
Journal of Cryptographic Engineering (2023) 13:89–106
https://doi.org/10.1007/s13389-022-00293-y

REGULAR PAPER

Karatsuba-based square-root Vélu’s formulas applied to two
isogeny-based protocols

Gora Adj1 · Jesús-Javier Chi-Domínguez2 · Francisco Rodríguez-Henríquez2,3

Received: 16 December 2021 / Accepted: 21 June 2022 / Published online: 20 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
At a combined computational cost of about 6� field operations, Vélu’s formulas are used to construct and evaluate degree-�
isogenies in the vast majority of isogeny-based cryptographic schemes. By adapting to Vélu’s formulas a baby-step giant-step
approach, Bernstein, De Feo, Leroux, and Smith presented a procedure that can compute isogeny operations at a reduced
cost of just Õ(

√
�) field operations. In this paper, we present a concrete computational analysis of these novel procedures

along with several algorithmic tricks that helped us to further decrease its computational cost. We also report an optimized
Python3-code implementation of several instantiations of two isogeny-based key-exchange protocols, namely, CSIDH and
B-SIDH. Our software library uses a combination of the modified Vélu’s formulas and an adaptation of the optimal strategies
commonly used in the SIDH/SIKE protocols to produce significant speedups. Compared to a traditional Vélu constant-time
implementation of CSIDH, our experimental results report a saving of 5.357%, 13.68% and 25.938% base field operations
for CSIDH-512, CSIDH-1024, and CSIDH-1792, respectively. Additionally, we present the first optimized implementation
of B-SIDH ever reported in the open literature.

Keywords Isogenies · Square-root Vélu formulas · Karatsuba-based complexity analysis · CSIDH · B-SIDH

1 Introduction

Isogeny-based cryptography was independently introduced
in 2006 by Couveignes [16], Rostovtsev and Stolbunov in
[32,34]. Since then, an ever increasing number of isogeny-
based key-exchange protocols have been proposed. A selec-
tion of those protocols, especially relevant for this work, is
briefly summarized below.

Operating with supersingular elliptic curves defined over
the finite field Fp2 , with p a prime, the Supersingu-

B Jesús-Javier Chi-Domínguez
jesus.dominguez@tii.ae

Gora Adj
gora.adj@gmail.com

Francisco Rodríguez-Henríquez
francisco.rodriguez@tii.ae

1 Departament de Matemàtica, Universitat de Lleida, Lleida,
Spain

2 Cryptography Research Centre, Technology Innovation
Institute, Abu Dhabi, United Arab Emirates

3 Computer Science Department, CINVESTAV-IPN, Mexico
City, Mexico

lar Isogeny-based Diffie-Hellman key exchange protocol
(SIDH) was presented by Jao and De Feo in [21] (see also
[17]). In 2017, the Supersingular Isogeny Key Encapsulation
(SIKE) protocol, an SIDHvariant, was submitted to theNIST
post-quantum cryptography standardization project [2]. On
July 2020, NIST announced that SIKE passed to the round 3
of this contest as an alternate candidate.

In 2018, the commutative group action protocol CSIDH
was introduced by Castryck, Lange, Martindale, Panny and
Renes in [8]. Operating with supersingular elliptic curves
defined over a prime field Fp,CSIDH is a significantly faster
version of the Couveignes-Rostovtsev-Stolbunov scheme
variant as it was presented in [18].

In 2019, Costello proposed a variant of SIDH named B-
SIDH [13]. In B-SIDH, Alice computes isogenies from a
(p + 1)-torsion supersingular curve subgroup, whereas Bob
has to operate on the (p−1)-torsion subgroupof the quadratic
twist of that curve. A remarkable feature of B-SIDH is that
it can achieve similar classical and quantum security levels
as SIDH, but using significantly smaller public/private key
sizes. The single most important challenge in the implemen-
tation of B-SIDH is the high computational cost associated
to the large degree isogenies involved in its execution.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-022-00293-y&domain=pdf
http://orcid.org/0000-0002-9753-7263

90 Journal of Cryptographic Engineering (2023) 13:89–106

More recently in 2021, Banegas et al. proposed in [3] a
more efficient approach for computing constant-time CSIDH
that they named CTIDH. In CTIDH the authors employ an
economical key space mechanism (which was adapted from
an idea of bounding the 1-norm of CSIDH secret key vec-
tor [28]), along with an approach for processing primes in
batches [24].

In general, performing isogeny constructions and evalu-
ations are the most expensive computational tasks of any
isogeny-based protocol. This is especially true for CSIDH
and B-SIDH, where [exceedingly] large odd prime degree-�
isogenies come into play.

For decades now, Vélu’s formulas (cf. [22, Sect. 2.4] and
[35, Theorem 12.16]) have been widely used to construct
and evaluate degree-� isogenies. Using several elliptic curve
and isogeny arithmetic optimization tricks reported in the
last few years [9,14,27], the construction and evaluation of
degree-� isogenies via Vélu’s formulas can be obtained at a
computational cost of roughly 6� field multiplications (see a
detailed discussion in Sect. 2).

Bernstein, De Feo, Leroux and Smith presented in [5] a
newapproach for constructing and evaluating degree-� isoge-
nies at a combined cost of just Õ(

√
�) field operations. This

improvement was obtained by observing that the main poly-
nomial product embedded in the isogeny computations, can
be effectively accelerated via a baby-step giant-step approach
[5, Algorithm 2]. Due to its square root complexity reduction
(up to polylogarithm factors), in the remainder of this paper,
we will refer to this variant of Vélu’s formulas, as

√
élu for-

mulas or simply
√
élu.

As we will see in this paper, and as it was already hinted
in [5],

√
élu has a noticeable impact on the performance of

CSIDH, and evenmore so onB-SIDH.Byway of illustration,
consider the combined cost of constructing and evaluating
degree-� isogenies for � = 587, which corresponds to an
example highlighted in [5, Appendix A.3]. 1 For that degree
�, the authors report a cost of just 2296 ≈ 3.898(� + 2)
field multiplications and squaring operations. This has to be
compared with the cost of a classical Vélu approach that
would take some 3544 ≈ 6.017(� + 2) multiplications.

In spite of the groundbreaking result announced in [5],
along with the high performance achieved by its compan-
ion software library, the authors did not provide a practi-
cal cost analysis of their approach, but rather, they focus
their attention on its asymptotical analysis. Moreover, their√
élu implementation reported a rather modest 1% and 8%

speedup over the traditional Vélu’s formulas when applied to
the non constant-timeCSIDH-512andCSIDH-1024 instanti-
ations, respectively. Furthermore, the authors of [5] left open

1 Note that � = 587 is the largest prime factor of p+1
4 , where p is

the prime used in the popular CSIDH-512 instantiation of the CSIDH
isogeny-based protocol.

the problem of assessing the practical impact of
√
élu on

CSIDH and B-SIDH constant-time implementations.
Our Contributions. We present a concrete computational
analysis of

√
élu. From this analysis, we conclude that for

virtually all practical scenarios, the best approach for per-
forming the polynomial products associated to the isogeny
arithmetic is achieved by nothingmore than carefully tailored
Karatsuba polynomial multiplications. The main practical
consequence of this observation is that computing degree-
� isogenies with

√
élu has a concrete computational cost

dominated by a blog2 (3) factor, where b ≈
√

(�−1)
2 . We

also present several tricks that permit to save multiplications
when performing products involving the polynomials EJ0
and EJ1 as defined in Sect. 4. We additionally exploit the
fact that the polynomials EJ0 and EJ1 are the reciprocal of
each other. These simple but effective observations help us
to construct and evaluate a degree-587 isogeny using only
2180M ≈ 3.701(�+2). This is about 5.3% cheaper than the
same computation announced in [5]. This improvement also
pushes to � = 89 the threshold where computing degree-�
isogenies with

√
élu becomes more effective than traditional

Vélu.2

In a nutshell, our main practical contributions can be sum-
marized as follows:

1. We report the first constant-time implementation of the
protocol B-SIDH introduced in [13]. Using the frame-
work of [11], optimal strategies à la SIDH are applied to
B-SIDHwhile also taking advantage of

√
élu. The exper-

imental results for B-SIDH show a saving of up to 75%
compared with an implementation of this protocol using
traditional Vélu.

2. Weused the framework presented in [11] to apply optimal
strategies to CSIDH, while exploiting

√
élu. This allows

us to present the first application of
√
élu to constant-time

implementations of the CSIDH-512, CSIDH-1024, and
CSIDH-1792 instantiations. A comparison with respect
to CSIDH using traditional Vélu, reports savings of
5.357%, 13.68% and 25.938% field Fp-operations for
CSIDH-512, CSIDH-1024, and CSIDH-1792, respec-
tively.

3. In Sect. 4.3, we show that the number of field multipli-
cations required for computing degree-� isogenies using√
élu with Karatsuba polynomial multiplication has con-

crete computational cost closer to O(blog2(3)).

Outline. The remainder of this paper is organized as fol-
lows. In Sect. 2, we give a description of traditional Vélu’s

2 Recently, Banegas et al. [3, Sect. 7.2] reported an even lower count
for this computation. The authors construct and evaluate a degree-587
isogeny at a cost of just 2108 multiplications, which is 3.3% cheaper
than the cost reported in this work.

123

Journal of Cryptographic Engineering (2023) 13:89–106 91

formulas. We include also a compact description of the B-
SIDH and CSIDH protocols. In Sect. 3, we briefly discuss
the application of optimal strategies to CSIDH and B-SIDH.
In Sect. 4, we present an explicit description of

√
élu main

building blocks KPS, xEVAL, and xISOG. In addition, we
discuss several

√
élu algorithmic improvements in Sect. 4.2.

