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Abstract

While research in PQC has gained significant momentum, its adoption in real-world products is slow. This is largely due
to concerns about practicability and maturity. The secure boot process of embedded devices is one scenario where such
restraints can result in fundamental security problems. In this work, we present a flexible hardware/software co-design for
HBS schemes which enables the transition to a post-quantum secure boot today. These signature schemes stand out due
to their straightforward security proofs and are on the fast track to standardisation. Unlike previous work, we exploit the
performance intensive similarities of the stateful LMS and XMSS schemes as well as the stateless SPHINCS™ scheme. Thus,
we enable designers to use a stateful or stateless scheme depending on the constraints of each individual application. To
demonstrate the feasibility of our approach, we compare our results with hardware accelerated implementations of classical
asymmetric algorithms. Further, we outline the use of different HBS schemes during the boot process. We compare different
schemes, show the importance of parameter choices, and demonstrate the performance gain with different levels of hardware
acceleration.

Keywords Post-quantum cryptography - Hash-based signatures - LMS - XMSS - SPHINCS™ - Secure boot - Hardware/software
co-design

1 Introduction

The boot process plays an important role to guarantee the
security and trustworthiness of modern electronic devices.
The first piece of software that is executed is stored in read-
only memory (ROM). This boot code is the first step of a
process called secure boot which ensures that only trusted
and genuine software is executed from the very beginning.
The importance of this role combined with the inability
to update requires foresighted design decisions and care-
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fully developed software. This is especially relevant, but
not limited, to the used cryptographic primitives. Today’s
state-of-the-art implementations rely on common asymmet-
ric algorithms like RSA or ECC [47, 51]. Through the
development of quantum computers these algorithms are at
risk as attacks based on Shor’s algorithm may become feasi-
ble in the future [67].

In order to prepare for this threat, a process to standardise
quantum-resistant public key cryptographic algorithms was
initiated by the National Institute of Standards and Technol-
ogy (NIST) in 2016 [55]. At the end of the third round, NIST
selected the stateless hash-based signature (HBS) scheme
SPHINCS™ for standardisation [53]. It is the only selected
algorithm not relying on the security of structured lattices.
Stateless schemes can be used in the same manner as com-
mon digital signature algorithms based on RSA andECC. In
contrast, stateful schemes require the signer to keep track
of the already used keys as only a limited amount of signa-
tures can be generated per key pair [50]. Any failure to do so
seriously degrades the security [35]. The advantage of state-
ful schemes over stateless schemes is the smaller signature
size and faster runtime. For the two stateful HBS schemes,
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Leighton-Micali Hash- Based Signature (LMS) and extended
Merkle signature scheme (XMSS), IETF RFCs are avail-
able [36, 49]. Based on these documents, HBS published a
recommendation for the use of stateful HBSs in 2020 [19]. In
2021, the BSI extended their technical guidelines to include
stateful HBSs. In 2022, recommendations for deployment
of HBSs were published by the ANSSI. The soundness of
HBSs relies only on the properties of the underlying hash
functions. As hash functions are well understood, this makes
HBS schemes a very conservative choice, in particular when
compared to other post-quantum cryptography (PQC) algo-
rithms [11, 48]. Due to this and their maturity, hybridation is
not required [5, 14]. This makes HBSs a perfect fit for secure
boot.

While maturity is not an area of concern for HBS schemes,
practicability is. In case of secure boot, the startup time and
accordingly the signature verification is of major importance.
The verification time of hash-based signatures is mostly
determined by the underlying hash function. To enable HBS
schemes for secure boot, we propose a hardware/software
co-design with minimal additional hardware overhead. Thus,
allowing an immediate drop-in replacement of hash hardware
accelerators. For evaluation purposes, we integrate our hard-
ware accelerator in the OpenTitan. OpenTitan is a reference
design for open source security controller and is based on a
32-bit RISC-V processor. We use the secure boot process of
the OpenTitan to compare our implementations against the
existing hardware-accelerated signature verifications based
on RSA and ECC. Further, we lay out why a singular focus on
either stateful or stateless schemes is a blocker for real world
applications. In short, this is due to the fact that for most
products different constraints are applicable. In the context
of the secure boot, this is even more evident, as the successive
boot stages mean that different entities and their respective
constraints are involved. We overcome this issue with our
flexible co-design accelerating stateless as well as stateful
schemes from boot up.

In recent years, stateful schemes were evaluated for
a usage in secure boot [43, 45] or for general purpose
usage with efficient implementations [16, 34, 68, 71]. These
implementations range from software evaluations including
comparisons of different schemes [16, 42] to System-on-
Chips (SoCs) with different levels of hardware acceleration
[34, 43, 71] and full hardware designs [45, 68].

A flexible HBS solution for secure boot is still missing
from state-of-the-art literature. Specifically, our paper pro-
vides the following contributions:

e A flexible hardware accelerator with support for state-

ful and stateless schemes, namely LMS, XMSS and
SPHINCS™ (also referred to as SPX™ in the following)
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— Modular design approach to enable different levels
of acceleration

— Utilisation of algorithmic similarities to achieve low
hardware overhead

— Drop-inreplacement/extension for generic hash cores

e Evaluation of algorithmic accelerations and trade-offs for
hardware/software co-designs

e Exploration of HBS parameter trade-offs for the secure
boot scenario

e Benchmark results in the context of secure boot with
respect to code size, signature and key size, speed and
area requirements

2 Hash-based signature schemes

Hash-based signatures are digital signature schemes that use
hash functions as the main cryptographic primitive. The way
how and which of these cryptographic primitives are com-
bined allows to build either a so-called stateful or stateless
HBS scheme. The usage of a stateful HBS algorithm differs
for the signer compared to common asymmetric crypto-
graphic algorithms. In essence, the number of signatures that
can securely be generated is limited by the total number of
key pairs available. Each key pair can only be used once
and any reuse would result in a security compromise [35].
Thus, the signer has to keep track of the already used key
pairs, effectively storing a state and updating it after every
signature generation, i.e. stateful [50]. Contrarily the usage
of stateless HBSs is in line with classical asymmetric cryp-
tographic algorithms.

Aside from stateful and stateless, HBS schemes can be
divided into the two variants, “simple” and “robust”, for
which different security arguments in relation to the used
hash function can be made. The ‘“simple” instantiations
have a less conservative security argument but a better per-
formance. In contrast, “robust” instantiations meet more
conservative security requirements and consequently require
more hash operations. The reader is referred to [19, 39] for
more information on the security arguments and its details.

2.1 One-time signatures

The foundation for contemporary HBS algorithms are the
one-time signature (OTS) schemes. LMS, XMSS and
SPHINCS™ each use variants of the Winternitz OTS (WOTS).
The core idea is to have a certain amount of function chains,
i.e. repeatedly applying a function F to the prior output. For
the sake of convenience, we assume that the function F only
consists of a single call to a cryptographic hash function
with the prior output as single input. Thus, in the following



Journal of Cryptographic Engineering

Message WOTS
Chunks Public Key
0b10 F . O—F F
© F o~ F ! F O\

0b01 ‘ . O O\ ‘ ->O
0600 @q——O——O0——O0—
obll @ ——O——O—F—@

Initial state Final state

Fig. 1 The Winternitz OTS with the secret key @, the compressed
public key O, and the signature @ (color figure online)

we simply use the term hash chain for this specific construct.
The working principle of such OTS schemes is depicted in
Fig. 1. The starting point of a hash chain is a random value
and corresponds to one OTS secret key @. An intermediate
value of a hash chain is an OTS signature @. The end point of
a hash chain is an OTS public key. The function K is applied
to these end points to generate the compressed OTS pub-
lic key O. For the compression function K, and SPHINCS™
use a tweakable hash function and XMSS a so-called L-tree.
The signing and verifying operations are inherently similar.
To sign or verify a message, its digest is split into chunks
of logr(w) bits and each chunk is interpreted as value a.
For signing ®—@® and verifying ®—O each hash chain is
advanced. For signing it is advanced by a and for verifying
by w — 1 —a. In the case of verification, a signature is valid,
if the public key candidate is equal to the public key.

