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Abstract
Efficient implementation of pairings is a fundamental ingredient in pairing-based cryptographic protocols. The Elliptic Net
algorithm is an alternative method to Miller’s algorithm for computing the (Optimal) Ate pairing in polynomial time. In this
paper, we utilize several tricks to speed up the Elliptic Net algorithm. Firstly, we eliminate the inversion in the improved
Elliptic Net algorithm, which allows for further improvements under certain circumstances. Second, we apply lazy reduction
to the Elliptic Net algorithm for a better performance. Finally, we propose a new derivation of the formulas for computing
the (Optimal) Ate pairing on the twisted curves. In addition, we provide implementations of all versions of the Elliptic Net
algorithm on personal computers based on RELIC toolkit. Our implementations indicate that on this research line the Elliptic
Net algorithm is about 80% faster than the previous fastest ones on the twisted 381-bit BLS12 curve and 71.5% faster on the
twisted 676-bit KSS18 curve on 64-bit platforms, respectively.
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1 Introduction

Pairing-based cryptography, as a member of elliptic curve
cryptography (ECC), has utilized pairings to several notable
applications beyond traditional and advanced cryptographic
tools containing identity-based encryption [1,2], aggre-
gate signature [3,4], functional encryption [5] and zero-
knowledge succinct non-interactive argument of knowledge
(zk-SNARK) [6,7]. In addition, pairings can be used for
public-key compression [8] and verifiable delay function
construction [9] in isogeny-based cryptography. Most of
these applications are built on the Tate pairing and its vari-
ants such as the Eta pairing [10], the Ate pairing [11,12], the
R-ate pairing [13] and the Optimal Ate pairing [14].

Efficient algorithms for pairing computations play an
essential role in implementations of relevant protocols. There
are two polynomial time algorithms for computing the Tate
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pairing and its variants. One is Miller’s algorithm [15] which
was proposed in 1986. The other is Elliptic Net algorithm
(ENA) which was proposed in 2007 by Stange [16]. Miller’s
algorithm has been heavily optimized since 2000 and is now
in a relativelymature phase.Many tricks have been employed
to Miller’s algorithm for efficiency, such as twist maps and
lazy reduction. Twistmaps of elliptic curves allowus to trans-
fer the operations of an extension field to its own proper
subfield, which considerably reduces the number of multi-
plications. For a more in-depth description of twist maps,
we refer to [11,17]. Lazy reduction was first introduced in
quadratic extension field arithmetic for Miller’s algorithm
by Michael Scott [18] and further developed in [19]. It saves
several modular reductions. Hence, it also brings significant
improvements toMiller’s algorithm. Stange [16] first defined
elliptic nets and gave a relationship between elliptic nets and
the Tate pairing [1]. Elliptic nets are generalized from elliptic
divisibility sequences [20]. These sequences arise from any
choice of an elliptic curve and rational points on such a curve.
For more information about elliptic divisibility sequences,
see [21]. The method called Double-and-Add for updating
each value of the block in the ENAwas proposed by Shipsey
[22]. One can compute pairings using elliptic nets of rank
2. The explicit formulas for computing some variants of the
Tate pairing using the ENA were given in [23,24]. In 2015,
an improved version of the ENA (IENA) was proposed by
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Chen et al. [25]. They reduced the dimension of the block
for pairing computations at the price of one inversion at the
DoubleAdd step. Hence, the IENA can perform well if the
parameter of the Miller loop has low Hamming weight. It
should be noted that most popular pairing-friendly curves
meet this condition. Due to the properties of the structure of
elliptic nets, it is possible to design some parallel strategies
for the ENA to compute pairings. Moreover, we can update
all values of a block in each iteration of the ENA simultane-
ously if we change the dimension of the first vector of a block
from eight to ten. More detailed information can be found in
[26]. It is known that the (I)ENA as an alternative method to
pairing computations is still more costly than Miller’s algo-
rithm. Till now, there is a relative lack of research on the
implementation of the (I)ENA.

Our Contributions. In this work, we aim to strengthen the
(I)ENA as an easy-to-implement and efficient algorithm and
to reduce the gap between the (I)ENAandMiller’s algorithm.
Previous works on the (I)ENA preferred to implement this
algorithm in Magma. Therefore, our work first implements
the (I)ENA based on RELIC toolkit [27] in a combination
of C and assembly language. Note that the base field arith-
metic is implemented in the assembly language in the RELIC
library. Our specific contributions are as follows.

• We eliminate the inversion completely in the IENA. For
the IENA, an inversion is always involved at the Dou-
bleAdd step in the Double-and-Add algorithm. In this
paper, we find that an inversion can be eliminated at
the price of several multiplications in the IENA. The
implementation indicates that the IENAworkswell when
utilizing this trick.

• We use the (I)ENA to compute the Optimal Ate pairing
entirely on the twisted curve inspired by the previous
work of Costello et al. [28], who explored the pairing
computation entirely on the twisted curve via the process
of Miller’s algorithm. In Miller’s algorithm, the pairing
computation contains addition and doubling steps of the
Miller loop. Since the procedure of the (I)ENA relies on
the updating of the block and does not involve the eval-
uation of the line and vertical line at either addition or
doubling step of the Miller loop, the use of the (I)ENA to
compute the pairing on the twisted curve still requires a
general proof. In this work, we present a new proof based
on the theory of divisor to verify the relationship between
the (Optimal) Ate pairing on an elliptic curve and its
twisted curve. This proof relies only on the definition of
the Tate pairing and the theory of divisors. Furthermore,
we derive the explicit formulas of the line function of the
Optimal Ate pairing on the twisted curve. In our imple-
mentations, we boost the performance of the (I)ENA on
a 381-bit BLS12 curve at the 128-bit security level and

a 676-bit KSS18 curve at the 192-bit security level by
using twist maps, respectively [29].

• We adopt lazy reduction [30] which only performs one
reduction for the sum of several multiplications to the
(I)ENA. In these algorithms, we observe that there are
many terms of the form A ·B−C ·D, where A, B, C, D
belong to a finite field. This inspires us to apply lazy
reduction for the (I)ENA. In our implementation, lazy
reduction reduces by around 27% the number of modular
reductions.