We report the experimental results obtained from our soft-
ware library in Sect. 5, first in Sect. 5.1 for CSIDH and then
in Sect. 5.2 for B-SIDH. Finally, our concluding remarks are
drawn in Sect. 6.

Notation. M, S, and a denote the cost of computing a
single multiplication, squaring, and addition (or subtraction)
in the prime field Fp, respectively.

2 Background

Most if not all of the fastest isogeny-based constant-time
protocol implementations have adopted for their schemes
Montgomery and twisted Edwards curve models. A Mont-
gomery curve [26] is defined by the equation EA,B :
By2 = x3 + Ax2 + x , such that B �= 0 and A2 �= 4. For the
sake of simplicity, we will write EA for EA,1 and will always
consider B = 1. Moreover, it is customary to represent the
constant A in the projective space P1 as (A′ : C ′), such that
A = A′/C ′ (see [15]).

Let q = pn,where p is a large prime number and n a pos-
itive integer. Let E be a supersingular Montgomery curve
E : y2 = x3 + Ax2 + x defined over Fq , and let � be an
odd prime number. Given an order-� point P ∈ E(Fq), the
construction of a degree-� isogeny φ : E �→ E ′ of kernel
G = 〈P〉 and its evaluation at a point Q ∈ E(Fq)\G consist
of the computation of the Montgomery coefficient A′ ∈ Fq

of the codomain curve E ′ : y2 = x3 + A′x2 + x and the
image point φ(Q), respectively. In this paper, we will refer
to these two tasks as isogeny construction and isogeny eval-
uation computations, respectively.

Vélu’s formulas (see [22, Sect. 2.4] and [35, Theo-
rem12.16]), have been generally used to construct and
evaluate degree-� isogenies by performing three main build-
ing blocks known as, KPS, xISOG and xEVAL. The block
KPS computes the first k multiples of the point P , namely,
the set {P, [2]P, . . . , [k]P}. Using KPS as a sort of pre-
computation ancillary module, xISOG finds the constants
(A′ : C ′) ∈ Fq that determine the codomain curve E ′.
Also, using KPS as a building block, xEVAL calculates the
x-coordinate of the image point φ(Q) ∈ E ′.

After applying a number of elliptic curve arithmetic tricks
[9,14,27], the computational expenses of KPS, xISOG and
xEVALhave been found to be about 3�, � and 2� multipli-
cations, respectively. This gives an overall cost of about 6�
multiplications for the combined cost of the isogeny con-
struction and evaluation tasks. In Sect. 4, we give a detailed

Fig. 1 CSIDH key-exchange protocol

discussion of how the
√
élu approach of [5] drastically

reduces the timing costs of traditional Vélu’s formulas.3

In the remainder of this section, we briefly discuss the two
isogeny-based protocols implemented in this paper, namely,
CSIDH and B-SIDH.

2.1 Overviewing the CSIDH

Here, we give a simplified description of CSIDH. For more
technical details, the interested reader is referred to [8,9,24,
29].

CSIDH is an isogeny-based protocol that can be used
for key exchange and encapsulation [8], and other more
advanced protocols and primitives. Figure 1 shows how
CSIDH can be executed analogously to Diffie–Hellman, to
produce a shared secret betweenAlice and Bob. Remarkably,
the elliptic curves EBA and EAB computed by Alice and Bob
at the end of the protocol are one and the same.

CSIDH works over a finite field Fp, where p is a prime of
the form

p = 4
n∏

i=1

�i − 1

with �1, . . . , �n a set of small odd primes. For example,
the original CSIDH article [8] defined a 511-bit p with
�1, . . . , �n−1 the first 73 odd primes, and �n = 587. This
instantiation is commonly known as CSIDH-512.

In CSIDH, we compute the action of small prime ideals,
which happen to be factors of p+1.Wehave that the principal
ideal (�i) ⊂ Z[√−p] splits into two primes, namely li =
(�i , π − 1) and l̄i = (�i , π + 1), where π is the Frobenius
endomorphism. From the fact that l̄i li = (�i) is principal,
we obtain CSIDH commutative property, l̄i ∗ (li ∗ E) =

3 This speedup is achieved as a time-memory trade-off: an optimized
implementation of

√
élu requires much more memory than traditional

Vélu.

123

92 Journal of Cryptographic Engineering (2023) 13:89–106

li ∗ (l̄i ∗ E) = E , for all E/Fp with endomorphism ring
End(E) ∼= Z[√−p].

The set of public keys in CSIDH is a subset of all supersin-
gular elliptic curves in Montgomery form, y2 = x3 + Ax2 +
x, defined over Fp. Since the CSIDH base curve E is super-
singular, it follows that #E(Fp) = (p + 1) = 4

∏n
i=1 �i .

The input to the CSIDH class group action algorithm is
an elliptic curve E : y2 = x3 + Ax2 + x , represented by its
A-coefficient, and an ideal class a = ∏n

i=1 l
ei
i , represented

by its list of secret exponents (ei , . . . , en) ∈ �−m · ·m�n . The
output is the A-coefficient of the elliptic curve EA defined
as,

EA = a ∗ E = l
e1
1 ∗ · · · ∗ lenn ∗ E . (1)

Taking advantage of the commutative property of the
group action, we can implement the protocol shown in Fig.
1, which closely resembles the flow of the classical Diffie-
Hellman protocol. Alice and Bob begin by selecting secret
keys a and b, and producing their corresponding public keys
EA = a∗ E and EB = b∗ E , respectively. After exchanging
these public keys and taking advantage of the commutative
property of the group action, Alice andBob compute a shared
secret as,

a ∗ EB = (a · b)E = (b · a)E = b ∗ EA.

The computational cost of the group action described in 4
of Sect. A.1, is dominated by the calculation of n degree-
�
ei
i isogeny evaluations and constructions plus a total of
n(n+1)

2 scalar multiplications by the prime factors �i , for
i = 1, . . . , n. A similar multiplication-based approach for
computing the group action algorithm was proposed in the
original CSIDH protocol of [8]. It was first stated in [6, Sect.
8] (see also [20]) that this multiplication-based procedure
could possibly be improved by adapting to CSIDH, the SIDH
optimal strategy approach introduced byDeFeo, Jao and Plût
in [17].We briefly discuss about the role of optimal strategies
for large instances of CSIDH in Sect. 3, where the framework
presented in [11] was adopted.

2.2 Playing the B-SIDH

B-SIDH was proposed by Costello in [13], Alice and Bob
work in the (p+1)- and (p−1)-torsion of a set of supersin-
gular curves defined over Fp2 and their quadratic twist set,
respectively. B-SIDH is effectively twist-agnostic because
optimized isogeny and Montgomery arithmetic only require
the x-coordinate of the points along with the A coefficient of

Fig. 2 B-SIDH protocol for a prime p such that M |(p+1) and N |(p−
1).

the curve.4 This feature implies that B-SIDH can be executed
entirely à la SIDH as shown in Fig. 2.5

More concretely, as before let E : By2 = x3 + Ax2 + x
denote a supersingular Montgomery curve defined over Fp2 ,

so that #E(Fp2) = (p + 1)2, and let Et/Fp2 denote the
quadratic twist of E/Fp2 . For efficiency reasons, the prime
p is chosen so that both, p+1 and p−1 areM- and N -smooth,
respectively. In other words,M |(p+1) and N |(p−1). Then,
Et/Fp2 can be modeled as, (γ B)y2 = x3 + Ax2 + x , where
γ ∈ Fp2 is a non-square element and #Et (Fp2) = (p − 1)2.
Note that the isomorphism connecting these two curves is
determined by the map ι : (x, y) �→ (x, j y) with j2 = γ

(see [13, Sect. 3]).
Hence, for anyFp2 -rational point P = (x, y) on Et/Fp2 it

follows that Q = ι(P) = (x, j y) is an Fp4 -rational point on
E , such that Q + π2(Q) = O. Here π : (x, y) �→ (x p, y p)
is the Frobenius endomorphism. This implies that Q is a
zero-trace Fp4 -rational point on E/Fp2 .

B-SIDH can thus be seen as a reminiscent of the CSIDH
protocol [8], where the quadratic twist is exploited to perform
the computations using rational and zero-trace points with
coordinates in Fp2 . Although B-SIDH allows to work over
smaller fields than either SIDH or CSIDH, it requires the
computation of considerably larger degree-� isogenies.

As illustrated in Fig. 2, B-SIDH can be executed analo-
gously to themain flow of the SIDHprotocol. B-SIDHpublic
parameters correspond to a supersingularMontgomery curve
E/Fp2 : By2 = x3 + Ax2 + x with #E(Fp2) = (p + 1)2,
two rational points Pa and Qa on E/Fp2 , and two zero-trace
Fp4 -rational points Pb and Qb on E/Fp2 such that

4 For efficiencypurposes, in practice both, the x-coordinate of the points
and the constant A of the curve, are projectivized to two coordinates.
5 Although we omit here the specifics of the operations depicted
in Fig. 2, they are completely analogus to the ones corresponding to
SIDH, a protocol that is carefully discussed in many papers such as
[1,15,17].

123

Journal of Cryptographic Engineering (2023) 13:89–106 93

– Pa and Qa are two independent order-M points with M |
(p + 1), gcd(M, 2) = 2, and

[M
2

]
Qa = (0, 0);

– Pb and Qb are two independent order-N points with N |
(p − 1) and gcd(N , 2) = 1.

In practice, B-SIDH is implemented using projectivized x-
coordinate points, and thus the point differences PQa =
Pa − Qa and PQb = Pb − Qb must also be exchanged.
Since the x-coordinates of Pa, Qa, PQa, Pb, Qb and PQb,

all belong to Fp2 , a B-SIDH implementation must perform
field arithmetic on that quadratic extension field.