The function chain length and the chunk bit-size is defined
by the Winternitz parameter w and logs (w), respectively. In
the example in Fig. 1, the message is split into chunks of
2bit which corresponds to a Winternitz parameter w of 4.
For more details with respect to implementation the reader
is referred to [31].

2.2 Few-time signatures

In contrast to the OTS scheme a few-time signature (FTS)
scheme allows the reuse of a key pair for a few times. The FTS
scheme is only used in the stateless HBS scheme SPHINCS ™.
As aresult the total tree height of SPHINCS™ can be reduced
significantly, making it applicable in practice [9]. In the con-
text of SPHINCS™, the forest of random subsets (FORS)
scheme is used to sign message digests. FORS consists of
k Merkle trees each having a tree height of a. To generate
the FORS public key © all k£ Merkle tree root nodes are com-
pressed with a hash. A single tree authenticates t = 2¢ FORS
secret keys @. Thus, the leaves are the hashes of the secret
keys. To generate a signature the message digest is split into
k a-bit chunks, as shown in Fig. 2. Each chunk is interpreted
as an integer which is used as an index to select a secret
key as signature node @. This is done for all k trees and
chunks. The selected nodes are aggregated together with the
respective authentication path nodes @. For verification the

FTS Public Key

Fig.2 Overview of the forest of random subsets scheme with the secret
key @, the public key O, the signature @, and the authentication path
nodes @ (color figure online)

MSS
Public Key

WOTS
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Fig.3 Merkle signature scheme

signature is used to generate a public key candidate similar to
the WOTS signature verification [39]. To allow for compar-
ison, the same message is signed in the OTS and the FORS
example, depicted in Fig. 1 and Fig. 2, respectively.

2.3 Merkle signature scheme

With an OTS or FTS scheme, one key pair can be used once
or a few times to sign, respectively. In order to overcome
this limitation, the Merkle signature scheme (MSS) is used,
depicted in Fig.3. It applies a Merkle tree to authenticate
multiple OTS public keys. Every leaf node in the Merkle tree
corresponds to a single hashed OTS public key. The root node
of the tree corresponds to the MSS public key, which is used
to authenticate the OTS public keys. A Merkle tree with a
tree height 4 authenticates 2h OTS key pairs [52].

A MSS signature consists of an OTS signature, introduced
in Sect.2.1, and, in the context of HBS, a so called authen-
tication path. Starting at the bottom of the figure, the OTS
public key O is calculated from the signature @. Then the
authentication path nodes @ are used to generate the public
key candidate O for the respective signature. The signature is
valid, if the public key candidate is equal to the known public
key.

With the MSS an OTS can be extended to a many-time
signature (MTS). Such a HBS construct is applicable to real

@ Springer



Journal of Cryptographic Engineering

Fig.4 Generalized Merkle
signature scheme
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world use cases, but still impractical for a high number of key
pairs, i.e. required signatures. The tree height 4 is limited by
the runtime of key generation and signing. To overcome this
limitation the generalized Merkle signature scheme (GMSS)
was introduced in [15]. Its core idea is to build a so-called
certification tree with multiple MSS. Instead of having a sin-
gle MSS with a large Merkle tree, it is split into d MSS each
being a smaller Merkle tree. At the top of this certification
tree is the root MSS, which signs its child MSS. At the bottom
is the leaf MSS, which is used to sign the message.

For SPHINCS™, GMSS is especially relevant, as the total
required tree height / is vast [39]. Different to the exemplary

overview in Fig. 4, SPHINCS™ uses a FTS scheme instead of
an OTS scheme in the bottom layer, as explained in Sect.2.2.

3 Secure boot with hash-based signatures

In this section, we describe the different stages and involved
entities of a secure boot process. For signing entities, we
give recommendations for efficient state management that is
compliant with NIST SP 800-208. The relevance of this spec-
ification is due to the recently released Commercial National
Security Algorithm Suite 2.0 [69]. From 2025 onwards, new
national security systems of the United States of America
must perform software and firmware signing with HBSs. The
transition of all deployed software and firmware signing must
be completed until 2030. The deployed signature algorithms
must meet all requirements of the NIST SP 800-208. This
enforces the use of NIST SP 800-208 and makes this publi-
cation highly relevant for any vendor. For the verifying entity,
we focus more on implementation aspects, to enable efficient
post-quantum secure boot on embedded devices. To this end,
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we show how real world applications benefit from our hard-
ware/software co-design and its flexibility to support stateful
and stateless signature schemes. Further, we derive parame-
ters for all considered HBS schemes tailored for the secure
boot use case.

A secure boot process consists of multiple stages which
are executed one after the other until the application is started.
To ensure that only genuine software is executed, every boot
stage verifies the next stage before it hands over execution.
Each stage is associated with an individual role belonging
to a different entity. The stages and roles are based on the
specification of the boot process for the OpenTitan project,
but apply to most use cases. The involved roles in the boot
process are silicon creator, silicon owner, and provider.

The silicon creator is responsible for the first stage of the
boot process and thus the root of trust and security for the
entire device. As the software for this boot stage is stored in
ROM, it cannot be updated after the chip production. Thus,
foresighted decisions with respect to the chosen signature
scheme and a secure implementation are of utmost impor-
tance. The silicon owner is the entity that uses the hardware
and provides, for example, the kernel or operating system
(OS) for the silicon. This boot stage is usually stored on
an updateable non-volatile memory. The application of the
product is the last stage of the boot process. The provider is
responsible for this boot stage.

Each entity is responsible to provide valid signatures for
their respective boot stages. Thus, the key generation, main-
taining the key material and signing needs to be handled
individually by each entity. Depending on the constraints and
capabilities each entity may decide to use stateful or stateless
HBSs.

3.1 Distributed state management compliant with
NIST SP 800-208

If an entity decides to use stateful HBSs, it is necessary to
prepare for any hardware failure regarding the hardware mod-
ules holding the private key and its state. A common approach
would be to copy this data and distribute it to multiple hard-
ware modules. To avoid any location-specific single point of
failure, these devices would be located at different physical
locations to mitigate the threat of local hazardous event. For
stateful HBSs the recommendations by NIST prohibit any
export of private key material [19]. Hence, a straightforward
distribution is not possible feasible. The NIST recommen-
dations outline alternatives, which we summarises in the
following. In addition, we extend the—in our opinion—most
favorable approach and describe how the internal structure of
HBSs can be used to enable significantly faster verification
and smaller signatures.
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Recommendations of NIST SP 800-208

One option presented in the NIST recommendations pro-
poses to generate multiple key pairs and register these within
the device at once or to allow for an update of the public key. A
second option corresponds to the usage of a GMSS, such that
atop-level and multiple bottom-level trees exist. The bottom-
level trees are signed by the top-level tree. Each bottom-level
tree can be stored in a different hardware module without
exposing any secret key material. Hence, the capability to
create signatures for one public key is distributed among dif-
ferent modules, without the necessity of exposing secret key
material.