We conclude that pairings can be efficiently computed
with the ENA. Our optimized implementation of the ENA
with an execution time of 2.16ms runs up to 4.9 times faster
than the previous one on the 381-bit BLS12 curve on x64
platforms. Notice that Miller’s algorithm performs well in
our implementation which takes about 1.57ms on such a
curve. Even though the ENA is still slower than Miller’s
algorithm, the ratio between the cost of ENA and Miller’s
algorithm is reduced from over 9 times to less than 2 times
after the development of this work.

The rest of this paper is organized as follows. Section 2
gives an overview of pairings, twists of elliptic curves and
the (I)ENA. In Sect. 3, we replace an inversion by several
multiplications in the IENA.Section 4 analyzes the (Optimal)
Ate pairing entirely on the twisted curve that is computed by
the (I)ENA. In Sect. 5, we apply lazy reduction to the (I)ENA.
The implementation and efficiency analysis are discussed in
Sect. 6. Section 7 concludes the paper.

2 Preliminaries

In this section, we will give the definition of the Tate pairing
and the (Optimal) Ate pairing. A brief description of twists
of elliptic curves and the (I)ENA will also be provided.

2.1 Pairings

Let Fq be a finite field with the characteristic not equal to
2 or 3. Let E : y2 = x3 + Ax + B be a short Weierstrass
curve over Fq , where A, B ∈ Fq and 4A3 + 27B2 �= 0. We
denote the q-power Frobenius endomorphism on E by πq .
The order of E(Fq) is given by #E(Fq) = q + 1− t , where
t is the Frobenius trace of πq . Choose a large prime r with
r | #E(Fq). Let k ∈ Z be the embedding degree with respect
to r , i.e., the minimal positive integer satisfying r | qk − 1.

Choose P ∈ E(Fq)[r ] and Q ∈ E(Fqk )[r ]. We denote by
μr the group of the r th roots of unity in Fqk . For an integer
i and a point S on E , let fi,S be a rational function such that

Div( fi,S) = i(S) − (i S) − (i − 1)(∞).
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We also call the function fi,S as the Miller function. Then
the reduced Tate pairing [31] is defined as

Tate : E(Fq)[r ] × E(Fqk ) → μr

(P, Q) �→ Tate(P, Q) = fr ,P (Q)q
k−1/r .

Furthermore, if we choose P and Q in specific subgroups of
E[r ], the pairing computation can be sped up. Define

G1 � E[r ]
⋂

Ker(πq − [1]),
G2 � E[r ]

⋂
Ker(πq − [q]).

Choose P ∈ G1 and Q ∈ G2, respectively. Let T = t − 1.
We can define a pairing as follows.

AteE : G2 × G1 → μr

(Q, P) �→ AteE (Q, P) = fT ,Q(P)q
k−1/r ,

which is called the Ate pairing [11].
The Ate pairing is the case of the Eta pairing [10] on

ordinary elliptic curves. The length of the Miller loop of the
Ate pairing is shorter than that of the Tate pairing [12,13].
The Optimal Ate pairing allows us to obtain the shortest loop
length [14,32,33]. Let lS,T be the line through two points S
and T . Let vT be the vertical line passing through point T .
The definition of the Optimal Ate pairing is given in the
following theorem.

Theorem 1 [14, Theorem 4] Let λ = αr = ∑ϕ(k)
i=0 ciqi with

r � α, where ϕ(k) is the Euler function of k, then we can
define a bilinear map

OptE : G2 × G1 → μr

(Q, P) �→ OptE (Q, P)

=
⎛

⎝
ϕ(k)−1∏

i=0

f q
i

ci ,Q
(P) ·

ϕ(k)−1∏

i=0

l[si+1]Q,[ci qi ]Q(P)

v[si ]Q(P)

⎞

⎠
qk−1/r

,

where si = ∑ϕ(k)
j=i c j q

j .

If αkqk−1 �= ((
qk − 1

)
/r

)∑ϕ(k)−1
i=0 ici qi−1 (mod r), then

OptE is non-degenerate. We call OptE as the Optimal Ate
pairing.

The implementation of the Tate pairing and its variants
contains the Miller loop step and the final exponentiation
step. At the Miller loop step, we first compute the value of
the Miller function. We then raise this value to the power
of (qk − 1)/r at the final exponentiation step. For the com-
putation of the Optimal Ate pairing, one should consider
computing the value of line functions at the Miller loop step,
which depends on the family of pairing-friendly curves. In

this work, we mainly consider the implementation of the
Optimal Ate pairing on the BLS12 and KSS18 curves. More
specific information will be discussed in Sect. 6.

2.2 Twists of elliptic curves

In this subsection, we first recall the definition of twists of
elliptic curves.

Definition 1 Let E be an elliptic curve over Fq . An elliptic
curve E ′/Fqk/d is a twist of degree d of E if there exists
an isomorphism �d : E ′ → E defined over Fqk and d is
minimal.

The potential degree d of twists is 2, 3, 4 or 6 [1,17]. For
the BLS12 and KSS18 curves, the parameter A = 0 and the
degree d = 6. In this case, the equation of the curve E is
y2 = x3 + B, and the curve E ′ is the sextic twist of E . The
M-type and D-type twists are given below [34].

M − t ype : E ′ : y2 = x3 + Bξ

�6 : E ′ → E

(x, y) �→
(
ξ1/3x, ξ1/2y

)
,

D − t ype : E ′ : y2 = x3 + B/ξ

�6 : E ′ → E

(x, y) �→
(
ξ−1/3x, ξ−1/2y

)
.

(1)

Furthermore, we have the following theorem for the Tate
pairing:

Theorem 2 [35, Chapter IX, Theorem 9] Let E1/Fq be an
elliptic curve. Let r0 be a prime such that r0 | #E1(Fq).
Suppose that the embedding degree with respect to q and r0
is k. Let φ : E1 → E2 be an isogeny, where E2 is an elliptic
curve over Fqk . Choose P ∈ E1(Fq)[r0] and Q ∈ E2(Fqk ).

We have e(φ(P), Q) = e(P, φ̂(Q)), where φ̂ is the dual of
φ.

Note that �d is an isogeny of degree 1. If we denote the
dual of�d by �̂d , then �̂d◦�d = [1]. Recall the definition of
E in Sect. 2.1. Choose P ∈ E(Fq)[r ] and Q′ ∈ E ′(Fqk/d ).

