test and the
delayed post-test could be adjusted for their pre-test scores. The adjusted means and
standard deviations of the post-test and the delayed post-test scores on the five facets
for the experimental and the control groups are presented in Table 6. The estimated
marginal mean scores on basic knowledge, logical status, summarisation, and

Table 5 Means and standard
deviations of the pre-test scores
on each facet of RCGP for
experimental and control groups

Measurement Experimental (n0345) Control (n0338)

Facets of RCGP M SD M SD

Basic knowledge 0.78 0.31 0.69 0.37

Logical status 0.58 0.26 0.51 0.28

Summarisation 0.62 0.30 0.50 0.32

Generality 0.47 0.32 0.40 0.32

Application 0.39 0.29 0.30 0.27

Table 6 Adjusted mean and standard deviation of post-test and delayed post-test scores on the five facets
of RCGP

Facet Group Test Mean S.E. 95 % Wald C.I.

Lower bound Upper bound

Basic knowledge Experimental Post-test 0.625 0.037 0.558 0.700

Delayed 0.467 0.026 0.419 0.521

Control Post-test 0.522 0.024 0.477 0.571

Delayed 0.365 0.018 0.332 0.401

Logical status Experimental Post-test 0.526 0.014 0.500 0.553

Delayed
Post-Test

0.318 0.013 0.293 0.344

Control Post-test 0.470 0.014 0.444 0.497

Delayed 0.247 0.012 0.224 0.272

Summarisation Experimental Post-test 0.532 0.021 0.494 0.573

Delayed 0.460 0.021 0.421 0.502

Control Post-test 0.440 0.018 0.405 0.477

Delayed 0.387 0.019 0.353 0.424

Generality Experimental Post-test 0.391 0.018 0.359 0.426

Delayed 0.334 0.017 0.303 0.368

Control Post-test 0.276 0.014 0.251 0.305

Delayed 0.265 0.015 0.237 0.296

Application Experimental Post-test 0.327 0.015 0.299 0.357

Delayed 0.404 0.019 0.370 0.442

Control Post-test 0.339 0.015 0.312 0.369

Delayed 0.377 0.018 0.344 0.412
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generality facets of both post-test and delayed post-test for the experimental group
were higher than those mean scores for the control group. However, at post-test, the
estimated marginal mean scores on the application facet for the experimental group
were lower than those mean scores for the control group; and at delayed post-test, the
estimated marginal mean scores on the application facet for the experimental group
were higher than those mean scores for the control group.

The Wald chi-squared tests for comparing the difference in each facet of RCGP
between the experimental and the control groups are presented in Table 7. Regarding
the facets of basic knowledge, logical status, summarisation, and generality, the Wald
chi-squared tests revealed significant differences for the post-test and the delayed
post-test between the two groups. However, the Wald chi-squared test revealed no
significant difference for the post-test and the delayed post-test regarding the facet of
application.

Interpretation and reflection

This study compared the effects of the reading-oriented tasks and the writing-
oriented tasks on students’ RCGP. With pre-test scores as covariates, significant
difference in the total scores of RCGP was observed between the experimental and
the control groups at the delayed post-test, but no significant difference in the total
scores of RCGP was observed between the two groups at the post-test. This
suggested that the instruction using the RP and SP tasks had better effects on
students’ RCGP than did the usual instruction of the writing-oriented tasks after
about 8 weeks even though the RCGP instruction was given to the students in just
two 45-minute lessons.

We argue that there are some explanations for the absence of short-term effects.
First, the test-retest condition might produce statistically equal progress in the two
groups for a short period of time, because reviewing a test is also a kind of learning.
Second, the test-retest condition might produce statistically equal regression in the

Table 7 Wald Chi-squared tests
for comparing the difference
in each facet of RCGP between
experimental and control groups

Facet Test Wald chi-squared p-value

Knowledge Post-test 5.613 <0.025

Delayed 10.984 <0.025

Logical Status Post-test 8.337 <0.025

Delayed 15.376 <0.025

Summarisation Post-test 11.171 <0.025

Delayed 6.949 <0.025

Generality Post-test 27.417 <0.025

Delayed 9.512 <0.025

Application Post-test 0.365 0.546

Delayed 1.170 0.279
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two groups for a short period of time, because students might lose attention when
answering the same questions. Thus, the delayed post-test is always more likely to
show the difference between the two instructions.

In this paper, we also try to explain the relative ineffectiveness of the usual
instruction based on schema theory, which assumes that knowledge representation
consists of nodes and networks, and that meaningful learning interconnects the nodes
by links (see Norman et al. 1976). The usual instruction might not enable students to
store logical statuses of arguments in long-term memory. On the other hand, the
instruction of the RP and SP tasks might benefit students’ cognitive operations, for
example, chunking (Batting and Bellezza 1979) or inference making (Pressley 2000),
which might further affect students’ learning after instruction. However, these explan-
ations require further studies on tracking students’ understanding and cognitive
operations over time.