Distribution of sub-trees

We deem the second approach most feasible in practice,
as it does not rely on any features within the device that
performs verification. This approach relies on a multi-tree
signature with a distinct division into one top and multiple
bottom-level trees. This division doubles the signature size
and verification runtime, as an application signature must
contain one signature for the bottom-level tree and one sig-
nature to verify this signature with the top-level tree. We
suggest an improvement to allow for a single-tree signature
by using the internal HBS structures instead. The change tar-
gets to introduce sub-trees within one tree. Each sub-tree is
handled by an individual hardware module. During the key
generation, the public key is calculated jointly by all hard-
ware modules. After the key generation phase, each hardware
module is able to independently generate valid signatures.

In Fig.5, this approach is shown for a simple tree with
four sub-trees. During key generation, each hardware mod-
ule generates its sub-tree leafs as it would if generating the
complete single tree. For instance, the first hardware module
generates sub-tree a and calculates all nodes up to and includ-
ing node four in the merkle tree. The nodes of the top-level
tree, in our example the nodes with the index one, two, and
three, cannot be calculated by an individual hardware mod-
ule. For this, the four hardware modules need to cooperate.
Each hardware module must publish its respective sub-tree
root node, such that the other hardware modules can use this
as an input for the generation of the top-level tree. After the
initial key generation, each module must be able to generate
signatures independently to ensure redundancy. Therefore,
each hardware module must store the nodes that are needed
for the authentication path of signatures generated from its
sub-tree. For example, the hardware module containing sub-
tree a has to store the nodes five and three internally. With
these values, this hardware module is able to independently
generate signatures in the future. The same applies to the
other hardware modules each handling a different sub-tree.

This idea is similar to the signature generation accelera-
tion with auxiliary data that can be used for LMS [18] and
was also proposed for SPHINCS™ [37]. The nodes contained

Sub-tree a Sub-tree b

Sub-tree ¢ Sub-tree d

Fig. 5 Split of a single tree with height three into four sub-trees each
containing two one-time signature key pairs

in the auxiliary data may be stored internally along with the
private key or externally. If it is stored externally it must
be cryptographically protected against modifications. Any
modification would result in an invalid signature, and thus
in a denial-of-service. The LMS implementation appends an
HMAC to the auxiliary data. Confidentiality is not an issue
for the authentication nodes, as nodes within the merkle tree
are public data, therefore they can be stored as plaintext. A
signature contains certain nodes of the merkle tree as authen-
tication path to enable the calculation of public key candidate.
Therefore our proposed sub-tree approach is uncritical from
this perspective. As no private key material is exported, it is
compliant with the NIST SP 800-208 [19].

The major benefit of our proposed sub-tree optimisa-
tion is that it only requires a single-tree in contrast to an
approach with a multi-tree structure. Therefore, only one sig-
nature needs to be verified, which increases performance and
reduces signature size. The overhead of our state manage-
ment is reduced to the overhead that is inherently given by
the need for redundancy, i.e. the overhead in signature size
and performance is defined by the “parent” section of the
tree that connects all sub-trees (nodes one to three in Fig. 5).
The number of layers in the parent section defines the num-
ber of redundant modules that are available. These layers
increase the signature size and verification time. However,
their impact is minimal, as only a single node in the authen-
tication path per parent layer is required. A drawback of this
approach is that it requires a dedicated mode within HBS
libraries. This is due to the fact, that the key generation and
signing operations slightly differ from a non-distributed vari-
ant. Hence, this requires some software engineering effort.

Our proposed state management solution does not allow or
require any updates or changes in the future. Hence, all keys
must be generated during the initial key generation phase.

3.2 To be, or not to be stateful

Stateful HBS schemes allow for fast verification with small
signatures. The drawback of a stateful HBS scheme is the
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requirement to maintain its state. Best practices for state man-
agement were evaluated in [50]. In essence, three different
approaches were proposed and outlined. Two of them requir-
ing dedicated cryptographic hardware, like hardware security
modules (HSMs), which are capable of securely synchronis-
ing the state. The third approach uses a combination of a
stateful and a stateless HBS scheme. This approach does not
require any cryptographic hardware, but has the drawback
that the verifier must perform a stateless and a stateful signa-
ture verification. Hence, this is not of general interest for the
secure boot use case. In general, state management is expen-
sive and any implementation must guarantee high assurance.
Depending on the respective application, entities cannot gen-
erally bear this overhead. Thus, the question on whether the
HBS scheme should be stateful or not must be answered dif-
ferently, depending on the application, but also the entity.
Since every boot stage is controlled by an individual entity
and owner and provider may have different constraints with
respect to boot time and application security, some devices
need to verify stateful signatures at one stage and stateless
ones at another. Thus, our architecture that supports both
types is the most promising approach to enable the transition
to a post-quantum secure boot using hash-based signatures.

3.3 Choice of hash-based signature parameters

The general impact of the HBS parameters are formally
described in [42]. Within the scope of this work, we select
the parameters in accordance with the constraints of secure
boot. The SPHINCS™ submission document defines fixed
parameter sets. This is in contrast to stateful schemes, where
parameters can be selected more freely. In the following sec-
tion, we provide an overview over the parameters and set
forth the rationale behind our parameter choice.

Hash Algorithm LMS, XMSS and SPHINCS™ have sup-
port for both SHA-2 and SHA-3. Due to the widespread use
of SHA-2, we select the SHA-256 hash function with an
untruncated output size of 32 bytes. This guarantees a level
of security equivalent to an exhaustive key search for AES-
256 [39], thus reaching NIST’s highest security level five.
If Grover’s attack is feasible, this equals a level of 128 bits
in a pre-quantum world. We select for ECC a 256-bit curve
and for RSA 3072-bit integers (Table 1) for comparison with
commonly used asymmetric algorithms.

LMS and XMSS

Due to the nature of stateful HBSs the ability to sign
firmware images is limited to a fixed count, which is defined
once at key generation (Sect.2.3). For the secure boot use
case we estimate the required number of firmware updates
including a security margin. We estimate the maximum life-
time of a security controller to be 40 years and the amount of
required updates to at most two updates each day during its
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lifetime. This totals to up to 29200 required signatures, where
one signature is used for each firmware update. From this we
can derive the required tree height parameter for LMS to be
h = 15 and XMSS to be h = 16, with respect to the param-
eters listed in [19]. For XMSS, the Winternitz parameter w
is limited to w = 16. For LMS, the Winternitz parameter
is W € [1, 2, 4, 8], which maps to w € [2, 4, 16, 256]. The
notation of w is used for SPHINCS* and XMSS, so we will
use this notation as well for LMS. As shown in Fig.6, the
Winternitz parameter allows a trade-off between signature
size and overall performance. A higher Winternitz param-
eter generates smaller signatures, but has the drawback of
worse performance. This is not the case for w = 2, as for
both w = 2 and w = 4 the required hash compress calls
add up to the same count, while the signature for w = 2 is
larger. Therefore, the original Winternitz parameter set can
be limited to w € [4, 16, 256]. The resulting signature sizes
of the selected parameters for LMS and XMSS are listed in
Table 1.