We can compute pairings (Opt)AteE ′(�̂d(P), Q′) on the
twisted curve E ′ whose Miller loop length is the same as the
loop length of (Opt)AteE (P, �d(Q′)) on the original curve
E .
Furthermore, define

	d = �−1
d ◦ πq ◦ �d .

One can verify that 	d : E ′ → E ′ is a homomorphism
defined over Fqk [36,37], which can help us get some useful
conclusions in Sect. 4.
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2.3 The elliptic net algorithm

An elliptic net is a map W from a finitely generated free
Abelian groupG to an integral domain R, satisfying a certain
recurrence relation as follows.

W (α + β + δ)W (α − β)W (γ + δ)W (γ )

+ W (β + γ + δ)W (β − γ )W (α + δ)W (α)

+ W (γ + α + δ)W (γ − α)W (β + δ)W (β)

= 0,

(2)

where α, β, γ, δ ∈ G.
For each n ∈ Z

+, division polynomials ψn ∈ Z[A, B, x,
y] are defined as follows [17].

ψ0 = 0, ψ1=1, ψ2=2y,

ψ3 = 3x4+6Ax2+12Bx−A2,

ψ4 = 4y(x6+5Ax4+20Bx3−5A2x2−4ABx

−8B2−A3),

ψ2n+1ψ1 = ψn+2ψ
3
n −ψn−1ψ

3
n+1 (n ≥ 2),

ψ2nψ2 = ψn(ψn+2ψ
2
n−1−ψn−2ψ

2
n+1) (n ≥ 3).

Division polynomials are examples of elliptic nets of rank
1, i.e., W (i) = ψi , ∀i ∈ Z. They can be used to compute
scalar multiplication. Elliptic nets of rank 2 are applied for
pairing computations. The relationship between theTate pair-
ing and an elliptic net is given below.

Theorem 3 [16, Theorem 6] Choose P ∈ E(Fq)[r ] and
Q ∈ E(Fqk )[r ]. Let ∞ be the point in infinity. We denote the
elliptic net associated with E, P, Q by WP,Q; then, we have

fr ,P (DQ) = WP,Q(r + 1, 1)WP,Q(1, 0)

WP,Q(r + 1, 0)WP,Q(1, 1)
,

where DQ = (Q) − (∞).

One can compute the Tate pairing in polynomial time by
using the ENA. For simplicity, we abbreviate WP,Q(n, s)
to W (n, s). Assume that W (1, 0) = W (0, 1) = 1. In [16],
Stange defined a block that consists of a first vector of eight
consecutive terms centered on the termW (i, 0) and a second
vector of three consecutive terms centered onW (i, 1), where
i ∈ Z. For the first vector, all ofW (n, 0) terms can be updated
by two formulas in Eqs. (3)-(4). By updating the first vector
in the iteration, we can compute the scalarmultiplication. For
the second vector, we update the W (n, 1) terms by Eqs. (5)-
(8). The updating process of a block V centered on i is shown
in Figure 1.

Fig. 1 Updating process of a block centered on i

W (2i − 1, 0) = W (i + 1, 0)W (i − 1, 0)3

−W (i − 2, 0)W (i, 0)3, (3)

W (2i, 0) = (W (i, 0)W (i + 2, 0)W (i − 1, 0)2

−W (i, 0)W (i − 2, 0)

W (i + 1, 0)2)/W (2, 0). (4)

W (2i − 1, 1) = (W (i + 1, 1)W (i − 1, 1)W (i − 1, 0)2

−W (i, 0)W (i − 2, 0)W (i, 1)2)/W (1, 1),

(5)

W (2i, 1) = (W (i − 1, 1)W (i + 1, 1)W (i, 0)2

−W (i − 1, 0)W (i + 1, 0)W (i, 1)2), (6)

W (2i + 1, 1) = (W (i − 1, 1)W (i + 1, 1)W (i + 1, 0)2

−W (i, 0)W (i + 2, 0)W (i, 1)2)/W (−1, 1),

(7)

W (2i + 2, 1) = (W (i + 1, 0)W (i + 3, 0)W (i, 1)2

−W (i − 1, 1)W (i + 1, 1)

W (i + 2, 0)2)/W (2,−1). (8)

In some certain conditions, the valueW (2, 0) can be fixed
to 1 by the equivalence of elliptic nets [38].

Algorithm 1 The improved Elliptic Net algorithm [25]
Require: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d =

W (2, 1), e= W (−1, 1), f = W (2,−1), g = W (1, 1) of an elliptic
net which satisfies W (1, 0)=W (0, 1)=1 and n= (dldl−1...d0)2 ∈
Z with dl =1 and di ∈{0, 1} for 0≤ i ≤ l−2

Ensure: W (n, 0),W (n, 1)
1: V ← [[−a,−1, 0, 1, a, b, c], [1, g, d]]
2: for i = l − 1 downto 0 do
3: if di == 0 then
4: V ← Double(V )

5: else
6: V ← DoubleAdd(V )

7: end if
8: end for
9: return V [0, 3], V [1, 1]
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Generally, updating a block centered on i to a block cen-
tered on 2i is called the Double step, and updating a block
centered on i to a block centered on 2i + 1 is called the
DoubleAdd step, which is represented by Double(V ) and
DoubleAdd(V ), respectively. In [25], the authors improved
the ENA by reducing the dimension of the first vector in an
elliptic net from eight to seven. But we need to update the
last term of the first vector at the DoubleAdd step by the
following formula:

W (2i + 4, 0) = (W (2i + 3, 0)W (2i + 1, 0)W (2, 0)2

− W (3, 0)W (1, 0)W (2i + 2, 0)2)/W (2i, 0).
(9)

We show the IENA inAlgorithm1. The algorithm to compute
the process of Lines 2-8 in Algorithm 1 is called the Double-
and-Add algorithm. In fact, the overall process of the ENA is
similar to that of the IENA. The main difference between the
ENA and IENA is the saved term in the first vector, which
affects the initial values of the block and theDouble-and-Add
algorithm.

3 Elimination of the inversion

In the IENA, an inversion is always involved at the Dou-
bleAdd step. In this section, we will exploit the equivalence
of the elliptic nets and perform local processing on the IENA
to avoid the inversion in exchange for few multiplications.