As in the case of SIDH, the protocol flow of B-SIDHmust
perform two main phases, namely, key generation and secret
sharing. In the key generation phase, the evaluation of the
projectivized x-coordinate points x(P), x(Q) and x(P −Q)

is required. Thus for B-SIDH, secret sharing is significantly
cheaper than key generation.

We briefly discuss the role of optimal strategies for large
instances of CSIDH and B-SIDH, in the next section.

3 Optimal strategies for the CSIDH and the
B-SIDH

In [17], optimal strategieswere introduced to efficiently com-
pute degree-�e isogenies at a cost of approximately e

2 log2 e
scalar multiplications by �, e

2 log2 e degree-� isogeny eval-
uations, and e constructions of degree-� isogenous curves.
Optimal strategies can be obtained using dynamic program-
ming (see [2,11] for concrete algorithms).

In the context of SIDH, optimal strategies tend to balance
the number of isogeny evaluations and scalar multiplications
to O(e log (e)). In the case of CSIDH, optimal strategies are
expected to be largely multiplicative, i.e., optimal strategies
will tend to favor the computation of more scalar multi-
plications over isogeny evaluations. This is due to the fact
that these operations are cheaper than large prime degree-�
isogeny evaluations.

Let L = [�1, �2, . . . , �n] be the list of small odd prime
numbers such that p = 4 ·∏n

i=1 �i − 1 is the prime number
used in CSIDH. Here, we adopt the framework presented in
[11],where the authors heuristically assumed that an arrange-
ment of the set L from the smallest to the largest �i , is close
to the global optimal. For this fixed ordering, the authors of
[11] reported a procedure that finds an optimal strategy with
cubic complexity with respect to n.

Optimal strategies can also be used to improve the per-
formance of B-SIDH, although in this case, we can see the
resulting strategies as a hybrid between SIDH and CSIDH.
On the one hand, B-SIDH follows the same SIDH protocol
flow.On theother hand,B-SIDHmust construct/evaluate sev-
eral isogenies whose degrees are powers of large odd primes,
as in CSIDH.

Let us assume that we need to construct a degree-L
isogeny with L = �1

e1 · �2
e2 · · · �nen , and let us write

L′ = [�1, . . . , �1︸ ︷︷ ︸
e1

, �2, . . . , �2︸ ︷︷ ︸
e2

, . . . , �n, . . . , �n︸ ︷︷ ︸
en

].
(2)

Then, in order to efficiently execute either the key generation
or the secret sharingmain phases of B-SIDH,wemust find an
optimal strategy for the setting L′ as described in Algoritm 5
of “Appendix A.1”.

Notice that any B-SIDH strategy can be encoded as is cus-
tomary in SIDH and CSIDH, i.e., by a list of e − 1 positive
integerswhere e = ∑n

i=1 ei .Moreover, any such strategy can
be evaluated by executing the dynamic-programming proce-
dure shown in Algorithm 5.

4 New Vélu’s formulas

In this section we present a more detailed discussion of the√
élu algorithms and their application to isogeny-based cryp-

tography. We give several algorithmic tricks that slightly
improve the performance of

√
élu as it was presented in [5].

Let EA/Fq be an elliptic curve defined in Montgomery
form by the equation y2 = x3 + Ax2 + x , with A2 �= 4. Let
P be a point on EA of odd prime order �, and φ : EA →
EA′ a separable isogeny of kernel G = 〈P〉 and codomain
EA′/Fq : y2 = x3 + A′x2 + x .

Our main task here is to compute A′ and the x-coordinate
φx (α) of φ(Q), for a rational point Q = (α, β) ∈ EA(Fq) \
G. As mentioned in [5] (see also [14], [25] and [27]), the
following formulas allow to accomplish this task,

A′ = 2
1 + d

1 − d
and φx (α) = α� hS(1/α)2

hS(α)2
, where

S = {1, 3, . . . , � − 2}, d =
(
A − 2

A + 2

)� (
hS(1)

hS(−1)

)8

, and

hS(X) =
∏

s∈S
(X − x([s]P)).

From the above, we see that the efficiency of computing
A′ and φx (α) directly depends on the cost of evaluating the
polynomial hS(X) = ∏

s∈S(X−x([s]P)). A naive approach
would compute hS(X) by performing #S − 1 polynomial
products. Alternatively, exploiting a baby-step giant-step
strategy

√
élu obtains a square root complexity speedup over

a traditional Vélu approach. In the following, we briefly
sketch this strategy.

123

94 Journal of Cryptographic Engineering (2023) 13:89–106

Given EA/Fq an order-� point P ∈ EA(Fq), and some
value α ∈ Fq we want to efficiently evaluate the polynomial,
hS(α) = ∏�−1

i (α − x([i]P)). From Lemma 4.3 of [5],

(X − x(P + Q))(X − x(P − Q)) = X2 + F1(x(P), x(Q))

F0(x(P), x(Q))
X

+ F2(x(P), x(Q))

F0(x(P), x(Q))

where,

F0(Z , X) = Z2 − 2X Z + X2; (3)

F1(Z , X) = −2(X Z2 + (X2 + 2AX + 1)Z + X);
F2(Z , X) = X2Z2 − 2X Z + 1.

This suggests a rearrangement à la Baby-step Giant-step
as,

h(α) =
∏

i∈I

∏

j∈J

(α − x([i + s · j]P))(α − x([i − s · j]P))

Now h(α) can be efficiently computed by calculating the
resultants of polynomials of the form,

hI ←
∏

xi∈I
(Z − xi) ∈ Fq [Z]

EJ (α) ←
∏

x j∈J

(
F0(Z , x j)α

2 + F1(Z , x j)α + F2(Z , x j)
)

.

The most demanding operations of
√
élu require comput-

ing four different resultants of the form ResZ (f (Z), g(Z))

for polynomials f , g ∈ Fq [Z]. We compute these four resul-
tants using a remainder tree approach supported by carefully
tailored Karatsuba polynomial multiplications. In practice,
the computational cost of performing degree-� isogenies
using

√
élu is close to K (

√
�)log2 3 field operations, with K

a constant.

4.1 Construction and evaluation of odd degree
isogenies

As in Sect. 2, we consider the three building blocks KPS,
xISOG, xEVAL, where KPS consists of computing the x
coordinates of all the points in the kernel G, xISOG finds
the codomain coefficient A′, and xEVAL performs the com-
putation of φx (α).

In line with the traditional approach, one could use the
KPS procedure of traditional Vélu for computing the x coor-
dinates of (#S = (� − 1)/2) points in the kernel G. This
will cost about 3� field multiplications. More efficiently,√
élu only computes the x-coordinates of points of G with

indices in three subsets of S, each of size O(
√

�). Denote by

I, J and K those subsets of S. Then, I and J are chosen
such that the maps I × J → S defined by (i, j) �→ i + j
and (i, j) �→ i − j are injective and their images I + J ,
I −J are disjoint. We call (I,J) an index system for S and
write I ±J for (I +J) ∪ (I −J). The remaining indices
of S are gathered in K = S\(I ±J). Algorithm 1 states the
required KPS computations.

Algorithm 1 Kernel points computation (KPS)
Require: An elliptic curve EA/Fq ; P ∈ EA(Fq) of order an odd prime

�.

Ensure: I = {x([i]P) | i ∈ I }, J = {x([j]P) | j ∈ J }, and K =
{x([k]P) | k ∈ K } such that (I , J) is an index system for S, and
K = S\(I ± J)

1: b ← �√� − 1/2�; b′ ← �(� − 1)/4b�
2: I ← {2b(2i + 1) | 0 ≤ i < b′}
3: J ← {2 j + 1 | 0 ≤ j < b}
4: K ← S\(I ± J)

5: I ← {x([i]P) | i ∈ I }
6: J ← {x([j]P) | j ∈ J }
7: K ← {x([k]P) | k ∈ K }
8: return I,J ,K

Let us recall that for achieving an efficient computa-
tion of xISOG and xEVAL ,

√
élu requires the biquadratic

polynomials ofEq. 3,which implies the computation of resul-
tants of the form ResZ (f (Z), g(Z)), for two polynomials
f , g ∈ Fq [Z].
We are now ready to present in Algorithms 2–3 the com-

putation of xISOG and xEVAL, respectively. Deriving the
resultants in Algorithms 2–3 may turn out to be a cum-
bersome task if it is not carried out in an elaborated way.
For polynomials f = a

∏
0≤i<n(Z − xi) and g in Fq [Z],

their resultant Res(f , g) = an
∏

0≤i<n g(xi) can be com-
puted efficiently when the factorization of f is known, which
is exactly the case in the algorithms at hand. Employing
a remainder tree approach (an equivalent alternative being
continued fractions), one evaluates the factors g(xi) by com-
puting g mod (Z−xi), 0 ≤ i < n, followed by their product.

One considerable advantage of using remainder trees here
is that the subjacent product tree of the (Z − xi) factors, can
be shared among all the resultants in Algorithm 2 and 3,
since these linear polynomials depend only on the kernel
〈P〉. In other words, the four resultants in Algorithms 2–3
shownodependencies among themand therefore, they can be
computed concurrently by a

√
élu parallel implementation.

Notice that the single most recurrent high level opera-
tion of Algorithms 2–3, is the polynomial multiplication on
the ring Fq [X]. Thus, as in [5], it is essential that we utilize
fast tailor-made polynomialmultiplication algorithms. These
customized algorithms are useful because for several modu-
lar computations, only a segment of the polynomial product
is actually needed.