SPHINCS™

In contrast to XMSS and LMS, the SPHINCS™ param-
eters are described with certain sets of parameter combina-
tions. This is due to the fact, that the stateless property of
SPHINCS™ is a result of carefully combining parameters.
Thus, we restrict our evaluations to the provided parame-
ter sets. The available list of parameters can be split into
the two variants, “small” and “fast”, which are denoted with
“s” and “f”, respectively. The “small” variant has the draw-
backs of slower key generation and signing. However, it
achieves smaller signature sizes and faster verification. As
this is desirable for the secure boot scenario, we select the
“small” variant. The respective signature and public key size
for the selected parameter set is listed in Table 1. The “sim-
ple” and “robust” construction that can be used in SPHINCS
only influence the security proof and runtime but not signa-
ture or public key sizes. They are referred to as SPX*-s and
SPX™-r in the following.

4 Hardware/software co-design

To ensure the practicability of HBS schemes during run-
time, we propose a flexible hardware/software co-design to
enhance the performance of signature verification. In this
chapter we lay out and evaluate our approach.

4.1 Software implementation

Within the following section, we lay out our design method-
ology starting with a peak into the general performance
characteristics of LMS with w = 16, XMSS and SPHINCS ™.
As depicted in Fig.7, we differentiate the operations of the



Journal of Cryptographic Engineering

Fig.6 Cycle count estimation
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Fig. 7 Performance of software implementations impacted by hash
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algorithms into the three classes: hash chain, authentication
path, and other. The other part was not further split as it
takes up less than 10% on average. Hence, it is less impor-
tant for hardware acceleration. The hash chain computation
is responsible for over 80% of the overall latency during a
signature verification. Therefore it is the most interesting part
for acceleration by dedicated hardware. The authentication
path takes up to 15% of performance for SPHINCS ™, making
it a possible second target for acceleration.

Hash hardware accelerators

In general, hashing dominates the execution time of the
HBS algorithms. Thus, any acceleration within the hash com-
putation has a meaningful impact on the overall performance.
SHA-2/3 hardware cores are found in many microcontrollers,
as the algorithm is frequently required and their permutation
logic can be implemented efficiently in hardware. The usage
of such an accelerator shifts the bottleneck from computation
to communication with the accelerator. On our target plat-
form, the OpenTitan, a SHA-256 compress takes 65 clock
cycles, while writing the data and reading the digest raises
the latency to around 1400 clock cycles. For digesting a high
amount of data this is irrelevant, as the transfer interleaves
with computation and the compress function is executed mul-
tiple times. However, for a step within a hash chain 55 (LMS)

4.2 Hardware hash-based signature accelerators

Acceleration that can be achieved with generic hash cores
is limited due to a high communication overhead. Due to
the tree and chain structures in HBS schemes, data structs
are often accessed subsequently. Dedicated hardware com-
ponents can manage this data flow and consequently reduce
interaction with the main processor. Therefore, we propose
a set of HBS top modules that support the computation of a
hash chain, the computation of a tree root, or both. We use the
open source SHA-2/HMAC core from the OpenTitan project
as hash backend. Throughout the rest of this paper we refer
to our proposed design as SHA-2™ core.

Winternitz parameter exploration for HW/SW Co-Designs
To assess the impact of our approach, we estimate the result-
ing cycle count for an OTS signature verification on our
designin Fig. 6. As stated in Sect. 2, OTS verification consists
mainly of advancing hash chains. The estimation shows that
a hash chain module allows to use higher Winternitz parame-
ters without significantly degrading the overall performance.
As the chain length increases, the number of required I/O
operations reduces, so runtime improves even if more hash
operations are required. This is in direct contrast to software
implementations where an increase of required F operations
implies a linear increase in runtime. Interestingly, our esti-
mate shows that a hardware/software co-design approach
enables to reduce the signature size without affecting the per-
formance. For example, a Winternitz parameter of w = 256
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Fig.8 Block diagram of the SHA-2" core

can be selected instead of w = 16, to cut the OTS signature
size into half without a significant performance regression.

SHA-27 core

Figure 8 shows our hardware design. The original Open-
Titan SHA-256 accelerator consists of a SHA-256 backend,
which can be accessed either transparently or through the
HMAC toplevel, to compute a SHA-256 or a MAC, respec-
tively. By reusing the SHA-256 logic, we minimise the
additional cost for manufacturers. At synthesis time one of
six HBS modules can be plugged into the design: (i) LMS,
(i1) XMSS, (iii) SPX+-s, (iv) SPX+-r1, (v) SPX+-s + LMS,
(vi) SPX+-r + XMSS. In theory, these modules can be fit-
ted for arbitrary hash cores with minor modifications. Our
changes to the original hash accelerator include a chain regis-
ter which is connected to the SHA-256’s initial state register,
additional control logic to switch between operation modes,
and a digest feedback path into the HBS module. The HBS
cores implement the respective behaviour by means of simple
state machines. Our complete design can be directly inte-
grated into any chip that supports the TileLink Uncached
Lightweight (TL-UL) interface.

Combined stateful and stateless accelerators

The rationale for supporting both stateless and stateful sig-
natures in one design was laid out in Sect.3.2. The obvious
choices for combination are LMS and SPX™"-s and XMSS
and SPX ™ -r, as they are respectively “simple” and “robust”
instantiations of HBSs. Figure 9 shows the steps in a “sim-
ple” hash chain (LMS and SPX™"-s), a “robust” hash chain in
XMSS, and a “robust” hash chain in SPX*-r. The only dif-
ference between LMS and SPX ™ -s is that the former uses 23
address bytes, whereas the latter uses 22 bytes and the initial
SHA-256 state. In theory, both the “simple” and “robust”
SPHINCS™ variant would require to hash a public seed
before each hash operation. This seed is padded such that this
compress only needs to be done once and the resulting SHA-
256 state can be reused for subsequent hash operations. All
SPHINCS™ cores support this behaviour. Apart from that,
advancing a simple hash chain requires a single compress
with an incrementing iterator and the output of the previous
step. The differences in SPX™-r and XMSS are more severe.
WOTS™ in XMSS requires to first compute a unique key and
mask, where the hash function acts as a pseudorandom func-
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Fig.9 Schematic depiction for a “simple” hash chain (LMS & SPX ™" -s)
and a “robust” hash chain in XMSS and SPX*-r

tion, and finally to update the chain digest, for which the hash
function acts as a keyed hash function. The SPX™-r construct
omits the calculation of a unique key. In XMSS, 32 address
bytes are required, SPHINCS™ uses 22 bytes. Therefore, in
straightforward implementations, six compress iterations are
required in XMSS, two each for the mask, key, and advanc-
ing the chain, and three compress iterations are required in
SPHINCS™, two for the mask, and one for advancing the
chain. While the two “robust” instantiations in XMSS and
SPHINCS™ do not map as good as the two simple instan-
tiations, the buffer registers and some control logic can be
reused.

