ORIGINAL ARTICLE – NANOMATERIALS

Characteristics of Rhombohedral (3R) Structure of α-In₂Se₃ Nanosheets by Mechanical Exfoliation

 λ Dong Hyun Seo $^1\cdot$ $^1\cdot$ $^1\cdot$ Ju Won Kim $^1\cdot$ Jin-Hoo Seong $^{1,3}\cdot$ Hyo-Chang Lee $^{4,5}\cdot$ Sang-il Kim $^2\cdot$ TaeWan Kim 1

Received: 6 February 2023 / Accepted: 1 May 2023 / Published online: 5 June 2023 © The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2023

Abstract

The mechanically exfoliated ultrathin 3R α -In₂Se₃ nanosheets were transferred onto a SiO₂/Si substrate. Using atomic force microscopy, it was confirmed that the transferred $α$ -In₂Se₃ transferred had a thickness of 15–120 nm. The thicknessdependence of Raman peaks of E^2 , A_1^1 , E^4 , and A_1^2 was observed from the Raman spectra. Moreover, the measured photoluminescence peak values in the range of 869–895 nm indicate a blue shift as the thickness decreases. The feld-efect transistor based on α -In₂Se₃ exhibited an n-type semiconductor behavior. From the transfer curve at gate voltage of 10 V, the derived values of the mobility and ON/OFF ratio are 24.26 cm² V⁻¹ s⁻¹ and 1.84, respectively. In addition, it was confirmed that the 3R α -In₂Se₃ layers had a high photoresponsivity of up to approximately 34,500 A/W under illumination ($\lambda = 750$ nm).

Graphical abstract

Keywords Rhombohedral α-In₂Se₃ nanosheets · Raman spectra · Photoluminescence spectra · Electrical properties · Photoresponsivity

 \boxtimes Sang-il Kim sang1.kim@uos.ac.kr

 \boxtimes TaeWan Kim twkim@jbnu.ac.kr

- ¹ Department of Electrical Engineering and Smart Grid Research Center, Jeonbuk National University, Jeonju 54896, South Korea
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, South Korea
- ³ Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- School of Electronics and Computer Engineering, Korea Aerospace University, Goyang 10540, South Korea
- ⁵ Department of Semiconductor Science, Engineering and Technology, Korea Aerospace University, Goyang 10540, South Korea

1 Introduction

Since the discovery of graphene, two-dimensional (2D) materials have recently received considerable attention owing to their electrical and optoelectronic properties. 2D materials are obtained by reducing the lateral dimensions of bulk materials to extremely small atomic layers. Compared to bulk materials, several 2D materials, including transition metal dichalcogenides (TMDs), exhibit signifcantly diferent band structure changes [[1,](#page-5-0) [2\]](#page-5-1). TMDs have been studied extensively, whereas non-TMDs have been neglected. Nontransition metal dichalcogenides, such as In_xSe_y , Sb_2Te_3 and $Bi₂Te₃$ exhibit various types of phases depending on the temperature or pressure $[3-5]$ $[3-5]$. In₂Se₃ is an interesting III–VI semiconductor among non-transition metal dichalcogenides owing to its various phases and excellent optical properties $[6]$ $[6]$. In₂Se₃ possesses five known crystal structures and phases $(\alpha, \beta, \gamma, \delta \text{ and } \kappa)$ that depend on the tem-perature [\[7](#page-5-5), [8\]](#page-5-6). The layers of α-In₂Se₃ are stacked together through van der Waals interactions. There are two structures of α -In₂Se₃ characterized by the number of stacked layers in the unit cell: hexagonal (2H), which has two stacked layers, and rhombohedral (3R), which has three [\[9](#page-5-7), [10](#page-5-8)]. The Raman spectrum can be used to distinguish between these two structures. $90 \text{ cm}^{-1}(E^2)$, one of the Raman peak values of α -In₂Se₃, is clearly visible in the hexagonal structure but is less prominent in the rhombohedral structure [[10](#page-5-8)]. Owing to its high photosensivity, fast photoresponse, signifcant conductivity, and outstanding optical transmission, α -In₂Se₃ has a bandgap of 1.43 eV and has various applications including photosensors, photodetectors and solar cells [[11,](#page-5-9) [12\]](#page-5-10). In addition, α -In₂Se₃ as a ferroelectric material, exhibits spontaneous polarization in the absence of an external electric field. Thus, α -In₂Se₃ can be applied to ferroelectric semiconductor feld-efect transistors [[13](#page-5-11)]. However, despite many studies on the optical and optoelectronic properties of 2H structures of α -In₂Se₃, 3R structures have not been much explored [[6,](#page-5-4) [10,](#page-5-8) [18\]](#page-5-12). In this work, we identified the optical properties of $3R \alpha$ -In₂Se₃ by measuring the Raman and photoluminescence (PL) spectra. In particular, a 3R α -In₂Se₃–based phototransistor was fabricated and its optoelectronic properties were measured.