123

Journal of Cryptographic Engineering (2023) 13:89–106 95

Algorithm 2 Codomain curve construction (xISOG)
Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x ; P ∈ EA(Fq)

of order an odd prime �; I,J ,K from KPS.
Ensure: A′ ∈ Fq such that EA′/Fq : y2 = x3 + A′x2 + x is the image

curve of a separable isogeny with kernel 〈P〉.
1: hI ← ∏

xi∈I(Z − xi)) ∈ Fq [Z]
2: E0,J ← ∏

x j∈J
(
F0(Z , x j) + F1(Z , x j) + F2(Z , x j)

) ∈ Fq [Z]
3: E1,J ← ∏

x j∈J
(
F0(Z , x j) − F1(Z , x j) + F2(Z , x j)

) ∈ Fq [Z]
4: R0 ← ResZ (hI , E0,J) ∈ Fq
5: R1 ← ResZ (hI , E1,J) ∈ Fq
6: M0 ← ∏

xk∈K(1 − xk) ∈ Fq
7: M1 ← ∏

xk∈K(−1 − xk) ∈ Fq

8: d ←
(

A−2
A+2

)� (
M0R0
M1R1

)8

9: return 2 1+d
1−d

Algorithm 3 Isogeny evaluation (xEVAL)
Require: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x ; P ∈ EA(Fq)

of order an odd prime �; the x-coordinate α �= 0 of a point Q ∈
EA(Fq)\〈P〉; I, J , K from KPS.

Ensure: The x-coordinate of φ(Q), where φ is a separable isogeny of
kernel 〈P〉.

1: hI ← ∏
xi∈I(Z − xi)) ∈ Fq [Z]

2: E0,J ← ∏
x j∈J

(
F0(Z ,x j)

α2 + F1(Z ,x j)
α

+ F2(Z , x j)
)

∈ Fq [Z]
3: E1,J ← ∏

x j∈J
(
F0(Z , x j)α2 + F1(Z , x j)α + F2(Z , x j)

) ∈
Fq [Z]

4: R0 ← ResZ (hI , E0,J) ∈ Fq
5: R1 ← ResZ (hI , E1,J) ∈ Fq
6: M0 ← ∏

xk∈K(1/α − xk) ∈ Fq
7: M1 ← ∏

xk∈K(α − xk) ∈ Fq

8: return (M0R0)
2/(M1R1)

2

The resultant ResZ (f (Z), g(Z)) of two polynomials
f , g ∈ Fq [Z] can be computed with an asymptotic runtime
complexity of Õ(n) by using a fast polynomial multipli-
cation. Here fast means that this polynomial operation has
a O(n log2(n)) computational complexity (see [4, p. 7,
Sect. 3]). The degree of the polynomials used for CSIDH
and even B-SIDH, are sufficiently small so that Karatsuba
polynomial multiplication (or related approaches such as
Toom-Cook), emerges as the most efficient solution. For
example, according to the implementation of [5], � = 587
requires polynomials of degree #I = 16 and 2 × #J = 18
(in the B-SIDH case this translates to #I, #J ≤ 150). It
can be easily verified that Karatsuba polynomial multiplica-
tion becomes a more efficient choice than the Schönage-FFT
approach (for a comprehensive analysis of these design
options, see “Appendix A.2”).

4.2 Implementation speedups

In this section we report several algorithmic techniques that
are exploited in our implementation to obtain some modest,
but noticeably savings over [5]. Our first refinement affects
xEVAL, and arises from the special shape of the biquadratic

polynomials F0, F1, F2. Considering either variable, one can
see that F1 is symmetric and F0 is symmetric to F26, that
is, F1 = 1/Z2 F1(1/Z , X) and F2 = 1/Z2 F0(1/Z , X)

by, for example, considering the first variable. Now, using
a projective representation of the x-coordinate α = x/z in
xEVAL, we can write a quadratic polynomial factor in E0,J

and a quadratic polynomial factor in E1,J respectively as

E0, j = 1/x2
(
F0(Z , x j)z

2 + F1(Z , x j)xz + F2(Z , x j)x
2
)

;
E1, j = 1/z2

(
F0(Z , x j)x

2 + F1(Z , x j)xz + F2(Z , x j)z
2
)

.

Thus, it becomes clear that the polynomials x2 #J E0,J and
z2 #J E1,J are symmetric to one another, allowing to save the
computation of one of the two products E0,J , E1,J . This
gives us an expected saving of #J · log2 (#J) polynomial
multiplications via product trees.

Our next improvement is focused on the computation
of E0, j required in xEVAL. Let us write x j = X j/Z j .

Then,
(
F0(Z , x j)z2 + F1(Z , x j)xz + F2(Z , x j)x2

)
can be

expressed as aZ2 + bZ + c, where

a = C(x Z j − zX j)
2;

2b = [
C(X2 + Z2)

]
(−4X j Z j) − [

2(X2
j + Z2

j)
](
2[C(X Z)])

+ (
2[A′(X Z)])(−4X j Z j);

c = C(x X j − zZ j)
2.

The three equations above can be implemented (with the
help of some extra pre-computations required in xISOG) at
a cost of 7M + 3S + 12a field operations. This cost represents
a saving with respect to the implementation of [5], which
requires 11M + 2S + 13a field operations. Assuming M= S,

this implies that our proposed formulas save 3 field multipli-
cations per polynomial E0, j , 0 ≤ j < #J .

Let us now illustrate the improvements just described
applied to the example � = 587. Let us recall that in the
implementation of [5], we have #I = 16 and #J = 9.
Consequently, our first improvement saves 9 log2(9) ≈ 28
polynomial multiplications via product trees. On the other
hand, our second improvement saves 3× #J = 3× 9 = 27
field multiplications.

6 Consequently, all the quadratic factors of E0,J and E1,J inxISOG are
symmetric. Bernstein et al. [5, Appendix A.5] were aware of this fact
and took advantage of it to speed up the computation of E0,J , E1,J .

123

96 Journal of Cryptographic Engineering (2023) 13:89–106

4.3 A concrete complexity analysis

In this section, we present the computational cost associ-
ated to the combined evaluation of the KPS, xISOG, and
xEVAL procedures.7

Let b = �
√

�−1
2 � as given in Step 1 of Algorithm 1. Note

that KPS (see Algorithm 1), can be performed at a cost of
about 4b differential point additions (assuming #I ≈ #J ≈
b, #K ≈ 2b), which implies an expense of at most (24b)M
field multiplications.

Observe also that the computation of the polynomial
hI (Z) required at Step 1 of both, xISOG (2) and xEVAL (3)
procedures, can be shared and thus must be computed only
once. One interesting observation of [5], is that the com-
putation of the polynomials E0,J and E1,J in xISOG (see
Steps 2–3 of xISOG 2), can be performed at a cost of only
one product tree procedure. Furthermore, as it was already
discussed in Sect. 4.2, this same trick can also be applied to
xEVAL, i.e., Steps 2–3 of xEVAL 3 can be calculated by exe-
cuting only one product tree. Hence, each polynomial Ei,J ,
i = 0, 1, required by xISOG and xEVAL can be obtained at
a cost of (3b)M and (10b)M field operations, respectively.

Additionally, in Steps 4–5 of xISOG and xEVAL, the
computation of two resultants are required, implying that
four resultants must be computed in total. Each Resultant
corresponds to the computation of ResZ (f (Z), g(Z)) such
that f , g ∈ Fq [Z], deg f = b′ ≈ b and deg g = 2b. We
give in “Appendix A.3”, a detailed description of the cost of
computing such a resultant in terms of b. This calculation is
performed by computing the product of the remainder tree
leaves. In “Appendix A.3”, it is shown that the complexity in
terms of field operations associated to the computation of a
resultant as described in Sect. 4.2 is given as,

R(b) =
(
3blog2(3) + b log2(b) − 5

3
b + 5

6

)
. (4)

The constants M0 and M1 in Steps 6-7 of xISOG and
xEVAL, have a cost of (4b)M and (8b)M field operations,
respectively. Lastly, the computations of the coefficient d of
xISOG and the output of xEVAL require about (6 log2(b)+
22) multiplications. All in all and invoking Eq. 4, the eval-
uation of KPS, xISOG, and xEVAL procedures have a
combined cost of approximately,

Cost(b) = 4

(
3blog2(3) + b log2(b) − 5

3
b + 5

6

)

+
(
blog2(3) − 2

3
b

)
+ 2

(
3blog2(3) − 2b

)

+ 49b + 6 log2(b) + 22

7 In the sequel,
√
élu computational costs are derived assuming a pro-

jective coordinate system and M = S.

= 19blog2(3) + 4b log2(b) + 113

3
b + 6 log2(b) + 76

3
. (5)

Recall that K corresponds to the missing kernel compu-
tation part not included in the remainder trees, whose size is
upper bounded by 2b elements. The precise size ofK depends
on the choice of the prime �, which in turn determines the
value of b. Since ourmodel does not account for the cost asso-
ciated withK, it is just natural to expect a slight experimental
discrepancy as shown in Fig. 3a, where we present the ratio
between experimental and expected isogeny costs. For the
sake of simplicity, we did not delve into further refinements
of our model.

However, to quantify the correctness of the cost pre-
dicted by Eq. 5, we performed the following experiment.

(a)

(b)

Fig. 3 Measured and expected running time of KPS + xISOG +
xEVAL for all the 207 small odd primes �i required in the group action
evaluation of CSIDH-1792 (see [11]). All computational costs are given
in Fp-multiplications. The expected running time corresponds to 1.4×
Cost(b). Additionally, b ≈

√
(�−1)
2

123

Journal of Cryptographic Engineering (2023) 13:89–106 97

We computed degree-� isogenies for all the odd prime fac-
tors �1, �2, . . . , �207 of p + 1, where p is the prime used
in the CSIDH-1792 instantiation proposed in [11]. Figure 3
shows an accurate correlation between the theoretical cost
of Eq. 5 and the experimental results obtained from our
Python3 library software, where we can see that the number
of required field multiplications is at most 1.4 times larger
than the expected value predicted by our analysis above.