Whereas performance on each facet of RCGP was comparable between the
two groups of students, the experimental group demonstrated more comprehen-
sion in the facets of knowledge, logical status, summarisation, and generality than
did the control group. However, there was no significant difference between the
two groups for the post-test and for the delayed post-test regarding the facet of
application. Several factors could have contributed to this result. First, the
reading-oriented (RP and SP) tasks respectively required students to recognise
and identify the claim, the given, and the applied properties, which are related to
comprehension of the facet of logical status. Second, the experimental group
students could structure and visualise these arguments with a proof mapping,
which is related to comprehension of the facet of summarisation. Third, the
reading-oriented tasks might initiate more schemas, which are good for knowl-
edge organisation (Sweller et al. 1998). Lastly, the writing-oriented tasks provided
some application questions for students to practise. Although the reading-oriented
tasks did not emphasise the application of the proposition or its arguments, the
potential of the SP task may initiate students’ germane cognitive load which is good
for knowledge application (Sweller et al. 1998). Accordingly, this might be one
reason for the lack of significant difference between the application scores of the
experimental and the control groups. Further studies can be designed to combine
reading-oriented and writing-oriented tasks for enhancing both knowledge organisa-
tion and application.

Nonetheless, the effect of reading-oriented instruction on RCGP was less than
what we expected. There are several possible reasons for this unexpected finding.
First, it was found that some students did not like to answer reflecting questions. They
seemed unaware of the meaning of reflecting how they read proof. Second, reading
strategies for comprehending geometry proof were not taught explicitly in this study.
We suggest that reflecting questions could be revised for comparing the reading
strategies used while reading the RP and the SP tasks; and this might make
students explicitly aware of whether or not their reading strategies were adaptive to
RCGP.

On the other hand, the experimental results did not match teachers’ expectations.
Although some of the participating teachers who implemented reading-oriented
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instruction showed that they were still unfamiliar with reading tasks and queried the
effect of the new tasks, most of the participating teachers predicted that the experi-
mental group should perform better than did the control group on each facet of RCGP
because they believed that writing proofs involved greater cognitive demand than did
the RP or SP task, and that the high cognitive demand would result in low motivation
and poor learning results. Teachers’ beliefs may be one factor which influences the
effect of instructions (Ernest 1989). However, study of how teachers’ beliefs posi-
tively or negatively influence the effect is still required. Therefore, we suggest that
teachers’ beliefs about innovative tasks are taken into account in experimental
studies, and that teachers are asked to reflect upon their beliefs after the studies in
order to develop teachers’ professional expertsise and adapt innovative tasks for their
students.

Several possible limitations of this study need to be considered. First, some
important factors or moderators were not included. It was found that learning
materials intended to increase coherence benefitted low-knowledge readers but im-
peded high-knowledge readers (McNamara et al. 1996). If the possible interaction
between RCGP ability and the task type is taken into account, what and how students
with high or poor reading abilities learn from the RP and SP tasks will be of interest.
In addition, as many studies have indicated, other important factors may influence the
learning of proof—for example, proof scheme (Harel and Sowder 1998), epistemol-
ogies of mathematics and mathematics learning (Solomon 2006), affective factors
(Furinghetti and Morselli 2009), and developmental types (Lin and Yang 2007)—but
they were not investigated in our study.

Second, students receiving reading-oriented instruction performed significant-
ly, but not highly significantly, better on RCGP at delayed post-test than those
receiving writing-oriented instruction after controlling for the difference in their
pre-test scores. Moreover, the two approaches did not actually improve stu-
dents’ RCGP because their performance in the post-test was a little worse than
that in the post-test. Alternative approaches to RCGP are required. Like DNR-
based instruction (based on “duality,” “necessity,” and “repeated-reasoning”)
which was developed for helping students to construct desirable ways of
understanding (reading) and ways of thinking (writing) (Harel 2008), instructions
should be more comprehensive and be informed by crucial factors of beliefs, affect,
and learning over time.

Clearly, additional research is needed to investigate these issues. It is impor-
tant to note that these limitations do not invalidate the usefulness of the present
results. The reading-oriented tasks used in the present study represent specific
reading materials that can be applied to textbooks and are more likely to
facilitate students’ comprehension of geometry proof than writing-oriented
instruction.
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Appendix A

The Task of Reading Proof with its Proposition

Believe me! You will be brought into a world which can make you say “Wow!
How fun mathematics is! It’s quite simple!” after this class. Follow me, it’s time
to start. GO!…Now, as clever as you are, please think carefully about the next
questions of proof, and write down your thoughts in the following blank space:

(1-1) What is “the given” in the above proof?
(1-2) What is “the claim” in the above proof?
(1-3) Thinking in the beginning of “the given” in the above proof, what can you

infer in the next step?
(1-4) Which sub-conclusion can you derive to apply “BC ¼ AD ” in the above

proof?
(2-1) In the above proof, which properties are written unclearly in the given?
(2-2) In the above proof, which proof steps do you not understand? Please circle them.

As shown in the figure, BAC= DCA,  

ACB= CAD. 