2 Experiment

Because the 3R α -In₂Se₃ flake has a weak bond between the atoms owing to van der Waals forces, it can be exfoliated while maintaining its two-dimensional structure using the adhesive force of a tape. 3R α -In₂Se₃ was mechanically exfoliated and transferred onto a $SiO₂/Si$ substrate. We confrmed the surface shape and thickness of the sample fakes of $3R \alpha$ -In₂Se₃ through an optical microscope (OM) and an atomic force microscope (AFM), respectively, at the Center for University-Wide Research Facilities, Jeonbuk National University. Structural identification of the 3R α -In₂Se₃ powder was performed using X-ray difraction (XRD, D8 Discover, Bruker) at 40 kV and 40 mA. Cu Kα radiation $(\lambda = 1.5406 \text{ Å})$ and a scan rate of $0.02^{\circ} \text{ sec}^{-1}$ were used to record patterns ranging from 10° to 70°. Subsequently, the Raman spectrum and PL were measured and analyzed using FEX (NOST) at the National NanoFAB Center (NNFC) to determine the optical properties of $3R \alpha$ -In₂Se₃. For measuring the Raman spectra, the laser wavelength and its intensity were set to 532 nm and 2.878 mW, respectively. The same laser wavelength was used for the PL measurements. For measuring the PL intensity mapping, the laser wavelength was set to 514 nm, and the area of $10 \times 10 \,\mu$ m and 121 points were measured at the KAIST Analysis Center for Research Advancement (KARA). The experiments were conducted at 300 K. The 3R α -In₂Se₃-based field effect transistor (FET) bar pattern was manufactured using copper wires to defne the dimensions of the channel, and Ti/Au (5/50 nm) was deposited using an electron beam evaporator in the uncovered areas. The thickness of the sample fakes of 3R α -In₂Se₃-based FET was measured by a surface profiler (Tencor P-7 Stylus Profler, KLA Corporation) at Korea Research Institute of Standards and Science (KRISS). All optoelectrical measurements were performed using a fourpoint probe station (M6VC, MS-tech) with a commercial parameter analyzer (4200, Keithley Inc.) under vacuum conditions of 10^{-3} Torr. A monochromator (CS130, Newport) was used to select the wavelength, using a 300 W xenon lamp as the light source. An optical power meter (1936- R, Newport) and Si detector (10UVSI, ICC) were used to measure the light power density. The Si detector was used to cover the wavelength range of 400–1100 nm.

3 Results and Discussion

Figure [1a](#page-2-0) shows the OM images of the mechanically exfoliated 3R α -In₂Se₃ flakes transferred to a 300-nm-thick SiO₂/ Si substrate. AFM was used to determine the heights of the formed layers, as shown in Fig. [1](#page-2-0)b, and the thickness profles of the flakes transferred onto $SiO₂/Si$ are plotted in Fig. [1](#page-2-0)c. We observed that the lowest thickness value of the exfoliated fake was approximately 15.1nm; other measured thicknesses were approximately 40.2, 72.1, 93.7, and 118.7 nm. Considering that the thickness of a monolayered 3R α -In₂Se₃ is approximately 1 nm [[9,](#page-5-7) [14](#page-5-13)], the mechanically exfoliated 3R α -In₂Se₃ flakes had 15–120 atomic layers.