Recall that the derivation of the expected cost of Eq. 5 (See
“Appendix A.3”), is driven by the assumption that M = S,
which is the typical case for CSIDH. For the B-SIDH case
on the other hand, since one is working on the quadratic
extension fieldFq=p2 , it holds thatMFq = 3MFp and SFq =
2MFp , and thus SFq = 2

3MFq . However, as an upper bound
(for the B-SIDH case), we can assume MFq = 3MFp and
MFq = SFq , which gives an expected running-time of 3 ×
Cost(b) Fp-multiplications.

A memory analysis of
√
élu reveals that less than 4b

points, equivalent to 8b field elements, are computed and
stored in KPS. The computation of the trees determined by
the polynomial hI in Step 1 of xISOG and xEVAL, requires
the storage of no more than 3b log2 b field elements.8 All
in all,

√
élu memory cost is of about 8b + 3b log2 b field

elements.
By performing a quick inspection of Algorithms 1–3, one

can see that it is straightforward to concurrently compute
many of the operations required by all three of those proce-
dures. Specifically, the calculation of the four resultants in
Steps 4–5 of Algorithms 2–3 show no dependencies among
them and can therefore be computed in parallel by a multi-
core processor. Since the four resultant calculations accounts
for about 85% of the total computational cost of

√
élu, the

expected savings are substantial.

5 Experiments and discussion

In this section, we introduce the Python3-code constant-time
library sibc (Supersingular Isogeny-Based Cryptographic
constructions), dedicated to isogeny-based primitives. The
sibc library aims to easily compare, test, and run SIDH-based
primitives such as SIDH, SIKE, CSIDH, and BSIDH.

We remark that our CSIDH and B-SIDH implementations
make extensive usage of the

√
élu formulas introduced in [5],

boosted with the computational tricks presented in Sect. 4.
Furthermore, we also exploit the optimal strategy framework
presented in [11], which helps us to maximize the perfor-
mance of both protocols.

8 For this computation two remainder trees are constructed, requiring
the storage of 2b log2 b field elements. In addition, the recursivity pro-
cedure to build the trees may require storing in the heap space another
b log2 b field elements.

In summary, our Python3-code software allows us to read-
ily benchmark the total number of additions, multiplications,
and squarings required by the instantiations of the two afore-
mentionedprotocols. To this end,we included counters inside
the field arithmetic function cores for adding, multiplying,
and squaring field elements. Hence, all the performance fig-
ures presented in this section correspond with our count of
field operations in the base field Fp. In the case of the B-
SIDH experiments, we use standard arithmetic tricks over
Fp2 , to perform the multiplication and squaring at a cost of
3M + 5a and 2M + 3a base field operations, respectively.

All the experiments performed in this section are centered
on comparing the following configurations, which are based
on tradicional Vélu’s formulas [14,31] and élu:

– Using tradicional Vélu (labeled as tvelu);
– Using

√
élu (labeled as svelu);

– Using ahybrid between traditionalVélu and
√
élu (labeled

as hvelu).

Notice that because of the nature of each protocol, the B-
SIDH experiments are randomness-free, which implies that
the same cost is reported for any given instance. In contrast,
the CSIDH experiments have a variable cost determined by
the randomness introduced by the order of the torsion points
sampled from its Elligator-2 procedure (for a more detailed
explanation see [9]).

5.1 Experiments on the CSIDH

Our Python3-code implementation of the CSIDH protocol
includes a portable version for the following CSIDH instan-
tiations,

1. OAYT-style [29]: two torsion point with dummy isogeny
constructions;

2. MCR-style [24]: one torsion point with dummy isogeny
constructions;

3. Dummy-free style [9]: two torsion point without dummy
isogeny constructions.

Our software supports performing experiments with any
prime field of p = 2e · (∏n

i=1 �i
) − 1 elements, for any

e ≥ 1. Our experiments were focused on the CSIDH-512
prime proposed in [8], the CSIDH-1024 prime proposed in
[5], and the CSIDH-1792 prime proposed in [11]. We stress
that the quantum security level offered by the CSIDH instan-
tiations reported in this work have been recently call into
question in [7,10,30].

The required number of field operations for those CSIDH
variants are reported in Tables 1, 2, and 3. In addition, each
table presents a comparison between the results of this work

123

98 Journal of Cryptographic Engineering (2023) 13:89–106

and the ones presented in [11]. Moreover, for each configura-
tionwe adopted optimal strategies and suitable bound vectors
according to [11, Sects. 3.4, 4.4 and 4.5].

When comparing with respect to CSIDH constant-time
implementations using traditionalVélu’s formulas, our exper-
imental results report a saving of 5.357%, 13.68% and
25.938% field Fp-operations for CSIDH-512, CSIDH-1024,
and CSIDH-1792, respectively. These results are somewhat
more encouraging than the ones reported in [5], where
speedups of about 1% and 8% were reported for a non
constant-time implementation of CSIDH-512 and CSIDH-
1024.

CTIDH, a fast constant-time implementation of CSIDH
(cf. with Table 6), was recently reported in [3]. CTIDH
combines an efficient key space mechanism along with
a Matryoshka-structure-like for processing several degree-
� isogenies in batches [23]. CTIDH’s key space is upper
bounded by Bi , the 1-norm of the i-th batch. Security wise, it
is critical that all the isogenies associated to a given batch are
calculated in constant-time. To assure this, all the isogenies
in a batch are computed at the cost of the maximal degree of

this batch. This can only be achieved by adding a significant
number of dummy operations.

It appears clear that
√
élu plays a significant role for

achieving CTIDH’s impressive computational performance.
Unfortunately, the authors of [3] did not include a version of
CTIDH using traditional Vélu’s formulas. This experiment
would have allowed to precisely quantify the speedup con-
tributed by

√
élu alone in the CTIDH performance.

5.2 Experiments playing the B-SIDH

To the best of our knowledge, we present in this section
the first implementation of the B-SIDH protocol, which was
designed to be a constant-time one. As in the case of CSIDH,
we report here the required number of Fp arithmetic oper-
ations. Similarly to CSIDH, the B-SIDH implementation
provided in this work, allows to perform experiments with
any prime field of p elements such that p ≡ 3 mod 4. The
main contribution provided in this subsection corresponds
to a comparison of B-SIDH instantiations using the primes

Table 1 Number of field operation for the constant-time CSIDH-512 group action evaluation

Configuration Group action evaluation M S a Cost Saving (%)

tvelu OAYT-style 0.641 0.172 0.610 0.813 –

MCR-style 0.835 0.231 0.785 1.066 –

dummy-free 1.246 0.323 1.161 1.569 –

svelu OAYT-style 0.656 0.178 0.988 0.834 − 2.583

MCR-style 0.852 0.219 1.295 1.071 − 0.469

dummy-free 1.257 0.324 1.888 1.581 − 0.765

hvelu OAYT-style 0.624 0.165 0.893 0.789 2.952

MCR-style 0.805 0.204 1.164 1.009 5.347

dummy-free 1.198 0.301 1.696 1.499 4.461

Counts are given in millions of operations, averaged over 1024 random experiments. For computing the Cost column, it is assumed thatM = S and

all addition counts are ignored. Last column labeled Saving corresponds to
(
1 − Cost

baseline

)
× 100 and baseline equals to tvelu configuration

Table 2 Number of field operation for the constant-time CSIDH-1024 group action evaluation

Configuration Group action evaluation M S a Cost Saving (%)

tvelu OAYT-style 0.630 0.152 0.576 0.782 –

MCR-style 0.775 0.190 0.695 0.965 –

dummy-free 1.152 0.259 1.012 1.411 –

svelu OAYT-style 0.566 0.138 0.963 0.704 9.974

MCR-style 0.702 0.152 1.191 0.854 11.503

dummy-free 1.046 0.230 1.746 1.276 9.568

hvelu OAYT-style 0.552 0.133 0.924 0.685 12.404

MCR-style 0.687 0.146 1.148 0.833 13.679

dummy-free 1.027 0.221 1.679 1.248 11.552

Counts are given in millions of operations, averaged over 1024 random experiments. For computing the Cost column, it is assumed thatM = S and

all addition counts are ignored. Last column labeled Saving corresponds to
(
1 − Cost

baseline

)
× 100 and baseline equals to tvelu configuration

123

Journal of Cryptographic Engineering (2023) 13:89–106 99

Table 3 Number of field operation for the constant-time CSIDH-1792 group action evaluation. Counts are given in millions of operations, averaged
over 1024 random experiments

Configuration Group action evaluation M S a Cost Saving (%)

tvelu OAYT-style 1.385 0.263 1.137 1.648 –

MCR-style 1.041 0.239 0.911 1.280 –

dummy-free 1.557 0.327 1.336 1.884 –

svelu OAYT-style 1.063 0.187 2.073 1.250 24.150

MCR-style 0.807 0.154 1.550 0.961 24.922

dummy-free 1.233 0.247 2.314 1.480 21.444

hvelu OAYT-style 1.060 0.185 2.061 1.245 24.454

MCR-style 0.797 0.151 1.522 0.948 25.938

dummy-free 1.220 0.241 2.272 1.461 22.452

For computing the Cost column, it is assumed that M = S and all addition counts are ignored. Last column labeled Saving corresponds to(
1 − Cost

baseline

)
× 100 and baseline equals to tvelu configuration

Table 4 Number of base field operation in Fp for the public key generation phase of BSIDH

Configuration Alice’s side Bob’s side

M a Saving (%) M a Saving (%)

tvelu B-SIDHp253 3.835 8.077 – 3.129 6.584 –

B-SIDHp255 3.874 8.144 – 2.639 5.552 –

B-SIDHp247 0.836 1.760 – 2.101 4.413 –

B-SIDHp237 0.079 0.169 – 9.523 19.988 –

B-SIDHp257 3.901 8.197 – 0.287 0.607 –

svelu B-SIDHp253 0.951 3.469 75.212 0.788 2.950 74.805

B-SIDHp255 0.995 3.693 74.328 0.716 2.585 72.881

B-SIDHp247 0.380 1.225 54.577 0.827 2.774 60.644

B-SIDHp237 0.104 0.243 − 32.701 2.236 8.480 76.523

B-SIDHp257 1.084 3.916 72.206 0.205 0.575 28.447

hvelu B-SIDHp253 0.935 3.427 75.623 0.772 2.907 75.316

B-SIDHp255 0.994 3.689 74.356 0.705 2.558 73.277

B-SIDHp247 0.372 1.200 55.538 0.826 2.771 60.701

B-SIDHp237 0.081 0.176 -2.867 2.234 8.473 76.544

B-SIDHp257 1.074 3.892 72.469 0.194 0.548 32.403

Counts are given in millions of operations. Columns labeled Saving correspond to
(
1 − Cost

baseline

)
× 100 and baseline equals to tvelu configuration

B-SIDHp253, B-SIDHp255,B-SIDHp247,B-SIDHp237 and
B-SIDHp257, which are specified in “Appendix A.4”.

