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Abstract
We report structural, dielectric, ferroelectric, magnetic, and low frequency magnetoelectric (ME) properties of (1−x) 
 Bi0.5Na0.5TiO3 (BNT)–xNi0.5Zn0.5Fe2O4 (NZFO) (x = 0.05–0.30) microwave sintered particulate composites. Distinct phases 
of BNT and NZFO were confirmed by X-ray diffraction and scanning electron microscopy. Raman spectroscopy measure-
ment showed the absence of micro-strains within the composite. The temperature dependent dielectric studies revealed the 
ferroelectric to anti-ferroelectric transition at 220 °C and anti-ferroelectric to paraelectric transition at 320 °C. The ac con-
ductivity showed both frequency dependent and independent behavior. Temperature dependent dc conductivity showed that 
upto 200 °C charge conduction is due to hopping of electrons, whereas at higher temperature diffusion of oxygen vacancies 
are responsible for the conduction. Ferroelectric and leakage current density measurements showed enhanced conduction 
losses with NZFO content. The maximum ME coefficient at 10 Hz frequency is obtained for 0.80BNT–0.20NZFO (4.33 mV/
cm.Oe at 800 Oe).
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1 Introduction

The magnetoelectric (ME) composites has gained great 
deal of attention over to single phase multiferroics due 
to its strain mediated ME coupling between piezoelectric 
and magnetostrictive phase [1–3]. Such ME composites 
with high coupling have paved the way for practical device 
application in meRAMs, sensors, and low frequency energy 
harvesters etc. [4–8]. The resultant ME coupling depends 
upon the type of magnetic and piezoelectric phase, their 
relative fraction, and type of geometry [9, 10]. Among the 
choices, Pb-based piezoelectric materials showed highest 
ME coupling due to its high piezoelectric coefficient (d33), 
high remanent polarization (Pr) and low coercivity (Ec) [11, 
12]. Several reports on Pb-based ME composites as energy 
harvesters evidences its enormous ME response [13–15]. 
However, the hazardous effect of Pb, inclined researchers 
to explore the environment friendly alternate piezoelectric 
phase with slightly compromised properties [16–19]. One of 
the most investigated piezoelectric phase is  Bi0.5Na0.5TiO3 
(BNT) which possess good Pr ~ 38 μC  cm−2, moderate 
d33 ~ 58–95 pC/N and high temperature sustainability upto 
320 °C [20–22]. On the other hand, spinel  NiFe2O4 (NFO) 
is suitable magnetic phase as it exhibit strong piezomagnetic 
coefficient (dλ/dH ~ 251 ppm/T), good saturation magneti-
zation (Ms ~ 55 emu/g) and low coercivity (Hc ~ 180 Oe) 
[23–25]. Further, the partial substitution of  Ni2+ by  Zn2+ 
enhances the MS as well dλ/dH [26–28].

Several studies on BNT based composites with differ-
ent spinel ferrites were carried out and demonstrated the 
presence of ME coupling (4.0–7.5 mV/cm.Oe) [29–32]. 
However, the applied frequency and dc magnetic field was 
1 kHz and 3–5 kOe respectively, which is relatively high 
for device realization. In this work, composites of BNT and 
 Ni0.5Zn0.5Fe2O4 (NZFO) were prepared by microwave sinter-
ing and their structural, dielectric and ME properties were 
investigated. The ME coupling of 4.3 mV/cm.Oe at very low 
magnetic field (800 Oe) and frequency (10 Hz) is observed, 
which indicate this ME composite could be a potential mate-
rial, where low frequency is prerequisite requirement.

2  Experimental

High purity Bi(NO3)3  5H2O,  CH3COONa,  TiC12H28O4, 
Fe(NO3)3  9H2O, Ni(NO3)2  5H2O, and Zn(NO3)2  6H2O, were 
used to synthesized BNT and NZFO powders. The respec-
tive phase precursors were weighed in stoichiometry ratio 
and dissolved in acetic acid, and 2-methoxy ethanol for pre-
paring solution of BNT and in deionized water, and citric 
acid for synthesizing solution of NZFO. The pH for solution 
of NZFO was maintained at 7 by adding ammonia into it. 