When a block centered on i is updated to a block centered
on 2i + 1, we need to compute the inverse of W (2i, 0) for
updating the value of W (2i + 4, 0) from Equation (9). To
eliminate this inversion, wemultiplyW (λ, 0)2i−3≤λ≤2i+4 by
W (2i, 0) simultaneously at the DoubleAdd step.We have the
following theorem to support this approach.

Theorem 4 Given a block V centered on i , i.e.,

W(λ,0)i−3≤λ≤i+3 and W(λ,1)i−1≤λ≤i+1∈Fqk .

1. If W(λ,0)i−3≤λ≤i+3 are multiplied by α∈F
∗
qk
, i.e.,

Ŵ (λ, 0)i−3≤λ≤i+3 = α · W (λ, 0)i−3≤λ≤i+3,

then at the DoubleAdd step, we will obtain the block cen-
tered on 2i + 1, which is updated as follows.

Ŵ (λ, 0)2i−2≤λ≤2i+4 = α4 · W (λ, 0)2i−2≤λ≤2i+4,

Ŵ (λ, 1)2i≤λ≤2i+2 = α2 · W (λ, 1)2i≤λ≤2i+2.

Furthermore, if α �= 0 is in a proper subfield of Fqk , then

(
ŴP,Q(s, 1)

ŴP,Q(s, 0)

) qk−1
r

=
(
WP,Q(s, 1)

WP,Q(s, 0)

) qk−1
r

, (10)

where s is an integer.
2. If W(λ,0)i−3≤λ≤i+3 and W(λ,1)i−1≤λ≤i+1 are multiplied

by α∈F
∗
qk
, then at the DoubleAdd step, all the values of

the block will be multiplied by α4, and Equation (10) still
holds.

Proof Recall the recursive formula for W (2i − 1, 0) and
W (2i, 0) in Equations (3)-(4). We multiply W (λ,

0)i−3≤λ≤i+3 by α; then, we have

Ŵ (2i − 1, 0) = α4(W (i + 1, 0)W (i − 1, 0)3

− W (i − 2, 0)W (i, 0)3)

=α4 · W(2i − 1, 0).

Ŵ (2i, 0) = α4 · W (2i, 0).

(11)

Therefore,

Ŵ (λ, 0)2i−2≤λ≤2i+3 = α4 · W (λ, 0)2i−2≤λ≤2i+3.

For the term W (2i + 4, 0),

Ŵ (2i + 4, 0) = α8(W (2i + 3, 0)W (2i + 1, 0)W (2, 0)2)

− α8(W (3, 0)W (1, 0)W (2i + 2, 0)2)/α4W (2i, 0)

= α4W (2i + 4, 0).

This finishes the proof for the first assertion.
Now we consider the second vector in the block. Note

that there are only two values of the first vector involved
for computing each W (λ, 1)2i≤λ≤2i+2. The new updated
Ŵ (λ, 1)2i≤λ≤2i will be multiplied by α2.

Next, we will verify Equation (10). For any integer s,

ŴP,Q(s, 0) = α2l · WP,Q(s, 0),

ŴP,Q(s, 1) = αl · WP,Q(s, 1),

where l ∈ Z. If the constant α is chosen to be in a proper

subfield of Fqk , then α
qk−1
r is equal to 1. This verifies Equa-

tion (10).
If W(λ,0)i−3≤λ≤i+3 and W(λ,1)i−1≤λ≤i+1 are multiplied

by α simultaneously, then from Case 1, we have

Ŵ (λ, 0)2i−2≤λ≤2i+4 = α4W (λ, 0)2i−2≤λ≤2i+4.

As for the second vector of the block, since each W (λ,

1)i−1≤λ≤i+1 is multiplied by α, W (λ, 1)2i≤λ≤2i+2 will be
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Fig. 2 Updating a block centered on i at the DoubleAdd step

multiplied by α4 according to Equations (6)-(8). It is clearly
seen that Equation (10) still holds, because

ŴP,Q(s, 1)

ŴP,Q(s, 0)
= αlWP,Q(s, 1)

αlWP,Q(s, 0)
= WP,Q(s, 1)

WP,Q(s, 0)
,

for some integer l.
So far the proof has been finished. ��

Remark 1 The process of Case 1 in Theorem 4 is shown in
Figure 2. Theorem4 considers the situation at theDoubleAdd
step. Indeed, we have a similar result at the Double step.
It can be proved in the same manner. Theorem 4 can also
be extended for any pairing-friendly curves. However, if we
need to guarantee that Equation (10) holds for any α ∈ F

∗
qk
,

we should multiply every term in the block by α.

For some popular pairing-friendly curves, we will have a
friendly situation. Taking the BLS12 curve, we choose in this
work as an example; there is a proposition which is available
for the (I)ENA. The related parameters of the BLS12 curve
can be seen in Sect. 6.1 and the towering scheme of the exten-
sion field is shown as follows.

• Fq2 = Fq [u]/〈u2 − β〉, where β = −1;
• Fq6 = Fq2 [v]/〈v3 − ξ 〉, where ξ = u + 1;
• Fq12 = Fq6 [ω]/〈ω2 − v〉.

Recall the definition of �6 in Sect. 2.2. The corresponding
M-type twist �6 is

�6 : E ′ → E

(x, y) �→
(
ξ1/3x, ξ1/2y

)
.

(12)

From the towering scheme of Fq12 , we know ω2 = v and
v2 = ξ . Hence, we have ξ1/3 = v, ξ1/2 = vω.

Proposition 5 Choose P ∈ E(Fq) and Q′ = (xQ′ , yQ′) ∈
E ′(Fq2). Define Q � �6(Q′).

Write WQ,P (s,0) = a0 + a1ω, where s∈Z, a0, a1 ∈ Fq6 .
Then we have

WQ,P (s,0) =
{
a0, s is odd

a1ω, s is even
.

Proof We abbreviate WQ,P (s, 0) to WQ(s, 0) for conve-
nience. Note that W (s,0) = ψs ∈ Z[x, y, A, B], where ψs

is a division polynomial. Therefore, we just prove the propo-
sition in two situations according to [39, Section 3.2].