All the above primes were chosen considering the follow-
ing features: (i) p ≡ 3 mod 4, (ii) the parameters M |(p+ 1)
and N |(p − 1) are as smooth as it was possible to find,
and (iii) 2210 < N , M . Our Python3-code implementation
uses the degree-4 isogeny construction and evaluation for-
mulas given in [12]. Additionally, the key generation does
not perform xISOG calls, which are expensive for large
primes, it reconstructs the A-coefficient by using the three
points pushed under the isogeny being computed (that is, we
implement a projective version of get_A() procedure). The
corresponding experimental results for the key generation

and secret sharing phases are presented in Tables 4 and 5,
respectively. It can be seen that significant savings ranging
from 24% up to 76% were obtained by B-SIDH combined
with

√
élu with respect to the same implementation of this

protocol using traditional Vélu’s formulas.
Notice that the best results were obtained when using the

B-SIDHp253 configuration, which seems to be faster than
anyCSIDH instantiation,mostly due to its small 256-bit field.

5.3 Discussion

Table 6 presents the clock cycle counts for several isogeny-
based protocols recently reported in the literature. Rather

123

100 Journal of Cryptographic Engineering (2023) 13:89–106

Table 5 Number of base field operation in Fp for the secret sharing phase of BSIDH

Configuration Alice’s side Bob’s side

M a Saving (%) M a Saving (%)

tvelu B-SIDHp253 1.838 3.948 – 1.534 3.285 –

B-SIDHp255 1.937 4.138 – 1.311 2.804 –

B-SIDHp247 0.439 0.938 – 1.118 2.379 –

B-SIDHp237 0.058 0.124 – 4.877 10.384 –

B-SIDHp257 1.969 4.202 – 0.164 0.351 –

svelu B-SIDHp253 0.480 1.785 73.882 0.408 1.563 73.392

B-SIDHp255 0.513 1.961 73.521 0.378 1.374 71.198

B-SIDHp247 0.215 0.684 50.982 0.458 1.558 59.058

B-SIDHp237 0.076 0.175 − 30.377 1.191 4.605 75.576

B-SIDHp257 0.569 2.111 71.078 0.124 0.343 24.502

hvelu B-SIDHp253 0.470 1.757 74.449 0.397 1.533 74.101

B-SIDHp255 0.512 1.959 73.548 0.370 1.355 71.734

B-SIDHp247 0.210 0.668 52.121 0.457 1.556 59.132

B-SIDHp237 0.060 0.131 − 3.878 1.190 4.601 75.603

B-SIDHp257 0.562 2.093 71.431 0.116 0.324 29.029

Counts are given in millions of operations. Columns labeled Saving correspond to
(
1 − Cost

baseline

)
× 100 and baseline equals to tvelu configuration

Table 6 Skylake Clock cycle timings for a key exchange protocol for different instantiations of the SIDH, CSIDH, and B-SIDH protocols

Implementation Protocol Instantiation Mcycles

SIKE [2] SIKEp434 22

Castryck et al. [8] CSIDH-512 unprotected 4 × 155

Bernstein et al. [5] CSIDH-512 unprotected 4 × 153

CSIDH-1024 unprotected 4 × 760

Cervantes-Vázquez et al. [9] CSIDH-512 MCR-style 4 × 339

CSIDH-512 OAYT-style 4 × 238

Hutchinson et al. [20] CSIDH-512 OAYT-style 4 × 229

Chi-Domínguez et al. [11] CSIDH-512 MCR-style 4 × 298

CSIDH-512 OAYT-style 4 × 230

Banegas et al. [3] CTIDH-512 4 × 126

CTIDH-1024 4 × 470

This work (estimated) CSIDH-512 MCR-style 4 × 282

CSIDH-512 OAYT-style 4 × 223

B-SIDH-p253 119

than providing a direct comparison, the main purpose of
including this table here is that of providing a perspective
of the relative timing costs of several emblematic implemen-
tations of isogeny-based key-exchange primitives.

Clearly,
√
élu has a dramatic impact on the performance

of B-SIDH, so much so that one can claim confidently that
B-SIDH outperforms any instantiation of CSIDH. For exam-
ple, using the B-SIDH configuration presented in example 2
of [13], Alice and Bob will require about 1.620 × 220 and
1.343×220 base fieldmultiplications inFp,where p is a 256-
bit prime, respectively. In particular, making the conservative

assumption that a 256-bit field multiplication takes 40 clock
cycles, then a key exchange using B-SIDH would cost about
118.520 × 220 clock cycles. On the other hand, the fastest
CISDH-512group action evaluation (see [11,20]) takes about
230 × 220 clock cycles. Therefore, a key exchange using
CSIDH would take about 920 × 220 clock cycles (consider-
ing four group action evaluations). This implies that B-SIDH
is expected to be about 8x faster than the fastest CSIDH-512
C-code implementation.

Costello proposed as a possible application for B-SIDH,
key exchange protocols executed in the context of a client-

123

Journal of Cryptographic Engineering (2023) 13:89–106 101

Table 7 Number of base field operation in Fp of both SIKE and B-SIKE (B-SIDH with KEM) protocol.

Algorithm Security KeyGen Encaps Decaps

M a M a M a

SIKEp434 NIST LEVEL 1 0.043 0.096 0.074 0.159 0.077 0.170

SIKEp503 NIST LEVEL 2 0.051 0.114 0.087 0.188 0.092 0.200

SIKEp610 NIST LEVEL 3 0.063 0.140 0.118 0.254 0.118 0.258

SIKEp751 NIST LEVEL 5 0.080 0.177 0.136 0.292 0.143 0.312

B-SIKEp253 NIST LEVEL 1 0.772 2.907 1.404 5.185 1.332 4.960

Counts are given in millions of operations. Encaps and Decaps denote the key encapsulation and decapsulation, respectively

server session [13]. Typically, one could expect that the client
hasmuchmore constrained computational resources than the
server. In the case that we choose the prime B-SIDHp237 for
performing a B-SIDH key exchange, Alice and Bob would
require about 0.13 × 220 and 3.953 × 220 base field multi-
plications in Fp. Once again, assuming that a 256-bit field
multiplication takes 40 clock cycles, then a key exchange
using B-SIDHwould cost about 5.20×220 and 158.12×220

clock cycles for Alice and Bob, respectively. For compari-
son, a SIKEp434 key exchange costs about 10.73 × 220 and
12.04 × 220 clock cycles for Alice and Bob, respectively.
Hence, Alice (the client) will benefit with a B-SIDHp237
computation that is about twice as fast as the one required
in SIKEp434. This will come at the price that Bob’s com-
putation (the server) would become thirteen times more
expensive. On the other hand, the B-SIDHp237 key sizes are
noticeably smaller than the ones required in SIKEp434. This
feature is especially valuable for highly constrained client
devices.

In terms of security, the B-SIDH instantiations reported
in this paper should achieve the same classical and quan-
tum security level than a SIDH instantiations using the
SIKEp434 prime. However, B-SIDH is susceptible to the
active attack described in [19]. To offer protection against
this kind of attacks, B-SIDH should incorporate a key encap-
sulation mechanism (KEM) such as the one included in
[2]. Essentially, a B-SIDH augmented version with a key
encapsulation mechanism (B-SIKE), inherits the same SIKE
protocol flow: (i) KeyGen performs one degree-M isogeny,
ii) Encaps computes two ephemeral degree-N isogenies,
and iii) Decaps executes one degree-M isogeny and one
ephemeral degree-N isogeny.

We illustrate the impact of a KEM in B-SIDH, compar-
ing in Table 7 the associated timings of SIKE and B-SIKE
instantiations with similar security level. In particular, we
focus on our best B-SIDH instantiation: B-SIDHp253 with
KEM (B-SIKEp253).

Once again, assuming that a 253-bit field multiplication
takes 40 clock cycles, then aB-SIKEp253 instantiationwould
cost (0.772 + 1.404 + 1.332) × 40.0 ≈ 140.32 Millions of
clock cycles. This is still faster than any CSIDH-512 instan-

tiation, and also faster than CTIDH-512 [3], which is about
twice as fast as CSIDH-512) 9

6 Conclusions

In this paper, we presented a concrete analysis of the√
élu procedure introduced in [5]. From our analysis, we

conclude that for most practical scenarios, the best approach
for performing the polynomial products associated to

√
élu,

is Karatsuba polynomial multiplication. The main concrete
consequence of this observation is that computing degree-�
isogenies with

√
élu has a practical computational complex-

ity essentially proportional to blog2 (3), where b ≈
√

(�−1)
2 .