XMSS precomputation

The amount of compress iterations in an XMSS WOTS™
hash chain step can be reduced via precomputation [71].
Three data structures are computed in a step, the mask, the
key, and the data for the chain itself. For all three data struc-
tures, a public seed and an address must be compressed first.
Since the public seed is constant, and the address is con-
stant within a step, this compress only needs to be done once
instead of three times. The resulting state can be used to
overwrite the SHA-256 state in the subsequent hashes, thus
lowering the number of compress iterations from six to four.
This comes at the cost of a buffer register and overwrite logic
for the SHA-256. As SPHINCS™ requires this behaviour as
well, this applies only to the standalone XMSS core.

Accelerating root computation in Merkle trees

In addition to accelerating hash chains, we also explore
hardware optimisations for the compute root operation in
Merkle trees. We limit this exploration to the FORS and MSS
scheme in SPHINCS™. Due to the usage of multiple tree lev-
elsin SPHINCS™, more authentication path calculations than
in LMS and XMSS are required (Fig. 7). Further, related work
has shown that hardware features beyond hash chain com-
putation offer little to no additional benefit for verification
in XMSS [71], and as the performance of SPHINCS™ lacks
behind the stateful schemes in general, it is most relevant for
additional acceleration. Therefore our SPX*-s and SPX*-r
modules can be extended with a MerkleTree submodule. The
compute root operation calculates the root of a tree from a
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leaf and the respective authentication path. Through all tree
levels, two child nodes are combined to obtain their parent
node with a hash function. In SPX"-s, this corresponds to
calculating one digest by compressing both child nodes with
two compress iterations. For SPX™-r, two compress itera-
tions to obtain a 64 byte mask are required. Afterwards, the
masked data is compressed within two more iterations. The
order in which the nodes are hashed depends on whether the
node from the authentication path is a left or right neighbour.
Our core continuously absorbs nodes from the authentication
path, reorders them with the node buffered in hardware and
computes the hash to obtain the parent node. Only the root
node is read from the SHA-2" core, thus dispensing all but
one read operation.

Synthesis results

In Table 2, we report FPGA and ASIC synthesis results
for all configurations of the SHA-2" core. As FPGA tar-
get, we chose an Artix-7, synthesis and implementation are
done with default settings in Vivado 2020.2. For ASIC syn-
thesis, we use the SG13s 130nm process by IHP and the
Cadence Genus synthesis tool in version 21.10-p002_1. The
OpenTitan SHA-256/HMAC core we use as basis consumes
around 56.3kGE. The SHA-256 logic and its registers amount
to slightly more than 50% of that. The next largest blocks
are the register interface, the HMAC logic, and the FIFO,
with approx. 20%, 13%, and 8%, respectively. We prove that
integrating a HBS accelerator for LMS can be as cheap as
11kGE additional gates, an approximate overhead of 20%.
Extending this to a design that also supports SPHINCS™
costs an additional 5kGE, mainly due to the buffer register
for the initial SHA-256 state. Additionally integrating the
MerkleTree accelerator is comparatively expensive, as the
behaviour differs fundamentally and registers to parse leafs
and buffer a digest are required. The “robust” instances are
more expensive, as mask and key registers are required. Inte-
grating SPX*-r requires no additional sequential logic, but
5kGE in combinatorial logic, as the differences in the hash
chain step are more severe. Supporting the MerkleTree com-
putation in the “robust” variant on top requires even more
buffer registers and additional control logic. This becomes
even more obvious if a standalone SPX™-r core is built, as
the hash chain core in SPHINCS™ requires less registers than
the XMSS core.

Our synthesised ASIC can be clocked at 125MHz at most.
The target frequency of the OpenTitan is I00MHz. Even with
the most complex SHA-2T synthesis configuration the crit-
ical path of the design is still determined by the SHA-256
round logic. The FPGA synthesis supports this finding, as
the length of the critical paths deteriorates only minimally.
On a medium-sized Artix-7 board with almost 50k LUTs, all
our designs can be clocked at 100MHz.

Table 2 Synthesis results for different configurations of the SHA-2"
core on FPGA on Artix7 and ASIC using the IHP 130 nm process
SG13S [41]

FPGA ASIC
LUTs FFs Area

Overhead
GE (mm?) (%)

SHA2, HMAC 3480 2400 0.319 56,300 -

+ LM-OTS 4400 3080 0.381 67,200 20
+SPX*-s 5060 3360 0.414 73,000 30
+ MerkleTree-s 5920 4070 0.485 85,600 52
+ WOTS+ 4840 4000 0.464 81,800 45
+SPX*-r 5950 4000 0.492 86,800 55
+ MerkleTree-r 6210 4170  0.575 101,400 80
+SPX*-s 4870 3350 0.407 71,800 28
+ MerkleTree-s 5850 4050 0.476 84,000 49
+ SPX*-r 5510 3860 0.458 80,800 44
+ MerkleTree-r 6050 4120 0.560 98,800 75

5 Benchmark results

We evaluate our flexible hardware accelerator in general and
with respect to the secure boot use case defined in Sect. 3. As
the verification time for hash-based signatures is not constant
and depends on the signed message, we evaluate each param-
eter set and implementation with 1000 different messages.
For a baseline, we start the comparison with our open source
software implementations of LMS, XMSS and SPHINCS™.
Within this comparison all implementations are written in
Rust and are not optimised for the RISC-V target architec-
ture. We extend this by benchmarking the implementations
accelerated by the available SHA-256 core as well.

5.1 LMS and XMSS

First, we evaluate the performance of signature verification
for the stateful signature schemes LMS and XMSS. For this,
we benchmark the verification in software running on the
Ibex processor, accelerated by the general-purpose SHA-256
core, and accelerated by our SHA-2 core. The parameters of
interest are listed in Table 1. The results are shown in Fig. 10.

For LMS, the relative performance improvements for our
approach differ from the relative ranking of a software imple-
mentation with or without general-purpose SHA-256 core.
Our results show that the benefit to use a hardware/software
co-design depends on the Winternitz parameter as estimated
in Fig. 6. Instead of exponentially increasing cycle counts
for larger w, our architecture is fastest for w = 16. Signature
verification with w = 256 performs only 25% slower than
for w = 16 and even faster than for w = 4. Overall, signa-
ture verification with w = 4 is slowest and signature size is
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largest. Hence, we further restrict the Winternitz parameter
for LMS to w € [16, 256].

Comparing the XMSS results with the LMS results for
16 leads to approximately the same relative per-
formance increase. With our accelerator, the performance
of XMSS signature verification is increased in comparison
to software and the SHA-256 core by a factor of 12 and
4, respectively. Due to the “robust” construction, XMSS
is slower by a factor of approximately 6. For LMS with
w = 256, software and the SHA-256 core are outperformed
by a factor of 80 and 20, respectively.