These solutions were continuously stirred and set at 120 °C 
till the gel formation. The obtained gels were dried at 180 °C 
and a white powder was obtained for BNT whereas the com-
bustion has taken place for NZFO. The as-synthesized pow-
ders of BNT and NZFO were calcined at 600 °C and 900 °C 
respectively for 3 h. To prepare (1−x)BNT–xNZFO com-
posites (x = 0.05–0.30; Δx = 0.05), the appropriate weight 
ratio of calcined powders were wet mixed using planetary 
ball mill for 3 h. The rpm and charge to ball ratio were fixed 
to 250 and 1:5 respectively. After mixing, powders were 
dried and uniaxially pressed into cylindrical pellets at a pres-
sure of 50 MPa. The sintering of as-pressed pellets were 
carried out in microwave furnace at 1050 °C for 1 h. The 
phase identification of sintered pellets were carried out by 
X-ray diffraction (XRD) (X'PERT Pro, PANalytical) pattern, 
using Cu–Kα radiation. Raman spectroscopy was carried 
out by Micro-Raman Spectrometer (Labram HR Confocal, 
Horiba, France) (instrumental resolution ± 1  cm−1) equipped 
with a 532 nm diode pumped solid state laser at 25 mW 
power. A field emission gun-scanning electron microscopy 
(FEG–SEM) (Sigma 500, Carl-Zeiss, Germany) was used 
to study the microstructure of the samples. Prior to electri-
cal and ME measurements, silver paint was used on both 
surfaces of the pellets. The frequency dependent dielectric 
measurements (100 Hz–1 MHz) were carried out using 
impedance analyzer (Solarton I-1260, UK) at 40–400 °C. 
The composite specimens were poled for ferroelectric meas-
urements at 10 kV with 2 cm tungsten needle to specimen 
distance using Corona poling unit (Millman thin films PVT. 
LTD. Pune, India). Keithley (6517B, USA) electrometer was 
used to measure the leakage current density (J) with varying 
dc electric field (E). The d33 measurements were carried out 

Fig. 1  Refined XRD pattern of 0.80BNT–0.20NZFO composite sin-
tered at 1050 °C for 1 h
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using d33 meter (Sinocera, YE2730A, China). Ferromagnetic 
studies were done by vibrating sample magnetometer (VSM) 
(Lakeshore-7404, USA). Further, the Precision multiferroic-
II system (Radiant Technology, USA) was used for ferro-
electric and ME voltage coefficient (αME) measurements. 
The ME measurements were carried out in an applied ac 
magnetic field of 3 Oe at 10 Hz using Helmholtz coil (Lake-
shore MH-6, USA). The dc magnetic field was varied using 
electromagnets (GMW 5480, USA). In this charge (q) and 
capacitance (C) was measured with Hdc at fixed Hac. The 
calculated voltage (Vout = q/C) was used to determine αME 
in terms of thickness (t) and Hdc as

(1)�
ME

=
V
out

t.H
dc

3  Results and Discussions

Figure 1 shows the representative XRD pattern of sintered 
0.80BNT–0.20NZFO composite refined with rhombohe-
dral (R3c) and cubic (Fd3m) phases. Both BNT and NZFO 
phases coexists without any impurity, which suggests no 
intermediate reaction has taken place among the phases 
within the used sintering conditions. The refined parameters, 
Rexp, Rwp were closed to 20 and χ2 is nearly 1 that suggests 
good agreement between obtained and fitted patterns. No 
changes in the lattice parameters and characteristic peak 
positions were observed for both the phases with obvious 
reasons. The obtained phase fraction from the refinement is 
comparable with the relative weight fraction of individual 
phases that used to prepare composites.

Figure  2 depicts the Raman spectra of BNT, NZFO 
and 0.80BNT–0.20NZFO specimens ranging from 100 to 
750  cm−1. As suggested by group theory all 3 Raman active 
modes (A, B and C) are observed for BNT and in close 
agreement with previous studies [15, 17]. The bands A, B 
and C demonstrate the vibrations of Bi/Na–O, Ti–O, and 
Ti–O6 octahedra respectively. Further, these bands were 
deconvoluted with eight peaks that expressed the stretch-
ing and bending of the metal–oxygen bonds. The spectra of 
NZFO showed three Raman bands denoted by M, N and O. 
The M and N are related to symmetric stretching and anti-
symmetric bending of metal–oxygen bonds at octahedral site 
respectively, whereas O corresponds to stretching at tetra-
hedral site [33]. The deconvoluted Raman peak positions of 
pure BNT and NZFO is tabulated in Table 1. In composites, 
the peaks of both the phases have been observed. However, 
low intensity of NZFO peaks ascribed to its low volume 
fraction. It is to be noted that similar to XRD, no change 

Fig. 2  Raman spectra of BNT, NZFO, and 0.80BNT–0.20NZFO 
ceramics

Table 1  Deconvoluted peak position of BNT and NZFO Raman spec-
tra

Pure BNT Pure NZFO

Position  (cm−1) Bond Position  (cm−1) Bond

137 Bi/Na–O 302 Zn/Fe–O
239 Ti–O 475 Zn/Fe–O
286 Ti–O 649 Ni/Fe–O
342 Ti–O 691 Ni/Fe–O
483 Ti–O6 – –
539 Ti–O6 – –
590 Ti–O6 – –
634 Ti–O6 – –
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in peak position is observed, which denied the presence of 
micro-strain towards bond compression/stretching along 
interphase boundaries.