We introduced several algorithmic tricks that permit to
save multiplications when performing the polynomial prod-
ucts involving the computation of the resultants included
in 2–3. The combination of these improvements allows
us to construct and evaluate degree-� isogenies with a
slightly lesser number of arithmetic operations than the ones
employed in [5].

We applied
√
élu and optimal strategies to several instan-

tiations of the CSIDH and B-SIDH protocols, producing the
very first constant-time implementation of the latter protocol
for a selection of primes taken from [5,13].

Our future work includes C constant-time single-core and
multi-core implementations of the twoprotocol instantiations
studied in this work. We would also like to study more effi-
cient selections of the sets I,J andK as defined in Sect. 4.1,
which could yield more economical computations of

√
élu.

Acknowledgements We thank the anonymous reviewers for their com-
ments to improve the quality of the paper andAmalia Pizarro andOdalis
Ortega for pointing a missed factor in the product tree cost analysis.

Funding This project started when J. Chi-Domínguez was a postdoc-
toral researcher at Tampere University, and initially received funding
from the European Commission through the ERC Starting Grant
804476. It received funds from theMexican Science council CONACyT
project 313572, while F. Rodríguez-Henríquez was visiting the Univer-

9 Our python-code implementation of SIDH is based on the SIDH spec-
ifications [2].

123

102 Journal of Cryptographic Engineering (2023) 13:89–106

sity of Waterloo. Additionally, this work was partially supported by the
Spanish Ministerio de Ciencia, Innovación y Universidades, under the
reference MTM2017-83271-R.

Availability of data and material Run-time data is not available

Code availability Our software library is freely available at https://
github.com/JJChiDguez/sibc.

Declarations

Conflicts of interest The authors have no conflicts of interest to declare.

A Appendix

A.1 Algorithms

Algorithm 4 Simplified constant-time CSIDH class group action for supersin-
gular curves over Fp p = 4

∏n
i=1 �i − 1. The ideals li = (�i , π − 1), where π maps

to the p-th power Frobenius morphism. This algorithm computes exactly m isogenies
for each ideal li (Adapted from [11]).

Require: A supersingular curve EA over Fp , an integer vector (e1, . . . , en) ∈
�0 . . m�n , m > 0.

Ensure: EB = l
e1
1 ∗ · · · ∗ l

en
n ∗ EA .

1: E0 ← E {Initializing to the base curve}
2: {Outer loop: Each �i is processed m times}
3: for i ← 1 to m do
4: T ← GetFullTorsionPoint(E0) {T ∈ En [π − 1] }
5: T ← [4]T {Now T ∈ En

[∏
i �i

]
}

6: {Inner loop: processing each prime factor �i |(p + 1)}
7: for j ← 0 to (n − 1) do
8: G j ← T

9: for k ← 1 to (n − 1 − j) do
10: G j ← [�k]G j
11: end for
12: if en− j �= 0 then
13: 〈G j 〉 ← KPS(G j)

14: E(j+1) mod n ← xISOG(E j , �n− j , 〈G j 〉)
15: T ← xEVAL(T , 〈G j 〉)
16: en− j ← en− j − 1
17: else
18: 〈G j 〉 ← KPS(G j)

19: xISOG(E j , �n− j , 〈G j 〉) {Dummy operations}
20: T ← [�n− j]T
21: E j+1 mod n ← E j
22: end if
23: end for
24: end for
25: return E0

A.2 Schönage-FFT vs Karatsuba

Karatsuba multiplication is a well-known and complete tool
for multiplying polynomials of degree n over a commuta-
tive ring at the subquadratic cost of O(nlog2 3). However, an
asymtotically faster family of algorithms based on the fast
Fourier transform (FFT) exists. In this section, we consider
Schönage’s algorithm [33] blended with the FFT multipli-
cation, as described in [4], and give an accurate estimate of

Algorithm 5 Large composite degree isogeny construction

Require: a supersingular Montgomery curve E/Fp2 : By2 = x3 + Ax2 + x , a kernel

point generator R on E/Fp2 of order L = �1
e1 · �2

e2 · · · �nen ,
and a strategy S

Ensure: the degree-L isogenous curve E/〈R〉
1: Set L ′ as in Equation 2 {S must be determined by L ′}
2: rami f ications ← [R] {list of points to be evaluated}
3: moves ← [0]; k ← 0
4: e ← #L ′ {e must be equal to #S + 1}
5: {Outer loop: Each �i is processed ei times}
6: for i ← 0 to #S − 1 do
7: prev ← sum(moves)
8: {Inner loop: computing the kernel point generator}
9: while prev < (e − 1 − i) do
10: moves.append(Sk)
11: V ← last element of rami f ications
12: for j ← prev to prev + Sk do
13: V ← [L ′

j]V
14: end for
15: rami f ications.append(V) {New point to be evaluated}
16: prev ← prev + Sk ; k ← k + 1
17: end while
18: G ← last element of rami f ications
19: 〈G〉 ← KPS(G)

20: E ← xISOG(E, �e−1−i , 〈G〉)
21: {Inner loop: evaluating points}
22: for j ← 0 to #moves − 1 do
23: rami f ications j ← xEVAL(rami f ications j , 〈G〉)
24: end for
25: moves.pop(); rami f ications.pop()
26: end for
27: G ← the unique element of rami f ications
28: 〈G〉 ← KPS(G)

29: E ← xISOG(E, �0, 〈G〉)
30: return E

the running time of this algorithm in order to make practical
comparatives with Karatsuba multiplication.

Let A be a commutative ring where 2 in invertible. For
n > 1 a power of 2, c a square in A and ζ ∈ A a square
root of−1, let f , g be two polynomials in A[x]/(xn +c). To
multiply f and g, one can split the problem into two smaller
ones by reducing f , g to f−, g− ∈ A[x]/(xn/2 − ζc1/2)
and to f+, g+ ∈ A[x]/(xn/2 + ζc1/2)g. Then, the products
f−g−, f+g+ are computed, and subsequently embedded into
A[x]/(xn +c)wherein (f−g− + f+g+) and (f−g− − f+g+)

are calculated to finally recover 2 f g.
Note that when c is an nth root in A, which in addition

contains an nth root of −1, then the above procedure can be
applied recursively to compute the product n f g at a cost of k
multiplications in A and 3

2n log2(n) easy multiplications in
A by constants. This is essentially the FFT multiplication.

Suppose now that A does not contain an nth root of
−1, with n = 2s > 8, then Schönage’s method can be
employed to multiply f = ∑

0≤i<n fi and g = ∑
0≤i<n gi

in A[x]/(xn + 1). First, define n1 = 2s1 , with s1 = �s/2�,
B = A[x]/(xn1+1), and consider the ring B[y]/(y2n/n1+1).
The goal here is to reduce the computation of f g into one
multiplication in B[y]/(y2n/n1 + 1). Note that xn

2
1/2n is a

(2n/n1)th root of −1 in B, and hence the FFT can be used
to multiply polynomials in B[y]/(y2n/n1 + 1). We start by
sending f , g to F,G ∈ A[x, y]/(y2n/n1 + 1), respectively,

123

https://github.com/JJChiDguez/sibc
https://github.com/JJChiDguez/sibc

Journal of Cryptographic Engineering (2023) 13:89–106 103

where

F =
∑

0≤ j< 2n
n1

∑

0≤i<
n1
2

fi+ n
2 j x

i y j and

G =
∑

0≤ j< 2n
n1

∑

0≤i<
n1
2

gi+ n
2 j x

i y j ,

are such that φ(F) = f and φ(G) = g, the map φ :
A[x, y]/(y2n/n1 + 1) → A[x]/(xn + 1) being the A[x]-
algebra morphism that sends y to xn1 . Thus, since F and
G have x-degree < n1/2, their product is computed in
B[y]/(y2n/n1 + 1), and then passed through φ to recover
(2n/n1) f g.

To estimate the cost of this computation, notice that
transforming f , g to F,G and (2n/n1)FG to (2n/n1) f g
requires no multiplications in A. Moreover, when comput-
ing (2n/n1)FG in B[y]/(y2n/n1 + 1) using the FFT, the
multiplications by constants can be ignored since these will
be just multiplications by powers of x in B. Therefore, the
cost of multiplying polynomials in A[x]/(xn+1) boils down
to the 2n/m multiplications in B arising from the FFT appli-
cation. Now, since B = A[x]/(xn1 + 1), the above strategy
can be applied recursively until reaching multiplications in
A[x]/(x8 + 1), where more conventional methods can be
used. Hence, the total cost of multiplying two polynomials
in A[x]/(xn + 1) will be

C(n) = 2n

n1
× 2n1

n2
× · · · × 2nk−1

nk
× C8 = 2k

n

nk
C8,

where ni = 2si , with si = �si−1/2� for i ∈ {2, . . . , k}, k
is such that nk = 8, and C8 is the cost of multiplying two
polynomials in A[x]/(x8 + 1). An easy analysis then shows
that k = �log2(s−1)�−1 = �log2(log2(n)−1)�−1. Thus,
we have

C(n) = C8

16
enn(log2(n) − 1),

where log2(en) = �log2(log2(n) − 1)� − log2(log2(n) − 1).
Notice that 1 ≤ en < 2.