Figure [2](#page-2-1) shows XRD patterns of the $In₂Se₃$ that was successfully synthesized as a single 3R phase (α -In₂Se₃, JCPDS #01-034-0455) without impurities. This was demonstrated **Fig. 1** Topographical characterization of $3R \alpha$ -In₂Se₃ flake: **a** optical microscopy, **b** topographic AFM image and **c** height-profles of layers transferred on a $SiO₂/Si$ substrate. The AFM height-profle was obtained along the white line shown in the AFM image. The thinnest flm has a layer thickness of approximately 15.1 nm

Fig. 2 XRD pattern of the $3R \alpha$ -In₂Se₃ powder

by comparing the calculated lattice parameters with those in the JCPDS. The lattice parameters *a* and *c* were calculated to be 4.016 and 28.768 A*̊* , respectively, whereas their values in the JCPDS were 4.025 and 28.762 A*̊* , respectively. The conductivity (σ) value of 3R phase α -In₂Se₃ is 12.62 S/cm at 300 K [\[15,](#page-5-14) [16\]](#page-5-15).

Figure [3](#page-3-0)a shows the micro-Raman spectrum of 3R α -In₂Se₃ transferred from the SiO₂/Si substrate at 300 K. Prominent Raman peaks were observed at approximately 90, 102, 180, and 196 cm⁻¹ corresponding to the E^2 , A_1^1 , E^4 , and A_1^2 vibration modes, respectively [[17](#page-5-16)]. The thickness dependence of the Raman peak shift is shown in Fig. [3b](#page-3-0). According to Fig. [3b](#page-3-0), A_1^2 vibration mode tends to shift slightly towards larger wavenumbers as the thickness decreases. The thickest and thinnest Raman peaks were observed at 192.55 cm−1 and 196.89 cm⁻¹, respectively. However, A_1^1 and E^4 vibration modes did not depend on layer thickness. As the thickness increased, the A_1^2 peak shifted towards smaller wavenumbers. Zhou et al. observed a similar shift behavior according to the thickness [\[18](#page-5-12)]. Compared to its 2H counterpart, the *E*² mode of 3R α -In₂Se₃ appears to be less prominent [\[10](#page-5-8), [14](#page-5-13), [18](#page-5-12)]. Liu et al. confirmed that the intensity ratio between E^2 and A_1^1 modes could be used to distinguish 2H and 3R α -In₂Se₃ [[14\]](#page-5-13). In our study, the 3R α -In₂Se₃ was confirmed because the measured intensity ratio (A_1^1/E^2) was larger than that of the 2H structure.

The PL spectrum obtained at 300 K for thickness values of 15, 40, 72, 94, and 119 nm of the 3R α -In₂Se₃ flakes that were transferred to the $SiO₂/Si$ substrate are shown in Fig. [4a](#page-3-1). The PL peaks of thickness of 119 and 15 nm are located at 894.75 and 869.16 nm, respectively, and **Fig. 3** Optical properties of 3R $α$ -In₂Se₃ flake: **a** normalized micro-Raman spectrum of 15–120 layered 3R α -In₂Se₃ 300 K. The main Raman peak observed at approximately 102 cm−1 corresponds to the A_1^1 vibration mode. The weaker peaks located at approximately 90 cm⁻¹, 180 cm⁻¹, and 190 cm⁻¹ correspond to the E^2 , E^4 , and A_1^2 vibration modes, respectively. **b** shows the Raman shift versus layer thickness of the A_1^1 , E^4 , and A_1^2 peaks

Fig. 4 Optical properties of 3R α-In2Se3 fake: **a** PL spectrum of $3R \alpha$ -In₂Se₃ layers at 300 K. **b** Wavelength versus layer thickness plot indicating the shifting tendency of Raman spectra. **c** Optical image of 3R α-In₂Se₃ flake **d** Normalized PL mapping result of $3R \alpha$ -In₂Se₃ fake in (**c**)

correspond to 1.39 and 1.43 eV, respectively. As the thickness decreases, the PL emission exhibits a blue shift towards high phonon energies up to 40 meV, which may be due to the quantum confinement effect [[6\]](#page-5-4). A previous study showed the thickness dependence of the PL emission of In_xSe_y that resulted from the combined efect of carrier confnement along the c-axis (z-axis) and on the *xy*-plane [[19\]](#page-5-17). To fully understand the spatial resolution optical properties, we measured PL mapping for $3R \alpha$ -In₂Se₃ flake (Fig. [4c](#page-3-1), d).