Figure  3 shows the representative backscattered 
electron images along with elemental mapping of 
0.80BNT–0.20NZFO sintered composite. A dense micro-
structure with well distinguished sharp interphase bounda-
ries of BNT (bright) and NZFO (dark) is clearly visible 
in the composite samples. Both phases have equiaxed 
grains with similar size distribution of 1–3 μm. However, 
the BNT shows larger fraction of coarse grains due to its 
higher phase fraction, whereas grain growth of NZFO may 
be hindered by the major BNT phase. The NZFO phase is 
found to be agglomerated as a consequence of mechanical 
mixing. The elemental mapping (Fig. 3b) along with indi-
vidual elements present confirms BNT and NZFO grains 
as bright and dark contrast respectively in the samples. 
Mapping of Na element is beyond the detection limit of 
the equipment.

Figure 4 depicts the temperature (T) dependent die-
lectric constant (εr) and loss tangent (tanδ) at 1 MHz 
for (1−x)BNT–xNZFO specimens. For pure BNT and 
0.90BNT–0.10NZFO specimens, εr found to increase 
gradually with temperature upto 220 °C and then a sharp 
increase has been observed. Previously, temperature 
dependent XRD and neutron diffraction studies suggested 

ferroelectric to anti-ferroelectric phase transition (referred 
as depolarization temperature, Td), with a correspond-
ing change in the crystal structure i.e., rhombohedral to 
tetragonal respectively [34, 35]. The enlarged view of tanδ 
for BNT (inset Fig. 4b) also confirmed the transition at 
220 °C. The anomalous increase in εr upto 320 °C sug-
gests that transition is not sharp and persists till 400 °C 
[36]. This increase in εr despite the occurrence of anti-
ferroelectric phase, may be ascribed to the existence of 
interphase boundaries which contributes to the polariza-
tion. The decrease in εr above 320 °C (Tm) is due to anti-
ferroelectric to paraelectric phase transition as supported 
by sharp increase in tanδ after 320 °C [36] The composite 
with higher NZFO (x > 0.10) content showed diffuse phase 
transition behavior, which is usually observed in ME com-
posites [37, 38].

Figure 5 showed the frequency dependent conductivity 
(σac) plots for BNT-NZFO specimens at different tempera-
tures. The σac is calculated by the formula [39, 40],

here ε0 is absolute permittivity in free space, ε″ is imaginary 
permittivity of specimen and ω = 2пf is angular frequency. 
The plot appears to be the combination of plateau and 
inclined conductivity regions. According to the Jonscher’s 

(2)�
ac
= �0�

��
�

Fig. 3  Microstructure a back-
scattered image, b elemental 
color mapping of 0.80BNT–
0.20NZFO ceramics
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power law, the plateau indicates the dc conductivity (σdc) 
and inclined region represent frequency dependent conduc-
tivity (Aωn). Therefore, σac can be written as [41]

The increase in conductivity with frequency suggests that 
the conduction is governed by hopping of charge carriers 
between the localized state in accordance to Jump relaxation 
model (JRM) [42, 43]. On increasing temperature, thermally 
activated charge carriers contribute towards conduction. At 
sufficiently high temperatures, the contribution of frequency 
dependent conductivity is relatively small within the studied 
frequency range. Further Arrhenius plot of dc conductivity 
(σdc) for (1−x)BNT–xNZFO specimens are shown in Fig. 6. 
The activation energy (Eg) is calculated by

where K is the Boltzmann constant.

(3)�
ac
= �

dc
+ A�

n

(4)�
dc
= �0exp

(

−Eg∕KT
)

The conductivity increases with temperature for each 
specimen that represents their semiconducting behavior. 
Two slopes in low and high temperature regime are observed 
and suggests the different types of carriers are responsible 
for the conduction. At low temperatures, the conduction is 
governed by the hopping of electrons, while at high tem-
perature the diffusion of oxygen vacancy contributes [44]. 
The increase in interphase boundaries fraction with NZFO 
content, restricts the movement of oxygen vacancies and 
consequently requires higher Eg as observed.

The ferroelectric behavior of (1−x)BNT–xNZFO speci-
mens is confirmed by their RT P–E loops at 10 Hz as shown 
in Fig. 7a.