1. Assume that s is odd. Then ψs is a polynomial in
Z[x, y2, A, B]. For the short Weierstrass elliptic curve
y2 = x3 + Ax + B, we can replace y2 by a polynomial
in x . Hence, if we evaluate ψs at the point Q, then the x-
coordinate of Q is xQ′v ∈ Fq6 . Hence, WQ(s, 0) will be
always in a proper subfield of Fq12 , i.e., WQ(s, 0) = a0.

2. If s is even, then ψs is a polynomial in 2yZ[x, y2, A, B].
Evaluating ψs at Q, we find that the y-coordinate of Q
is yQ′vω∈Fq12 . According to Case 1, the evaluation of a
polynomial in Z[x, y2, A, B] at Q will be in Fq6 . Com-
bined with the y-coordinate of Q, we have a0 is equal to
0. Therefore, WQ(s, 0) = a1ω.

So far the proposition has been proved. ��
In order to eliminate the inverse of W (2i, 0) in Equa-

tion (9), we multiply W (λ,0)2i−2≤λ≤2i+4 by W (2i, 0) at the
DoubleAdd step. It follows from Proposition 5 that the term
W (2i, 0) can be written as a1ω on the BLS12 curve, where
a1 ∈ Fq6 . Recall the towering scheme ofFq12 .We haveω2 =
v and v ∈ Fq6 . Then both W (2i, 0)2 = a21ω

2 = a21v and
W (2i, 0)4 = a41v

2 will always be in Fq6 . Hence, W (2i, 0)2

and W (2i, 0)4 are equal to 1 if we raise them to the power

of qk−1
r . As long as we do not meet the inversion in the last

iteration, Equation (10) will always be true. Then we can use
the new block to compute pairings by using the IENA. Fortu-
nately, the last iteration of the Miller loop on the BLS12 and
KSS18 curves always invoke the Double step. This means
that we can use 5 multiplications instead of 1 inversion.

4 The elliptic net algorithm on the twisted
curve

The application of the twists maps has brought signifi-
cant improvements in Miller’s algorithm. When we use the
(I)ENA to compute the (Optimal) Ate pairing, the algorithm
will also have a good improvement if all the related param-
eters are on the twisted curve. In 2010, Costello et al. [28]
proposed the Ate pairing entirely on the twisted curve. The
authors considered the line and vertical line on twisted curves
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at addition and doubling steps of the Miller loop and proved
the correctness of this case via the procedure ofMiller’s algo-
rithm. It seems to be natural that the (I)ENA should also be
able to compute pairings entirely on the twisted curve. How-
ever, in the (I)ENA, we only need to update the values of the
block and use these values to compute the value of the Tate
pairing and its variants in the end. The proof of Costello et al.
[28] is not suitable for the case of the (I)ENA. In the follow-
ing, we will present a new proof that verifies the relationship
between the (Optimal) Ate pairing on the elliptic curve and
its corresponding twisted curve based on the divisor theory.

Recall the definition of the elliptic curve E in Sect. 2.1.
Let E ′/Fqe be the twist of E of degree d with e = k/d. Let
π ′
qe be the q

e-power Frobenius map on E ′. There exists an
isomorphism �d : E ′ → E over Fqk . Then we can define
two subgroups

G
′
1 � E ′[r ]

⋂
Ker(π ′

qe − [1]),
G

′
2 � E ′[r ]

⋂
Ker(π ′

qe − [qe]).

Actually, the parameter of the Miller loop length T can be
set as (t − 1)mod r [12]. Firstly, we give a new derivation
of the theorem about the Ate pairing entirely on the twisted
curve as follows.

Theorem 6 For P ′ � �−1
d (P) ∈ G

′
2 and Q′ ∈ G

′
1, we can

define a pairing on G
′
1 × G

′
2 if r

2
� T k − 1:

AteE ′ :G′
1×G

′
2→μr

(Q′, P ′) �→ AteE ′(Q′, P ′)

= (
fT ,Q′

(
P ′))qk−1/r .

Proof We only need to prove fT,�d (Q′) = fT,Q′ ◦�−1
d , for all

Q′ ∈ G
′
1. The divisor of fT ,�d (Q′) is

Div( fT ,�d (Q′))=T (�d(Q
′)) − ([T ]�d(Q

′)) − (T − 1)(∞).

Since �d is an isomorphism, we get

(�d)
∗Div( fT ,�d (Q′)) = T (Q′) − ([T ]Q′) − (T − 1)(∞),

= ( fT ,Q′).

Furthermore, we have

(�d)
∗Div( fT ,�d (Q′)) = Div( fT ,�d (Q′) ◦ �d).

Thus, we can deduce that fT ,�d (Q′) ◦ �d = fT ,Q′ . Compos-
ing the formula with �−1

d on both sides, we get

fT ,�d (Q′)(P) =
(
fT ,Q′ ◦ �−1

d

)
(P).

This completes the proof of the theorem. ��

Remark 2 In Miller’s algorithm, when we compute the Ate
pairing on the original curve with twists, the field arithmetic
is in the field where Q′ is located. Since the cost of the trans-
formations involved in each iteration is very small, the final
value we require can be easily obtained by twist maps. In
detail, we only need to multiply the value by a fixed value α

in Fqk . This multiplication is sparse in general. But for the
(I)ENA, if we adopt the same idea to use twist maps, the
value will be multiplied by a different value of α in each iter-
ation, which means that the transformation is not a friendly
process. Therefore, we consider computing the Ate pairing
on the twisted curve for the (I)ENA.

4.1 The optimal ate pairing on the twisted curve

For the situation of the Optimal Ate pairing entirely on the
twisted curve, we can present the following theorem.

Theorem 7 Let λ=mr with r �m and λ=∑ϕ(k)
i=0 ciqi .

Define

	d,i =�−1
d ◦ [ciqi ] ◦ �d ,

where 	d,si = �−1
d ◦ [si ] ◦ �d and si = ∑ϕ(k)

j=i c j q
j . There

exists a pairing on G
′
1 × G

′
2:

OptE ′ : G
′
2 × G

′
1 → μr

(Q′,P ′) �→ OptE ′(Q′,P ′)

=
⎛

⎝
ϕ(k)∏

i=0

f q
i

ci ,Q′
(
P ′) ·

ϕ(k)−1∏

i=0

l	d,si+1,	d,i (Q′)

v	d,si(Q
′)

(P ′)

⎞

⎠

qk−1
r

.