The relationship between different Winternitz parameters
and performance for hardware/software co-design was never
reported in detail. While it is straightforward for standalone
hardware or software implementations (e.g. shown in [43]),
co-designs require to consider costs for data transfers. For our
design, the performance of LMS verification is effectively the
same for all w, while the signature size is reduced by up to
50%. For XMSS this can be estimated to have even a bigger
impact as the compression of the OTS public keys with K is
performed by an L-tree. Increasing the Winternitz parameter
from w = 16 to w = 256 effectively halves the required
node operations within the calculation of the L-tree. As the
L-tree generation is computationally expensive, halving the
required operations impacts the overall performance. There-
fore using Winternitz parameters w > 16 in XMSS would
be desirable not only for secure boot, but as the standardis-
ation is quite progressed, parameter changes are unlikely to
happen.

w =

Rapidly verifiable signatures

As it can be seen in Fig. 10, the execution of a signa-
ture verification is not performed in constant time. Based on
this [13, 59] introduced a general algorithmic optimisation
applicable for stateful HBSs. The approach does not reduce
the total number of operations in signing and verifying but
shifts computations from the verifier to the signer. The signer
searches for a rapidly verifiable signature by appending a
random counter to the message. If the resulting signature
requires the verifier to perform less F operations to reach
the final state, i.e. public key (see Fig. 1) in comparison to
the original signature, a rapidly verifiable signature is found.
This is repeated for a distinct number of trials. The random
counter that requires the verifier to do the least F' operations
is used to generate a rapidly verifiable signature. For software
implementations it has been proven that the performance ben-
efits significantly and thus signer’s additional effort is well
spent. In the following section, we extend our implementa-
tions to give an insight into the impact of this optimisation on
hardware/software co-designs. Further, we extend the exist-
ing knowledge base by applying this optimisation technique
to LMS, as this was not yet performed.
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The results for the rapidly verifiable signatures are plot-
ted in Fig. 11. Performance improvements are evaluated up
to a maximum optimisation counter equal to 10°. For LMS
and XMSS with w = 16 the relative performance improve-
ment is comparable. For our software implementation and
the acceleration with the general-purpose SHA-256 core,
the optimisation decreases the runtime for signature verifi-
cation by approximately 30%. In contrast, the runtime of the
implementations accelerated by our SHA-21 core is only
decreased by 10%. For LMS with w = 256 comparable
observations can be made as the software and the SHA-256
variants have a decrease in runtime by 50% and the SHA-2"
variant by 30%. In general, the optimisation reduces the run-
time. However, the relative improvement is reduced for our
hardware/software co-design. This is due to the fact that
advancing within the hash chains with our design is not as
expensive compared to the rest of the algorithm.

Further, we extend the results reported by [13] for Win-
ternitz parameters w > 16 with our benchmark results. A
larger Winternitz parameter allows for bigger improvement
of the performance. It can be seen that the benefit of using
the rapidly verifiable approach for LMS and XMSS with
w = 16, accelerated by our SHA-27 core, is neglectable and
the effort may not be required by the signer. For larger Win-
ternitz parameters of w = 256 it still is a decent improvement
of the performance.

5.2 SPHINCS*

The performance of the SPHINCS™ signature verification
was evaluated similar to the stateful HBS benchmarks in
software, accelerated by a SHA-256 accelerator and by our
SHA-2" core (provide link for figure 12). As presented in
Sect. 4, our hardware accelerator comes in two different vari-
ants for the acceleration of SPHINCS™. The basic SHA-2"
core accelerating the hash chain calculation and the extended
SHA-2" core including the MerkleTree module accelerat-
ing the compute root calculation in Merkle trees as well. The
SHA-27 core speeds up the signature verification for “sim-
ple” and “robust” by approximately a factor of 14. Similar
to the stateful HBS benchmarks the execution time varies.
The SHA-2** core improves the performance compared
to a software implementation for “simple” and “robust” by
roughly a factor of 21 and 27, respectively. With respect to
the SHA-2 core the extended SHA-21 reduces the latency
by 34% for “simple” and 45% for “robust”. Considering the
relative high hardware utilisation listed in Sect.4 makes the
extended core only suitable for scenarios with strict timing
requirements. As our evaluation in Sect.4 has shown, fur-
ther hardware accelerations are not suitable as the latency is
not heavily influenced by the not yet accelerated calculations.
This makes our SHA-27 core a very efficient implementation
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Tablle 3 Statt.e—of—the—an HBS Algorithm Approach Area Performance
implementations FPGA MHz s
[16] LMS SW - 24 110
w=16,h =10 ARM Cortex-M4
[43] LMS FPGA 968 LUTs 250 6.3
w=265h=15 517 FFs
2 BRAMs
1 DSP
[16] XMSS SW (rap. verif.) - 24 273
w=16,h =10 ARM Cortex-M4
[71] XMSS HW/SW 2580 Registers 95.2 5.68
w=16,h =10 RISC-V RV32IM 1700 ALMs
[44] SPX+ SW - 24 729
256s — simple ARM Cortex-M4
[44] SPX* SW - 24 2070

2565 — robust

ARM Cortex-M4

with low overhead and our SHA-2"" core more performant
with the drawback of higher hardware costs.

Similar to benchmarks with LMS it would be interest-
ing to evaluate the impact of a higher Winternitz parameter
with w = 256. As shown with the LMS benchmarks, the
performance can be expected to be constant. This is due to

the fact that FORS, which is the main design difference,
does not depend on the Winternitz parameter. The update
in parameters would reduce the signature size from 29KiB
down to 21KiB. We did not further investigate w = 256 for
SPHINCS™ and leave it open for future work.
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5.3 Comparison with related work

Table 3 summarises the state of the art relevant to this work.
The reported hardware utilisations do not include the SHA-
256, but only the relative overhead for supporting HBSs
Complete FPGA implementations such as [4, 10, 45, 68] are
out of scope as their use case differs from ours. The software
benchmarks in [13, 16, 44] provide interesting comparisons,
as the performance of the ARM Cortex-M4 is similar to that
of the Ibex. However, in these works, assembly optimised
SHA-256 functions are used, thus outperforming our plain
Rust implementations. In addition, the authors of [13] use
the rapidly verifiable approach for XMSS to lower verifi-
cation time, thus outperforming the straightforward XMSS
implementation of [ 16] by factor two. The LMS FPGA imple-
mentation in [43] supports the verification in hardware with
a compact design. In comparison to our hardware/software
co-design, their verification takes 20% longer in terms of
absolute latency. The authors of [71] propose different hard-
ware extensions for XMSS but conclude that any acceleration
beyond the hash chain computation does not lead to improved
performance. A comparison of area utilisation is not applica-
ble, as they use a different FPGA architecture. They highly
optimise their architecture for XMSS and achieve a latency
which is lower by a factor of three.

As stated before, hardware/software co-designs for
SPHINCS™ and combined stateful and stateless HBS schemes
have not been reported. The comparison with related work
demonstrates that our designs improves the state-of-the-art
in performance of HBSs and in their adaptability for appli-
cations.

5.4 Secure boot
In this section, we evaluate the applicability of HBSs for a
post-quantum secure boot. To put our results into perspec-

tive, we include the time required to hash an application
firmware image into our comparison. We use the—at time
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of writing—most recent Git master version' of the TockOS
kernel as reference firmware [46] and compile it in release
mode, which results into a binary size of 124KiB. To take
a minimal application into account, we set the code size to
128KiB.

We compare both software only and hardware acceler-
ated implementations. We use available open source Rust
implementations for RSA% and ECC.? For comparison with
hardware accelerated RSA and ECC we use the OpenTitan
BigNumber accelerator (OTBN). The results of these com-
parisons are listed in Table 4.

In software, stateful HBSs allow for a slightly better per-
formance for signature verification than ECC or RSA. Using
a stateless HBS would mean a slight performance degrada-
tion. For implementations where the boot timing for classical
asymmetric algorithms is not required to be accelerated, it is
also not required for HBSs.