Figure [5a](#page-4-0) shows the OM with surface profler heightprofile $(-1 \mu m)$ and schematic image of the fabricated bulk 3R α -In₂Se₃-based phototransistor. Ti/Au electrodes were deposited as the drain and source on both sides of the device to measure the electrical properties. The length and width of the channel of $3R \alpha$ -In₂Se₃ are approximately 121.3 and 50.16μm, respectively. The effective area of the 3R α-In₂Se₃ photodetector was 6.08×10^{-5} cm². The PL spectrum of the bulk 3R α -In₂Se₃ channel shows a peak at 930.14 nm (1.33 eV), as shown in Fig. [5b](#page-4-0). Further study including the e-beam lithography fabrication will be necessary to fully understand the thickness dependence optoelectronic properties of $3R$ a-In₂Se₃ flakes.

The I–V characteristics of the 3R α -In₂Se₃-based phototransistor were measured at 300 K in the dark and under illumination ($\lambda = 750$ nm), as shown in Fig. [6](#page-5-18)a. The photocurrent I_{ph} ($I_{illumination} - I_{dark}$) was measured under

illumination ($\lambda = 750$ nm). After the bias voltage is applied, an electric feld causes the photoexcited electrons and holes in 3R α -In₂Se₃ flow in the opposite directions to generate a photocurrent *Iph* [[20\]](#page-6-0). The photoresponsivity was calculated using the following equation:

ferroelectric channel, resulting in partial band bending [\[13](#page-5-11)]. Therefore, a clockwise hysteresis loop occurs as expected in the transfer curve measured by the dual-gate voltage sweep, owing to the ferroelectric characteristics (Fig. [6c](#page-5-18)).

$$
R = \frac{I_{ph}}{P_{light} \times A},\tag{1}
$$

where P_{light} and A light power density and the effective area of the α -In₂Se₃ channel, respectively. The calculated results are plotted in In Fig. [6](#page-5-18)b, which shows the photoresponsivity for each light wavelength. $3R \alpha$ -In₂Se₃ based phototransistor was detected in a wide spectrum of 300–1050 nm, and the photoresponsivity obtained at a drain voltage of -10 V at 750 nm at 300 K reached approximately 34,500 A/W. Moreover, we observed a photoresponse from bulk α -In₂Se₃ flakes in the 300–1050 nm region, which correlated well with the band edge transition (PL, 1.33 eV) of the bulk α -In₂Se₃ flakes. A reduction in photoresponsivity at a lower wavelength $(< 750 \text{ nm})$ may occur because of a defect in 3R α -In₂Se₃ or a recombination effect of the photogenerated carriers by surface states [[21\]](#page-6-1). In Fig. [6](#page-5-18)c, the transfer curve of the 3R α -In₂Se₃-based FET shows n-type semiconductor transfer properties, and it was measured at source-drain voltages of 1, 5, 7, and 10 V; the ON/OFF ratios of the α -In₂Se₃-based phototransistor were 1.51, 1.43, 1.62, and 1.84, respectively, and its mobilities were 2.95, 8.87, 16.7, and $24.26 \text{ cm}^2/V \cdot s$, respectively, The mobility (μ) was calculated using the following equation:

$$
\mu = \frac{g_m \times L_{channel}}{W_{channel} \times C_g \times V_{ds}},\tag{2}
$$

where, g_m is the transconductance, $L_{channel}$ and $W_{channel}$ are the channel length and width, respectively, and C_{g} the gate capacitance per unit area. It is well known that α -In₂Se₃ is a ferroelectric semiconductor [[13,](#page-5-11) [22](#page-6-2)]. When the thickness of the oxide insulator was 300 nm, the voltage applied to the gate did not completely change the polarization of the