Proof It follows from Theorem 6 that

Div(
ϕ(k)∏

i=0

f q
i

ci ,Q′ ◦ �−1
d ) = Div(

ϕ(k)∏

i=0

fci ,�d (Q′)).

Let Qi � [si+1] ◦ �d(Q′). Consider the relation between
l	d,si+1 ,	d,i (Q′) and lQi ,[ci qi ]�d (Q′). Then we have the follow-
ing divisor of the line function:

Div(lQi ,[ci qi ]�d (Q′)) = (Qi ) + ([ciqi ]�d(Q
′))

+ (−Qi+1) − 3(∞).

Since �d is an isomorphism,

(�d)
∗Div(lQi ,[ci qi ]�d (Q′)) = (�−1

d (Qi ))+(−Qi+1)−3(∞)

+ (�−1
d ◦ [ciqi ] ◦ �d(Q

′))
= (l	d,si+1 ,	d,i (Q′)).
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Therefore,

lQi ,[ci qi ]�d (Q′)(P) = l	d,si+1 ,	d,i (Q′) ◦ �−1
d (P).

Similarly,

vQi (P) = v	d,i (Q
′) ◦ �−1

d (P).

This completes the proof of the theorem. ��
Remark 3 We have πq ◦ �d(Q′) = [q]�d(Q′), for each
�d(Q′) ∈ G2. Since πq is an endomorphism and �d is an
isomorphism over Fqk , we have

πq ◦ �d(Q
′) = �d ◦ [q](Q′).

Therefore,

�−1
d ◦ πq ◦ �d(Q

′) = [q](Q′), i .e., 	d,1(Q
′) = [q](Q′).

It is known that a point in G
′
1 can be mapped to a point in

E[r ]. This also means that the points on the line function on
the twisted curve can be obtained via Remark 3.

Note that the ratio between the inversion and multipli-
cation costs over Fqk decreases as the embedding degree k
becomes larger. It follows that the cost of 1 inversion may be
close to that of 5 multiplications. However, when we com-
pute the (Optimal) Ate pairing entirely on the twisted curve,
each term of the first vector in the block centered on i will be
in Fqe . Hence, it is necessary for this situation to eliminate
the inversion at the DoubleAdd step.

5 The elliptic net algorithmwith lazy
reduction

Lazy reduction can also be employed to speed up the (I)ENA.
It can save the number of modular reductions during the cal-
culation. Themain idea of lazy reduction is to put the required
modular reductions for the sumof severalmultiplications like∑

aibi over Fq to the end. Therefore, these multiplications
only need 1 modular reduction over Fq . In this paper, we
use Montgomery reduction [40], so the cost of a modular
reduction is equal to the cost of one multiplication without
reduction.

When we use the (I)ENA to compute the (Optimal) Ate
pairing, lots of multiplications of the form A · B ± C · D
are contained, which needs 2 modular reductions normally.
But lazy reduction allows us to use one modular reduction
only. It should be noted that we are not concerned about
violating the upper bound of Montgomery reduction for this
situation since one only uses lazy reduction once each time
with A, B,C, D ∈ Fq . Wemainly improve the termW (3, 0)

Table 1 Number of Modular Reductions at the Initialization Step

Algorithm A, B �= 0 B = 0 A = 0

ENA [16] 10 8 6

This work 7 6 5

Table 2 Number of Modular Reductions at the Double-and-Add Step

Algorithm Double(V ) DoubleAdd(V )

ENA [16] 42 42

IENA [25] 37 40

This work 27 30

andW (4, 0) at the initialization step. The number of modular
reductions of three situations is given in Table 1.

The explicit updating formulas at the Double-and-Add
step are mentioned in Sect. 2.3. The Double(V ) and
DoubleAdd(V ) functions are combined with lazy reduc-
tion, and we adopt the new Double-and-Add algorithm in
[25], requiring 10 terms in total. We present the optimized
Double-and-Add algorithm based on the IENA in Appendix
A. Assume that our terms in the block are all in the finite field
Fq . At Lines 7-17 we compute the Double(V ) function. We
update 7 terms in the first vector and 3 terms in the second
vector that are both centered on 2i in a block. In the ENA, we
need 42 modular reductions in each iteration. The number of
modular reductions decreases to 37 in the IENA. With the
help of lazy reduction, the updating process for each term
can save one modular reduction, so 10 terms will save 10
modular reductions in total. The DoubleAdd(V ) function
is computed at Lines 9-33. These steps contain 40 modular
reductions in the IENA originally, and the number of mod-
ular reductions is reduced to 30 in each iteration with lazy
reduction. Table 2 shows the number of modular reductions
among the ENA, IENA, and our optimized algorithm at the
Double-and-Add step, respectively.

6 Implementation and analysis

In this section, we implement the optimization of the (I)ENA
for the pairing computation. Note that we mainly consider
the improvement of the computation at the Miller loop. Our
implementations are performed on an Intel Core i7-8550U
CPU processor operating at 1.80 GHz with hyperthreading
turned off and TurboBoost disabled. We compile the bench-
marks on GCC 7.4.0 with the -O2 flag set and test them on a
64-bit Linux platform, running Ubuntu 18.04 LTS. Our code
is based on version 0.5.0 of the RELIC toolkit [27], and we
adopt the finite field arithmetic implemented in the RELIC
library which needs the GMP library for both curves. Hence,
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our benchmarks use the assembly language to improve the
performance of our implementations. Our code is available
at https://github.com/wennycai/ENA.

We will use different methods to test the efficiency of
computing the Optimal Ate pairing on the pairing-friendly
curves at the 128-bit security level and 192-bit security level,
respectively. Notice that the DoubleAdd(V ) function is not
friendly in the IENA. In general, we choose the Miller loop
parameter which has a low Hamming weight so that we can
use Double(V ) function more frequently in the whole iter-
ations to accelerate the IENA. The pairing-friendly curves
we choose are the 381-bit BLS12 and 676-bit KSS18 curves.
We also implement Miller’s algorithm for benchmarks. The
version ofMiller’s algorithmwe use in our work is the fastest
one implemented by Aranha et al. in the RELIC library. For
fair comparison, we use the same algorithms for the finite
field arithmetic and the final exponentiation in the RELIC
library when we implement the ENA, IENA and Miller’s
algorithm. The recent work of [41] proposed somemore effi-
cient field arithmetic algorithms to speed up the computation
of the Optimal Ate pairing on the 381-BLS12 curve which
obtained a 1.37× speedup on an x64 Intel processor. Our
implementations can also benefit from their improvement.
The authors plan to open-source the optimized implementa-
tion of pairing computations on the 381-bit BLS12 curve that
was integrated to the state-of-the-art pairing library RELIC
0.5.0. We specify some symbols here to show the amount of
operations in this section:

• Mk : Multiplication over Fqk , Sk : Squaring over Fqk ,
• M : Multiplication over Fq , S: Squaring over Fq ,
• Ik : Inversion over Fqk , A: Addition over Fq .