The hardware accelerated LMS implementation exceeds
the performance of RSA and ECC run on the OTBN. In
a secure boot, hashing the firmware would be the crucial
part, as the verification time can be reduced to only 37% of
the firmware digest time. For XMSS, the duration for sig-
nature verification doubles in comparison to RSA, but still
is in a comparable range of execution time. For SPHINCS™
the performance degrades for both our accelerator designs
in comparison to the classical asymmetric algorithms per-
formed on the OTBN.

To conclude, the performance of the stateful HBS schemes
is comparable to that of classical asymmetric algorithms
accelerated by the OTBN. It should be noted that the hard-
ware footprint of our SHA-2T core is significantly smaller
than that of the OTBN. The SPHINCS™ variants degrade the
performance of signature verification. However, our accel-
erator makes the overhead bearable. Digesting the firmware

1 https://github.com/tock/tock/commit/db7cb3f.
2 https://github.com/RustCrypto/RSA.
3 https://github.com/RustCrypto/elliptic-curves/tree/master/p256.
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Table4 Cycle count [cc] in

MCvel f the i RSA ECC LMS XMSS SPX*-s SPX*t-r

-ycles of the signature 3072 P-256 w=256 w=16 2565 2565

verification executed on an Ibex

processor and overhead relative SW 37.0 50.0 30.1 26.6 70.0 172

to hashing a 128KiB firmware ’ ) ' ' '
CCverif [ccsu—hash 141% 190% 114% 101% 266% 654%
OTBN or SHA-2+ 1.07 0.617 0.524 2.01 4.95 13.2
CCverif [¢Chu—hash 75% 43% 37% 142% 349% 930%
SHA-2F+ - - - - 3.26 6.61
CC"’e’if/Cﬁ'lxw—hash - — - - 230% 465%

Table 5 Code size of our Rust libraries compiled for the Ibex and
optimised for runtime.

Table 6 Number of instructions, where a single-instruction-skip-fault
will lead to successful verification of an invalid signature

LMS XMSS SPX*-s SPX*t-r

LMS LMS SPX*-s SPX*t-r

Size in KiB 4.8 11.5 15.9 (+40.1) 20.8 (+40.1)

# of faults 6 1 3 3

SPHINCS™ with SHA-256 as hash function additionally requires SHA-
512 to reach NIST security level 5 [38, 60]. This is due to a shortcoming
in the initial SPHINCS™ specification

and verification with SPX™-s can be achieved below 5 MCy-
cles.

Code size

In general, the boot ROM size is constrained. Within
the OpenTitan the boot ROM has a size of 32KiB. To fur-
ther allow to evaluate the applicability of HBSs, we list the
required code size for our software libraries in Table 5. All
HBS libraries are compiled with optimisations for runtime.

6 Implementation security

While our hardware/software co-design for HBSs enables
the transition to a post-quantum secure boot, it still requires
a carefully developed secure boot implementation. The
secure boot concept is straightforward in theory, but its
robust implementation is not. In practice, this mainly applies
to memory vulnerabilities and the resilience against fault
attacks. A prominent example for memory vulnerabilities is
the checkm8 exploit, which affects most of Apple’s devices
and allows arbitrary code execution [6]. Unfortunately, this
is not an isolated incident, as memory vulnerabilities are
known for various devices from different manufacturers [1,
20-26, 40]. We counteract the threat of erroneous implemen-
tations regarding memory vulnerabilities by implementing
our HBSs libraries in Rust. Of course, this is only one step
towards an open-source bootloader written entirely in Rust,
as this requires much more effort. Nevertheless, to assess the
threat of fault injections to our implementations, we thor-
oughly analyse the fault attack resilience in the following
section and discuss the need of dedicated countermeasures.

6.1 Fault injection

Prominent open source secure bootloader implementations,
for example MCUboot, wolfBOOT, or the OpenTitan secure
boot implementation, include software-based countermea-
sures against fault attacks [47, 51, 72]. Some of the imple-
mentations allow to enable different levels of fault injection
hardenings, each of which increases the resilience but conse-
quently also the overhead in terms of performance and code
size. Within this work, we define the protection against a
fault model of a single instruction skip as minimum require-
ment. Such a fault model may allow an adversary to boot an
image with an invalid signature and is also used to evaluate
the resilience of the bootloaders listed above. We employ the
open source ARCHIE framework [32] to find vulnerabilities
to such a fault model in our code. Our tests cover the three
implementations of LMS, XMSS, and SPHINCS™. During
the tests we apply the instruction skip fault model to each exe-
cuted instruction to test whether an invalid signature image
pair is assessed as valid.

Table 6 lists the results of our experiments. For LMS, two
unique locations were identified, which allow to tamper with
the signature verification routine. The first vulnerable loca-
tion corresponds to an instruction that can be faulted at five
different points in time over the complete execution of the
verification routine. It is an AUIPC (add upper immediate to
pc) instruction, which is part of a for-loop using the authen-
tication data to calculate the top-node of the Merkle tree, i.e.
the LMS public key candidate. For this analysis, we use a
signature containing a Merkle tree with five layers. In each
for-loop iteration, this instruction is executed and therefore
could possibly be tampered to manipulate the signature ver-
ification. As the instruction adds an immediate value to the
program counter and stores it in a destination register, it is
used to calculate addresses relative to the program counter
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to prepare a branch. If the instruction is skipped, the verifi-
cation routine prematurely returns an Ok value to the calling
function, which is wrongly assumed as successful signature
verification. This is due to the fact that the authentication path
calculation returns the public key candidate, encapsulated
with a Result, that—in case of a fault injection—is passed
directly to the verification routine. A simple re-factoring,
such that the authentication path calculation only returns the
public key candidate, and the Result value Ok is returned
independently by the sub-function calling the authentication
path calculation should be enough to mitigate this vulnera-
bility. In the event of a fault attack, the verification routine
will detect the tampering, as it expects a Result and gets a
plain data array. The second vulnerable location is a branch
instruction, which stems from a map_err routine. This rou-
tine is called to handle the returned value if Result is set to
Error, so obviously skipping the check means that an invalid
signature is verified successfully. A simple countermeasure
consists of a duplicated check and ensuring that the com-
piler does not remove the—seemingly unnecessary—second
operation.

For XMSS, a single vulnerable location was identified,
which allows to tamper with the signature verification rou-
tine. This is also related to the check of the return value of
the signature verification routine and can consequently be
eliminated by duplicating the check.

For the two variants of SPHINCS™, robust and simple,
three vulnerable locations were identified, which allow to
tamper with the signature verification routine. The first is
a conditional set instruction within the compare routine for
the Slice type. This routine is used to compare the public key
with its candidate. Again, duplication is sufficient to mitigate
the threat. The second vulnerability is a jump instruction to
enter the signature verification routine. This call has to be
hardened, such that it is detected if the routine is skipped.
Such a countermeasure can be designed by adding so-called
prologs and epilogs to function calls (see next paragraph).
The third location is a branch instruction that stems from
the assert_eq! macro to check the returned value in the main
routine. As before, this can be easily hardened by duplicating
the statement.