4 Conclusion

In this study, we investigated 3R α -In₂Se₃ flakes that were mechanically exfoliated and transferred onto a $SiO₂/$ Si substrate. Raman and photoluminescence (PL) spectra were measured at room temperature to understand the optical properties of $3R \alpha$ -In₂Se₃ of various thicknesses (15–120 nm). It was found that the A_1^2 vibration mode, one of the Raman spectrum peaks of $3R \alpha$ -In₂Se₃, decreases as the thickness increases, and in the PL spectrum, the wavelength exhibits a blue-shift as the thickness decreases. We manufactured a bulk $3R \alpha$ -In₂Se₃ based field effect transistor (FET) to measure photoresponsivity. The I–V curve was measured under illuminated conditions in the wavelength range of 300–1300 nm, and the photoresponsivity was calculated from the diference between the drain current in the dark condition and the drain current in the illuminated condition. As a result, photoresponsivity of $3R \alpha$ -In₂Se₃ was detected over a wide wavelength of 300–1050 nm, and it had a distinct photoresponsivity of 34,500 A/W at 750 nm under a drain voltage of −10 V. From this photoresponsivity peak, it was inferred that it is closely related to the bandgap measured through PL. The transfer curve was measured to confirm the electrical properties of the 3R α -In₂Se₃ nanosheets. Using the transfer curve, t at source-drain voltages of 1, 5, 7, and 10 V, the mobility values were obtained as 2.95, 8.87, 16.7, and 24.26 $\text{cm}^2/\text{V}\cdot\text{s}$, respectively, and the on/off ratios were 1.51, 1.43, 1.62, and 1.84, respectively. The 3R α -In₂Se₃-based phototransistor exhibited an excellent photoresponsivity. Based on this result, we confrmed that 3R α -In₂Se₃ layers are a promising candidate for optoelectronic applications.

Fig. 6 Optoelectronic properties of $3R \alpha$ -In₂Se₃: **a** I–V characteristics measured under dark and illuminated conditions ($\lambda = 750$ nm), and the measured photocurrent. **b** The photoresponsivity measured at light wavelength in the range of 300–1300 nm. **c** The transfer curves of the 3R α -In₂Se₃-based phototransistor measured using dual gate voltage sweep

Acknowledgements This study was supported by the National Research Foundation of Korea (NRF-2021R1C1C1006147).

Declarations

Conflict of interest The authors declare that they have no confict of interest.