6.1 381-bit BLS12 curve

The concrete parameters for the 381-bit BLS12 curve with
embedding degree k = 12 are given as follows.

• z = −263 − 262 − 260 − 257 − 248 − 216;
• r = z4 − z2 + 1;
• q = (z − 1)2(z4 − z2 + 1)/3 + z;
• E : y2 = x3 + 4 over Fq ;
• Fq2 = Fq [u]/〈u2 − β〉, where β = −1;
• Fq6 = Fq2 [v]/〈v3 − ξ 〉, where ξ = u + 1;
• Fq12 = Fq6 [ω]/〈ω2 − v〉;
• Twisted curve E ′ : y2 = x3 + 4ξ over Fq2 .

Recall that P ∈ E(Fq) and Q′ ∈ E ′(Fqe ). Note that we
do not need to compute the evaluation of the line function
on the BLS12 curve. Hence, we only compute the following
formula:

(
fz,�6(Q′)(P)

) q12−1
r or

(
fz,Q′(�−1

6 (P))
) q12−1

r
.

The amount of operations for fz,�6(Q′) and fz,Q′ in one iter-
ation is 7S12 + 67

2 M12 and 6S2 + 62M2 + S12 + 3
2M12 at the

Double step in the ENA, respectively. In our implementation,
we use the ratios 1I12 ≈ 3M12, 1I2 ≈ 13M2, 1M2 ≈ 3M and
1M12 ≈ 54M [19]. In the IENA,we need 6S12+31M12+ I12
without twists at the DoubleAdd step. If we compute pair-
ings on the twisted curve, the operations can be reduced to
1S12 + 1M12 + 5S2 + 39M2 + 1I2. Without considering the
influence of delay error, it is necessary to eliminate the inver-
sion if we compute the Optimal Ate pairing on the twisted
curve. Because the cost of 1 inversion is greater than that of
5 multiplications in Fq2 . Moreover, we choose to compute
f−z,Q′ and use the relationship

( fz,Q′)(q
12−1)/r = (

1

f−z,Q′
)(q

12−1)/r

to revise the value, since z is a negative number. In order
to make the IENA work well, we expand −z in the non-
adjacent form (NAF) to reduce the proportion of nonzero
digits. Although the ENA is much slower than Miller’s algo-
rithm, it still counts inmilliseconds.Wecycle the benchmarks
10, 000 times and take the average value to ensure the sta-
bility and accuracy of our results. The comparison about the
efficiency of different methods is provided in Table 3.

Table 3 shows that this work speeds up the ENA indeed.
Twist maps have a good performance for the (I)ENA. The
application of twist maps improves the efficiency of the ENA
and IENA by 80.8% and 79.8%, respectively. In addition,
lazy reduction further accelerates the (I)ENA and brings
around 9% efficiency improvement on the twisted BLS12
curve. It should be noted that on the BLS12 curves, the cost
of 1 inversion over Fq12 is close to that of 5 multiplications
over Fq12 . Hence, we only need to avoid the inversion on the
twisted BLS12 curve, whichmakes the IENA be up to 3.66%
faster than before.

6.2 676-bit KSS18 curve

Nowwe give the parameters of the 676-bit KSS18 curve with
embedding degree k = 18 below:

• z = −285 − 231 − 226 + 26;
• r = (z6 + 37z3 + 343)/343;
• q = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2 +

1763z + 2401)/21;
• E : y2 = x3 + 2 over Fq ;
• Fq3 = Fq [u]/〈u3 − β〉, where β = −2;
• Fq6 = Fq2 [v]/〈v2 − ξ 〉, where ξ = u;
• Fq18 = Fq6 [ω]/〈ω3 − v〉;
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Table 3 Efficiency Comparison
for pairing computations on a
381-bit BLS12 Curve

Method Clock cycle (×103) Time (ms)

ENA [16] 25,524 12.81

ENA with lazy reduction 24,599 12.35

IENA [25] 23,508 11.80

IENA with lazy reduction 22,586 11.34

IENA (Eliminate Inversion) 23,554 11.82

IENA (Eliminate Inversion) with lazy reduction 22,722 11.41

ENA (Twist) 4890 2.45

ENA (Twist) with lazy reduction 4463 2.24

IENA (Twist) 4749 2.38

IENA (Twist) with lazy reduction 4325 2.17

IENA (Twist & Eliminate Inv) 4575 2.30

IENA (Twist & Eliminate Inv) with lazy reduction 4315 2.16

Miller’s algorithm 3123 1.57

Table 4 Efficiency Comparison
for pairing computations on a
676-bit KSS18 Curve

Method Clock cycle (×103) Time (ms)

ENA [16] 136,542 68.54

ENA with lazy reduction 132,700 66.61

IENA [25] 122,629 61.56

IENA with lazy reduction 119,991 60.23

IENA (Eliminate Inversion) 122,681 61.59

IENA (Eliminate Inversion) with lazy reduction 120,686 60.58

ENA (Twist) 40,949 20.56

ENA (Twist) with lazy reduction 39,440 19.80

IENA (Twist) 40,676 20.42

IENA (Twist) with lazy reduction 39,276 19.72

IENA (Twist & Eliminate Inv) 40,291 20.23

IENA (Twist & Eliminate Inv) with lazy reduction 38,904 19.53

Miller’s algorithm 17,149 8.61

• Twisted curve E ′ : y2 = x3 + 2/ξ over Fq2 .