Realising software-based countermeasures

The findings of the ARCHIE experiments can be grouped
into the two categories of I) calling a function, and II)
handling of data. In the case of I) calling a function, a
countermeasure may be designed similar to the prolog and
epilog approach of the MCUboot fault injection hardenings
[51]. Prolog and epilog correspond to code that is automat-
ically inserted before and after each call that ensures that
the function was called and returned as expected. Due to
the differences of Rust and C, future work is required to
design such a countermeasure in Rust. For /1) handling data,
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we demonstrated that duplication is often sufficient to mit-
igate the threat of a single instruction skip. However, for
the duplication countermeasure to be effective, any compiler
optimisation to erase the seemingly unnecessary duplicated
operations must be evaded. One promising approach may
be to cast the values into a volatile type. Subsequently, the
core::ptr::read_volatile function must be used to access the
values. This forbids the compiler to detect the duplicated
statement and as a result it does not remove it. The draw-
back of this approach is that it requires an unsafe statement,
which should be avoided in Rust if possible. Further, we want
to emphasise that, while we see our analysis as a reasonable
approach to apply software-based countermeasures and ver-
ify their effectiveness, we do not deem it an ideal solution.
Ideally there would be a dedicated crate, which offers fault
injection hardened replacements of frequently used meth-
ods regarding calling functions, returning values, or assert
macros. The subtle crate demonstrates the realisation of such
a concept for constant-time cryptographic implementations.
To the best of our knowledge there are currently no public
crates available which cover fault injection hardenings.

Limitations of the instruction-skip fault model

So far, the resilience analysis in this section was lim-
ited to a single-instruction-skip fault model. In contemporary
literature on fault attacks, this is a common practice for inves-
tigating attacks and designing countermeasures [7, 8, 56]. In
reality, however, this fault model is a vast simplification of
the physical effects of fault injection and obviously limited
to software implementations. For software implementations,
the fault model can be extended to cover arbitrary instruction-
skips and faults that tamper data values in ALU registers.
Research that focuses on the safety domain of embedded sys-
tems in hazardous environments covers all possible effects
that are introduced by the environment (e.g. radiation) with
two major groups: data-flow and control flow corruption [29,
30, 57, 58, 61, 66, 70]. Obviously, if arbitrary control and
data-flow corruption is considered, software-based counter-
measures can no longer simply be realised with a few changes
to high-level (Rust or C) source code. Instead, to encounter
data-flow errors, the ALU registers are divided into a primary
and a shadow set, that “shadows” the values of the primary
registers. Every assembly instruction is duplicated, such that
the operands of the duplicated instructions are the shadow
registers of the primary registers [29, 30, 58, 61]. Control-
flow corruption is mitigated by inserting signature checks
between blocks of assembly instructions [57, 70]. In [65],
an integration of these concepts into the clang toolchain was
presented, such that code is hardened automatically during
compilation. Obviously, the overhead of these countermea-
sures far exceeds the minimal overhead needed to mitigate
the threat of single-instruction skips. In [33], steps to transfer
these concepts from the safety domain, where faults comply
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with a common noise model, to the security domain, where
faults are more precise, were taken. For this work, we deem
the protection against the single-instruction-skip fault model
sufficient.

Hardware-based countermeasures

Generic hardware-based countermeasures are mostly built
around redundancy, integrity codes, and encodings with high
hamming distance, such that getting from one valid encoding
to another by means of fault injection is hard. The OpenTi-
tan [47] incorporates such countermeasures for its memory,
registers, bus interface, finite state machines (FSMs) of
peripherals, and even has a complete lockstep core, that dupli-
cates important logic of the CPU to detect inconsistent results
between the two cores.

The protection of cryptographic circuits requires more
sophisticated approaches. Cryptographic algorithm are sub-
ject to the threat of differential fault analysis (DFA) [12] and
related attacks, that leak secret information to an adversary.
The complete duplication of a cryptographic circuit to detect
faults is possible, but with precise fault injection methods, an
adversary could—in theory—inject the same error into two
parts of the chip. In [2, 64], an approach to combine redun-
dancy with encoded data that is processed concurrently to the
original data, was proposed. In [63], this theory was applied
to AES. Another interesting approach based on gadgets that
provide both resilience against (passive) side-channel attacks
and (active) fault attacks was proposed in [27, 28].

Recently, the verification of fault injection countermea-
sures gained more interest. Frameworks such as [54, 62]
allow to verify a netlist regarding active security, by inserting
up to k faults into the circuit model, e.g. by inverting wires.

As stated above, we deem the protection against single-
instruction-skips sufficient. To boot an image with an invalid
signature, advanced attacks, such as differential fault analy-
sis (DFA), on signature verification and the underlying hash
function of the HBS scheme are of no help. Therefore, an
adversary is limited to faults that force the verification rou-
tine to accept the invalid signature. Targeting the hash core
does not make sense in such a scenario. Further, our hardware
design is hardened with generic OpenTitan countermeasures,
as all its peripherals. For signature generation in HBS multi-
tree schemes, the integration of approaches such as [2, 28]
makes sense, as these schemes are extremely vulnerable to
fault attacks [3, 17]. In this case, the software also must be
hardened more thoroughly, e.g. with the approaches intro-
duced in the previous paragraph. We leave such a design
open for future work.

7 Conclusion and outlook
In this work, we show that the transition to a post-quantum

secure boot using schemes is feasible for today’s schemes is
feasible for today’s designs. In contrast to other works, we

provide a flexible hardware/software co-design to support
both stateful as well as stateless schemes from boot up. We
demonstrate that by exploiting similarities of LMS or XMSS
and SPHINCS™ low hardware overheads can be achieved.
Hence, making the discussion to choose between stateless
and stateful HBSs one indifferent to the underlying hardware.
Further, our design allows to easily incorporate updates with
respect to the parameters without changes to the hardware
design.

Regarding the parameter sets that should be chosen for
secure boot with HBSs, we come to the following conclu-
sions: As NIST views both “simple” and “robust” constructs
as secure [19] we recommend the usage of LMS and
SPHINCS™-s, due to their advantageous performance. Our
design demonstrates that both can be implemented with
a minimal hardware footprint. The synergy between LMS
and SPHINCS ™ -s makes them ideal for a flexible architec-
ture. Although, it should be noted that the small differences
between the OTS in LMS and SPHINCS ™ -s make the design
more complicated than it needs to be. For XMSS and
SPHINCS™-r this is even more obvious. From an imple-
menters perspective, a uniform approach for all “simple” and
all “robust” constructs would be desirable constructs would
be desirable. We established that our architecture allows to
choose w = 256 for LMS without a significant performance
penalty. Due to the small signature size, this is our Winternitz
parameter of choice.

We would like to highlight that our design is suited for
fast transition, as well as being a starting point for further
research, in particular for designs and parameter explorations
of SPHINCS™. NIST even requested public feedback for
new SPHINCS™ parameter sets [53]. While their focus is a
lower number of maximum signatures, we suggest to revisit
higher Winternitz parameters. As shown in this work, on
hardware/software co-designs this does not degrade the per-
formance but reduces the signature size. With this paper we
put forward that hardware/software co-designs are the most
relevant solution for problems like secure boot. Software only
implementations will not be suitable for embedded devices
due to timing requirements and full hardware implemen-
tations are very expensive in terms of overhead and cost.
Dedicated hardware/software co-designs for SPHINCS™ are
largely unexplored. With our flexible HBS design for secure
boot we hope to motivate more research in this direction.
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