A well saturated hysteresis has been observed for 
x = 0.00 and x = 0.05. Further increase of low resistive 
NZFO phase enhances the conduction losses, result in low 
field sustainability and unsaturated loops of composites. 
The obvious decrease in Pr is found with non-ferroelectric 
NZFO phase induction as shown in Table 2. Figure 7b 
depicts the E dependent bipolar strain plot of BNT–NZFO 
specimens. A normalized strain of 105.2 pm/V has been 
observed in pure BNT, which is decreased in compos-
ites with NZFO content. Further, an obvious declined 
trend in d33 is observed with NZFO content as tabulated 
in Table 2. The enhancement of conduction losses with 
NZFO content in composite specimens is confirmed by 
J–E plots as shown in Fig. 7c. The sharp increase in J 
till 0.5 kV/cm attributes to the space charge conduction. 
Above 0.5 kV/cm, gradual increase of J indicates the con-
tribution of grain boundaries, and Poole-Frankel emission 
[45, 46]. The M–H loops for (1−x)BNT–xNZFO speci-
mens are shown in Fig. 7d. The saturation magnetization 
(Ms) increases in composites due to high magnetic phase 
(NZFO) content.

The ME coupling is a product tensor of both ferroelec-
tric and ferromagnetic characteristics. As composite has 
exhibited both ferroelectric and ferromagnetic proper-
ties, a large ME response in such specimens is expected. 
The ME coefficient (αME) for all composites as a func-
tion of dc magnetic field (Hdc) with an ac field (Hac) of 
3 Oe at 10 Hz has shown in Fig. 8a. The αME increases 
with Hdc till 800 Oe and decreases afterward that suggest 
the maximum strain mediated coupling occurred at 800 
Oe. As NZFO content increases αME also increases upto 
x = 0.20 content and thereafter decreases (Fig. 8b). The 
maximum obtained value of αME is 4.33 mV/cm.Oe for 
0.80BNT–0.20NZFO composite. The low αME for com-
posite below x = 0.20 is due to the small fraction of mag-
netostrictive phase. For x > 0.20, the lower value of αME is 
due to the excess amount of NZFO content that have high 
J and limits the poling effect in composite [47]. Further, 
the effect of f on αME has been investigated as shown in 
Fig. 8c. No noticeable changes have been observed with f 

Fig. 4  Temperature dependent a εr and b tanδ of (1−x)BNT–xNZFO 
specimens at 1  MHz. Inset represent the enlarged view of tanδ for 
pure BNT
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Fig. 5  Frequency dependent ac conductivity of (1−x) BNT–xNZFO specimens at different temperatures

Fig. 6  Temperature dependent conductivity of (1−x)BNT–xNZFO specimens at 1 MHz
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that suggest the linear behavior of αME at off-resonance f 
condition [48, 49], which is further supported by identi-
cal behavior of αME for 0.8 BNT–0.2 NZFO with Hdc at 
different f as shown in Fig. 8d. The high value of αME at 
low frequency is not reported so far, which indicates the 
potential of material. A comparative of BNT based ME 
composites is shown in Table 3.

4  Conclusion

Lead-free ME particulate composite of BNT–NZFO 
were successfully synthesized. The coexistence of both 
phases was confirmed by XRD and FEG-SEM. The 
Raman spectroscopy suggested absence of interfa-
cial micro-strains between BNT and NZFO phase. The 
temperature dependent dielectric study displayed the 
Td (~ 220 °C) and Tm (~ 320 °C) for pristine BNT and 
0.90BNT-0.10NZFO specimens. However, such transi-
tion temperatures were obscured in 0.80BNT–0.20NZFO 
and 0.70BNT–0.30NZFO. The frequency dependent σac 
plot at different temperature followed the Jump relaxa-
tion model. The value of Eg was found to be increased 
with NZFO content that suggest the interphase boundaries 
restrict the movement of charge carriers. The NZFO con-
tent enhanced the ferroelectric losses and leakage current 
density in composites. An obvious increase in Ms with 
NZFO content were observed in composites. All samples 
showed good ME coupling and highest value of 4.33 mV/

Fig. 7  a P–E loops, b d33
*, c J–E measurements, and d M–H loops of (1−x)BNT–xNZFO specimens

Table 2  Pr,  d33, normalized  d33
*, J, and Ms of (1−x)BNT–xNZFO 

specimens

x Pr (μC/
cm2)

d33 (pC/N) Normal-
ized  d33

* 
(pm/V)

J (μA/cm2) 
at 5 kV/
cm

Ms (emu/g)

0.00 35.35 47 105.2 0.23 –
0.05 30.48 36 83.7 0.34 1.16
0.10 16.62 25 20.3 0.55 3.97
0.15 11.76 19 5.6 0.67 7.71
0.20 7.61 15 4.1 0.94 12.07
0.25 6.70 11 3.4 3.49 15.02
0.30 6.04 7 2.9 5.98 18.13
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cm.Oe at 800 Oe was obtained for 0.80BNT–0.20NZFO 
at 10 Hz.
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