References

- 1. Rubbert, C., Aslan, B., Heinz, T.F.: Optical properties and band gap of single- and few-layer MoTe₂ crystals. Nano Lett. **14**, 6231– 6236 (2014)
- 2. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically Thin $MoS₂$: A new direct-gap semiconductor. Phys. Rev. Lett. **105**, 136805 (2010)
- 3. Osman, M., Huang, Y., Feng, W., Liu, G., Qiu, Y., Hu, P.: Issue **74**, (2016). Issue in Progess
- 4. Nakayama, A., Einaga, M., Tanabe, Y., Nakano, S., Ishikawa, F., Yamada, Y.: Structural phase transition in $Bi₂Te₃$ under high pressure. High Press. Res. **29**, 245–249 (2009)
- 5. Guo, S., Wang, Y., Zhang, X., Wang, B., Hu: Phase change behavior improvement of Sb_2Te_3 films by Si doping: Raman scattering evidence at elevated temperatures. Z. AIP Adv. **12**, 035002 (2022)
- 6. Zhou, J., Zeng, Q., Lv, D., Sun, L., Niu, L., Fu, W., Liu, F., Shen, Z., Jin, C., Liu, Z.: Controlled synthesis of high-quality monolayered α -In₂Se₃ via physical vapor deposition. Nano Lett. **15**, 6400–6405 (2015)
- 7. van Landuyt, J., van Tendeloo, G., Amelinckx, S.: Phase transitions in In_2Se_3 as studied by electron microscopy and electron difraction. Phys. Stat. Sol. (a) **30**, 299 (1975)
- 8. Jasinski, J., Swider, W., Washburn, J., Liliental-Weber, Z., Chaiken, A., Nauka, K., Gibson, G.A., Yang, C.C.: Crystal structure of κ-In2Se3. Appl. Phys. Lett. **81**, 4356 (2002)
- 9. Kupers, M., Konze, P.M., Meledin, A., Mayer, J., Englert, U., Wuttig, M., Dronskowski, R.: Controlled crystal growth of indium selenide, In₂Se₃, and the crystal structures of α -In₂Se₃. Inorg. Chem. **57**, 11775–11781 (2018)
- 10. Xue, F., Zhang, J., Hu, W., Hsu, W.-T., Han, A., Leung, S.-F., Huang, J., Wan, -K., Liu, Y., Zhang, S., He, J., Chang, H., Jr., Wang, W.-H., Zhang, Z.L., Li, X.: Multidirection piezoelectricity in mono- and multilayered hexagonal α -In₂Se₃. ACS Nano 12, 4976–4983 (2018)
- 11. Tianyou, Z., Xiaosheng, F., Meiyong, L., Xijin, X., Liang, L., Baodan, L., Yasuo, K., Ying, M., Jiannian, Y., Yoshio, B., Dmitri, G.: Fabrication of high-quality In_2Se_3 nanowire arrays toward high-performance visible-light photodetectors. Nano Lett. **9**(3), 1265–1269 (2009)
- 12. Wang, J., Yu, H., Hou, C., Zhang: Solution-processable 2D α- In_2Se_3 as an efficient hole transport layer for high-performance and stable polymer solar cells. J. Sol. RRL **4**, 1900428 (2020)
- 13. Si, M., Saha, A.K., Gao, S., Qiu, G., Qin, J., Duan, Y., Jian, J., Niu, C., Wang, H., Wu, W., Gupta, S.K., Ye, P.: A ferroelectric semiconductor feld-efect transistor. Nat. Electron. **2**, 580–586 (2019)
- 14. Liu, L., Dong, J., Huang, J., Nie, A., Zhai, K., Xiang, J., Wang, B., Wen, F., Mu, C., Zhao, Z., Gong, Y., Tian, Y., Liu: Atomically resolving polymorphs and crystal structures of In_2Se_3 . Z. Chem. Mater. **31**, 10143–10149 (2019)
- 15. Chen, Y.X., Li, F., Wang, W., Zheng, Z., Luo, J., Fan, P., Takeuchi, T.: Optimization of thermoelectric properties achieved in Cu doped β-In₂S₃ bulks. J. Alloys Compd. **782**, 641 (2019)
- 16. Park., O., Lee, S.W., Kim, S.: Thermoelectric properties of Sidoped In2Se3 polycrystalline alloys. Ceram. **5**, 281 (2022)
- 17. Solanke, S.V., Soman, R., Rangarajan, M., Raghavan, S., Nath, D.N.: UV/near-IR dual band photodetector based on p-GaN/α- In_2Se_3 heterojunction. Sens. Actuators A 317, 112455 (2021)
- 18. Zhou, Y., Wu, D., Zhu, Y., Cho, Y., He, Q., Yang, X., Herrera, K., Chu, Z., Han, Y., Downer, M.C., Peng, H., Lai, K.: Out-of-plane piezoelectricity and ferroelectricity in layered α -In₂Se₃ nanofakes. Nano Lett. **17**, 5508–5513 (2017)
- 19. Mudd, G.W., Svatek, S.A., Ren, T., Patanè, A., Makarovsky, O., Eaves, L., Beton, P.H., Kovalyuk, Z.D., Lashkarev, G.V.,

Kudrynskyi, Z.R., Dmitriev, A.: Tuning the bandgap of exfoliated InSe nanosheets by quantum confnement. I Adv. Mater. **25**, 5714–5718 (2013)

- 20. Balakrishnan, N., Staddon, C.R., Smith, E.F., Stec, J., Gay, D., Mudd, G.W., Makarovsky, O., Kudrynskyi, Z.R., Kovalyuk, Z.D., Eaves, L.: Quantum confnement and photoresponsivity of β-In₂Se₃ nanosheets grown by physical vapour transport. 2D Mater. **3**, 025030 (2016)
- 21. Ho, C.-H., Lai, X.-R., Chuang, C.-A., Kuo, W.-L., Tiong, K.-K.: The study of optical properties of III_2 -IV₃ defect semiconductor group compounds Ga_2S_3 , Ga_2Se_3 , In_2S_3 , and In_2Se_3 . Adv. Photonics Res. **2**, 2000110 (2021)
- 22. Ding, W., Zhu, J., Wang, Z., Gao, Y., Xiao, D., Gu, Y., Zhang, Z., Zhu, W.: Prediction of intrinsic two-dimensional ferroelectrics in

 In_2Se_3 and other III_2 -VI₃ van der Waals materials. Nat. Commun. **8**, 14956 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.