We need to calculate

(
fz,�6(Q′) · f q3,�6(Q′) · l[z]�6(Q′),[3q]�6(Q′)(P)

) q18−1
r

or

(
fz,Q′· f q3,Q′·l�−1

6 ◦[z]◦�6(Q′),�−1
6 ◦[3q]◦�6(Q′)(�

−1
6 (P))

) q18−1
r

for computing the Optimal Ate pairing on this curve. Notice
that the Optimal Ate pairing on the 676-bit KSS18 curve can
achieve the 192-bit security level. Therefore, we just cycle
the benchmark 1, 000 times and take the average value as the
final result. Table 4 shows the timings of different methods
for computing the Optimal Ate pairing.

Similar to the results on the BLS12 curve, the computa-
tion of the Optimal Ate pairing using the (I)ENA on twisted
KSS18 curve can be significantly sped up compared with the
computation on the KSS18 curve, which is 70% and 66.83%
faster, respectively. As for the performance of lazy reduction,
wefind that the application of this technique savesmore oper-
ations on the KSS18 curve than that on the BLS12 curve.
This is mainly due to the fact that the embedding degree
of the KSS18 curve is larger than that of the BLS12 curve.
Moreover, there are more iterations of the Miller loop on the
KSS18 curve than on the BLS12 curve. Since the runtime
of the ENA on KSS18 curve is 68.54ms, the effect of 2ms
saved by lazy reduction is not obvious here. Considering the
IENA on the twisted KSS18 curve, the elimination of the
inversion can save about 385, 000 clock cycles compared to
the original one, and the lazy reduction can save about 1.4
million clock cycles.
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According to our results, the efficiency of computing the
Optimal Ate pairing on the twisted curve is much higher than
that on the original curve for the (I)ENA. In addition, we can
further improve the efficiency of the algorithm by eliminat-
ing the inversion in the IENA. However, the gap between
the optimized IENA and Miller’s algorithm on the KSS18
curve is larger than that on the BLS12 curve. This is related
to the extension field arithmetic. For example, we require
6M + 3M3 + 6S3 + 1S18 and one sparse multiplication over
Fq18 at the Double step in Miller’s algorithm [19]. But we
require 1S18+9M18+5S3+22M3 at the Double step in this
work.

7 Conclusions

In this work, we improved the Elliptic Net algorithm. For the
original Elliptic Net algorithm, we analyzed its efficiency
and presented implementations on the computation of the
Optimal Ate pairing on a 381-bit BLS12 curve and a 676-bit
KSS18 curve with several tricks, respectively. In particular,
lazy reduction was able to reduce by around 27% of the
required modular reductions. Moreover, the application of
twist maps helped us reduce the number of multiplications
and the improvement was significant. Besides, the improved
Elliptic Net algorithm was also further developed by elim-
inating the inversion in exchange for few multiplications.
On the 381-bit BLS12 curve, this work improved the perfor-
mance of the Optimal Ate pairing by 80% compared with
the original version on a 64-bit Linux platform. The imple-
mentation on the 676-bit KSS18 curve had shown that this
work was 71.5% faster than the previous ones. Although
the Elliptic Net algorithm was still slower than Miller’s
algorithm, it can compute pairings efficiently on personal
computers.
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Appendix A. Algorithm

Algorithm 2 Double-and-Add Algorithm with Lazy Reduc-
tion (Eliminate Inversion)
Require: Block V centered on i in which the first vector has 7 terms

and the second vector has 3 terms. α =W(2,0)−1, β =W(−1,1)−1,
γ1=W(2,−1)−1, δ=W(1,1)−1,ω13=W(1,0)W(3,0),ω2=W(2,0)2,
f lag∈{0, 1} .

Ensure: Block centered on 2i If f lag = 0, centered on 2i + 1 If
f lag = 1.

1: S0←V[2,2]2 mod p, P0←(V[2,1]∗V[2,3])mod p;
2: for i = 1 to 5 do
3: S[i]←V[1,i + 1]2 mod p;
4: P[i]←(V[1,i]∗V[1,i + 2])mod p;
5: end for
6: if f lag = 0 then
7: for j = 1 to 3 do
8: t0← S[ j] ∗ P[ j + 1], t1← S[ j + 1] ∗ P[ j], V [1, 2 j − 1]←

(t0 − t1)mod p;
9: t0 ← S[ j] ∗ P[ j + 2], t1 ← S[ j + 2] ∗ P[ j], V [1, 2 j] ←

(t0 − t1)mod p;
10: V [1, 2 j]←(V [1, 2 j] ∗ α)mod p;
11: end for
12: t0← S[4]∗P[5], t1← S[5]∗P[4], V [1, 7]←(t0−t1)mod p;
13: k0← S[2]∗P0, k1← P[2]∗S0, V [2, 1]←(k0−k1)mod p;
14: V [2, 1]←(V [2, 1] ∗ δ)mod p;
15: k0← S[3]∗P0, k1← P[3]∗S0, V [2, 2]←(k0−k1)mod p;
16: k0← S[4]∗P0, k1← P[4]∗S0, V [2, 3]←(k0−k1)mod p;
17: V [2, 3]←(V [2, 3]∗β)mod p;
18: else
19: for j = 1 to 3 do
20: t0← S[ j] ∗ P[ j + 2], t1← S[ j + 2] ∗ P[ j], V [1, 2 j − 1]←

(t0 − t1)mod p;
21: V [1, 2 j − 1] ← (V [1, 2 j − 1] ∗ α)mod p;
22: t0 ← S[ j + 1] ∗ P[ j + 2], t1 ← S[ j + 2] ∗ P[ j + 1],

V [1, 2 j]←(t0 − t1)mod p;
23: end for
24: vt1←(V [1, 4]∗V [1, 6])mod p, vt2←(V [1, 5]2)mod p;
25: t0←vt1 ∗ ω2, t1←vt2 ∗ ω13, V [1, 7]←(t0 − t1)mod p;
26: for j = 1 to 6 do
27: V [1, j] = (V [1, j] ∗ V [1, 3])mod p;
28: end for
29: k0← S[3]∗P0, k1← P[3]∗S0, V [2, 1]←(k0−k1)mod p;
30: k0← S[4]∗P0, k1← P[4]∗S0, V [2, 2]←(k0−k1)mod p;
31: V [2, 2]←(V [2, 2] ∗ β)mod p;
32: k0← S[5]∗P0, k1← P[5]∗S0, V [2, 3]←(k0−k1)mod p;
33: V [2, 3]←(V [2, 3] ∗ γ1)mod p.
34: end if
35: return V
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