Claim: ADBC A

Proof:

In BAC and DCA, 

BAC= DCA  (given), 

ACB= CAD  (given), 

and ACAC A   (common sides), 

BAC DCA  (ASA). 

ADBC A (corresponding sides are equal.)
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(2-3) Thinking! In the above proof, can you think which proof steps are redundant
or unnecessary? Please delete them with straight lines in the above proof.

(3-1) Now, please use brief sentences to write down the draft of the proof.

(3-2) Please discuss in groups. Write down the differences between drafts, and an
agreed draft after the discussion.

(4-1) If you were a teacher, which problem could you pose that would be answered
by the arguments in the above proof?

(4-2) Do you have the same answer according to the problem you devise in (4-1),
(1-1), and (1-2)? What is the correct answer?

(4-3) Please go back to check (1-3) and (1-4), and you can revise the conjecture of
(1-3) and (1-4) if you need to.

(4-4) Referring to (3-1), please describe the relationship between the given, prop-
erties or definitions, and the claim.

(4-5) While applying the properties or definitions, what should you notice?
(4-6) While reading mathematical proofs hereafter, how will you read for compre-

hending proofs?

The Statement-Posing Task

Jam read a mathematical book where some part of a page was torn to pieces. He
found that a proposition was gone, but the proof of this proposition was there.
Now, can you help Jam to think out what this proposition is?

The given: 

Properties or  

Definitions: 

The claim: 
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(1-1) According to the above proof, can you conjecture what this proposition is?
(2-1) Think! In the above proof, which proof steps do you not understand? Please

circle them.
(2-2) Think! In the above proof, can you think which proof steps are redundant or

unnecessary? Please cross them out in the above proof.
(2-3) In the above proof, what do you think the key points are?
(2-4) Which properties or definitions are used in the proof?
(3-1) Now, please use brief sentences to write down the draft of the proof.

(3-2) Please discuss in groups, and write down the differences between drafts, and
come up with an agreed draft after discussion.

(4-1) Please go back to check (1-1) again. You can revise the conjecture of (1-1) if
you need to.

(4-2) Referring to (3-1), please describe the relationship between the given, prop-
erties or definitions, and the claim.

(4-3) While applying the properties or definitions, what should you notice?
(4-4) While you read mathematical proofs hereafter, how will you read to easily

comprehend proofs?

The claim
properties or 

definitions

The given

Proof

O is the circumcentre of ABC (given), 

O must lie on the perpendicular bisector of BC , 

OCOB O , 

Based on the same reason,  

O must lie on the perpendicular bisector of AB . 

OA OBOB

OCOBOA OO
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Appendix B

*P# and C# respectively mean the corresponding premise and conclusion of each
argument in the proof.
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Answer the following questions on the basis of the proof process.

(1) Do you agree that BM ¼ CM ? Explain why or why not.
(2) Label ∠BMD in this figure as 1 and ∠CMD as 2.
(3) If △BMD and △CMD are congruent, what is the corresponding side of DB ?
(4) Besides the known conditions (the perpendicular bisector of BC , intersects AB

at D, and intersects BC at M. And DA ¼ DB ), which conditions can be directly
applied without any explanation?

(5) If someone suggests that the proof process of lines 1, 2, 4, 3, 5, 6, 7, and 8 is
correct, after lines 3 and 4 are interchanged, would you agree with his or her
opinion?

(6) If someone suggests that the proof process of lines 6, 1, 2, 3, 4, 5, 7, and 8 is
correct, after the position of line 6 has been changed, would you agree with his
or her opinion?

(7) Which properties are applied in this proof?
(8) On the basis of the question and the proof,

(8-1) Which premises are necessarily required?
(8-2) What final conclusion is derived from these premises?

(9) Which statements can be validated from this proof?
(10) From this proof process, it firstly derives an important result from the condition

that the perpendicular bisector of BC , L, intersects BC at M and other
conditions.

(10-1) What is this important result?
(10-2) According to this important result in (10-1) and DA ¼ DB , one

condition can be derived to confirm ∠DCA0∠DAC. What is this
condition?

(11) Choose the correct statements.
(12) Do you agree that this proof process is correct?
(13) Statement A: If L, the perpendicular bisector of BC of △ABC, intersects AB

at D, and intersects BC at M. And DA ¼ DB ; then ∠DCA and ∠DAC must be
equal.

(13-1) Do you agree that this proof process can prove that Statement A is
always correct?

(13-2) Do you agree that this proof process can prove that Statement A is
sometimes correct and sometimes incorrect?

Answer the following questions on the basis of what you know.

(14) There is a circle with centre point P, radius PS and PQ . If T is the midpoint of
PQ , ST?PQ , and S is the midpoint of PR , is △RSQ an isosceles triangle?

(15) There are three points P, Q, and R. If S is the midpoint of PQ and ST?PQ ,
what conclusions can be derived?

(16) If D is the midpoints of AE , and BD and AE are perpendicular to each other,
and AB ¼ BC , then ∠AEC090°, is this correct?
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Appendix C

*P# and C# respectively mean the corresponding premise and conclusion of each
argument in this proof.
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