Finally, to compute the product of degree-n polynomials
f , g ∈ A[x] (n ≥ 4), we define N = 2�log2(n)�+2 and com-
pute f g in A[x]/(xN + 1) at a cost of

Cost(n) = C8

4
Enn(�log2(n)� + 1),

where log2(En) = �log2(n)�− log2(n)+�log2(�log2(n)�+
1)� − log2(�log2(n)� + 1). Notice that 1

2 < En < 2.
In order to illustrate the performance of Schönage-FFT

polynomial multiplication, Fig. 4 compares it with the cost
of Karatsuba-style method. Anyhow, we did not focus on
improving Schönage-FFT method and our experiments are

Fig. 4 Comparison between the Schönage-FFT and Karatsuba style
polynomial multiplications. The x-axis corresponds with the degree of
both polynomials to be multiplied, while y-axis shows the expected
cost required in the polynomial multiplication method. In particu-
lar, the karatsuba and Schönage-FFT costs are taken as nlog2(3) and
27
8 n(�log2(n)� + 1), respectively. Schönage-FFT method assumes that
En = 1/2, and karatsuba multiplication is required in its base case,
which implies C8 = 27

centered on asymtoptic costs. Whichever the case, it looks
that Karatsuba-style polynomial multiplication is the more
suitable approach to be used in the new

√
élu formulas for

both as CSIDH and B-SIDH implementations.

A.3 Cost of computing resultants via remainder
trees

In this section we focused on the computational cost associ-
ated to a resultant computation via remainder trees. Resul-
tants are required by the

√
élu procedures xISOG and

xEVAL.
Formally, each one of the two resultants required by 2

and 3, corresponds to the computation ofResZ (f (Z), g(Z))

such that f , g ∈ Fq [Z], deg f = b′ ≈ b and deg g = 2b.
Our goal in this appendix is that of deriving the cost of the
resultant computation in terms ofb. For the sake of simplicity,
let us assume deg f = b.

It is important to highlight that the modular polynomial
reduction required at each node in the remainder tree, can
be performed via reciprocal computations (for more details
see [4, p. 27, Sect. 17]). For example, the modular polyno-
mial reduction g mod f requires two degree-b polynomial
multiplications modulo xb, one constant multiplication by a
degree-b polynomial, and the reciprocal computation mod-
ulo xb (that is, 1/ f mod xb). In turn, the cost of a reciprocal
computation modulo xb can be estimated by the expenses
associated to two degree-(b/2) polynomial multiplications
modulo xb/2, one constant multiplication by a degree-(b/2)

123

104 Journal of Cryptographic Engineering (2023) 13:89–106

polynomial, and another reciprocal, but this time modulo
x (b/2). The above implies that a reciprocal modulo xb should
be computed recursively. Its associated running time com-
plexity equation is given as,

T (b) = T

(
b

2

)
+ 2t

(
b

2

)
+ b

2
,

where t(b) denotes the polynomial multiplication cost of
two degree-b polynomials modulo xb. Now, assuming that a
Karatsuba polynomial multiplication is used, it follows that

T (b) ≈ T

(
b

2

)
+ 2

(
b

2

)log2(3)

+ b

2

= T

(
b

2

)
+ 2

3
blog2(3) + b

2

=
log2(b)∑

i=0

(
2

3

(
b

2i

)log2(3)

+ b

2i+1

)

=
(
2

3
blog2(3)

) log2(b)∑

i=0

1

3i
+

(
b

2

) log2(b)∑

i=0

1

2i

=
(
1 − 1

3log2(b)+1

)
blog2(3) +

(
1 − 1

2log2(b)+1

)
b

=
(
1 − 1

3blog2(3)

)
blog2(3) +

(
1 − 1

2b

)
b

= blog2(3) + b − 5

6
.

Hence, the polynomial reduction g mod f is expected to

have a running time of
(
blog2(3) + b − 5

6

)
field multiplica-

tions.
Now, the remainder tree of f and g is constructed going

from its root all the way to its leaves. To do this, at the i-th
level of the remainder tree 2i modular reductions of the form
g mod f such that deg f ≈ b

2i
and deg g ≈ 2 deg f , must

be performed. Their combined cost is given as,

R(b, i) = 2i
((

b

2i

)log2(3)

+ b

2i
− 5

6

)

= blog2(3)
(
2

3

)i

+ b −
(
5

6

)
2i .

Furthermore, the cost of the remainder tree construction
can be done with about R(b) = ∑log2(b)

i=0 R(b, i) field multi-
plications. In particular,

R(b) = blog2(3)
log2(b)∑

i=0

(
2

3

)i

+ b(log2(b) + 1) − 5

6

log2(b)∑

i=0

2i

= 3blog2(3)
(
1 −

(
2

3

)log2(b)+1
)

+ b(log2(b) + 1)

− 5

6

(
2log2(b)+1 − 1

)

= 3blog2(3)
(
1 − 2b

3blog2(3)

)
+ b(log2(b) + 1)

− 5

6
(2b − 1)

= 3blog2(3) − 2b + b log2(b) + b − 5

3
b + 5

6

= 3blog2(3) + b log2(b) − 8

3
b + 5

6
.

Finally, once the remainder tree has been constructed, the
next step is to multiply all its leaves, which has an extra cost
of b field multiplications, and produces that the Resultant
ResZ (f (Z), g(Z)) computation requires a total of

(
3blog2(3) + b log2(b) − 5

3
b + 5

6

)
field multiplications.

Now, the polynomial hI (X), which splits into b linear
polynomials, is computed via product trees at a cost of

T (b) ≈ 2T

(
b

2

)
+

(
b

2

)log2(3)

=
log2(b)∑

i=0

2i
(

b

2i+1

)log2(3)

= blog2(3)

3

log2(b)∑

i=0

(
2

3

)i

=
(
1 −

(
2

3

)log2(b)+1
)
blog2(3)

=
(
1 − 2b

3blog2(3)

)
blog2(3) =

(
blog2(3) − 2

3
b

)

multiplications, while Ei,J (the product of b quadratic poly-
nomials), requires about

T (b) ≈ 2T

(
b

2

)
+ blog2(3) =

log2(b)∑

i=0

2i
(
b

2i

)log2(3)

= blog2(3)
log2(b)∑

i=0

(
2

3

)i

=
(
3blog2(3) − 2b

)
.

A.4 B-SIDH primes

For all primes here we have that M |(p + 1) and N |(p − 1).
Example 2. of [13, Sect. 5.2] (B-SIDHp253):

p = 0x1935BECE108DC6C0AAD0712181BB1A414

E6A8AAA6B510FC29826190FE7EDA80F,

M = 42 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011·
14207 · 28477 · 76667,

N = 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449·

123

Journal of Cryptographic Engineering (2023) 13:89–106 105

33461 · 51193.

Example 3. of [13, Sect. 5.2] (B-SIDHp255):

p = 0x76042798BBFB78AEBD02490BD2635DEC

131ABFFFFFFFFFFFFFFFFFFFFFFFFFFF

M = 455 · 5 · 72 · 67 · 223 · 4229 · 9787 · 13399 · 21521·
32257 · 47353,

N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107 · 109 · 131·
137 · 197 · 199 · 227 · 251 · 5519 · 9091 · 33997·
38201.

Example 5. of [13, Sect. 5.3] (B-SIDHp247):

p = 0x46B27D6FAE96ED4A639E045B7D2C3CA33

F476892ADAFF87B9B6EAE5EE1FFFF

M = (
42 · 52 · 7 · 23 · 79 · 107 · 307 · 2129)4 · 79012,

N = 3 · 11 · 17 · 241 · 349 · 421 · 613 · 983 · 1327 · 1667·
2969 · 3769 · 4481 · 4649 · 4801 · 4877 · 5527·
6673 · 7103 · 7537 · 7621.

Example 6. of [13, Sect. 5.3] (B-SIDHp237):

p = 0x1B40F93CE52A207249237A4FF37425A798

E914A74949FA343E8EA487FFFF

M = 43 · (
4 · 34 · 17 · 19 · 31 · 37 · 532)6,

N = 7 · 13 · 43 · 73 · 103 · 269 · 439 · 881 · 883 · 1321·
5479 · 9181 · 12541 · 15803 · 20161 · 24043 · 34843·
48437 · 62753 · 72577.

Lucky proposal of [5, appendix A] (B-SIDHp257):

p = 0x1E409D8D53CF3BEB65B5F41FB53B25E

BEAF37761CD8BA996684150A40FFFFFFFF

M = 416 · 521 · 7 · 11 · 163 · 1181 · 2389 · 5233 · 8353·
10139 · 11939 · 22003 · 25391 · 41843,

and

N = 356 · 31 · 43 · 59 · 271 · 311 · 353 · 461 · 593 · 607·
647 · 691 · 743 · 769 · 877 · 1549.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J., Menezes,
A., Rodríguez-Henríquez, F.: On the cost of computing isogenies
between supersingular elliptic curves. In: Cid, C., Jacobson, M.J.,

Jr. (eds.) SelectedAreas inCryptography - SAC2018–25th Interna-
tional Conference. Lecture Notes in Computer Science, vol. 11349,
pp. 322–343. Springer, Cham (2018)

2. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess,
B., Jalali,A., Jao,D.,Koziel,B., LaMacchia,B., Longa, P.,Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Super-
singular isogeny key encapsulation. second round candidate of
the NIST’s post-quantum cryptography standardization process
(2017). Available at: https://sike.org/

3. Banegas, G., Bernstein, D.J., Campos, F., Chou, T., Lange, T.,
Meyer, M., Smith, B., Sotáková, J.: CTIDH: faster constant-time
CSIDH. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4),
351–387 (2021)

4. Bernstein, D.J.: Fast multiplication and its applications. Algorith-
mic Number Theory 44, 325–384 (2008)

5. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computa-
tion of isogenies of large prime degree. In: ANTS XIV. The Open
Book Series, vol. 4(1), pp. 39–55 (2020)

6. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quan-
tum circuits for the CSIDH: optimizing quantum evaluation of
isogenies. In: Ishai,Y., Rijmen,V. (eds.)Advances inCryptology—
EUROCRYPT 2019, Part II. Lecture Notes in Computer Science,
vol. 11477, pp. 409–441. Springer, Cham (2019)

7. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of
CSIDH. In:Canteaut,A., Ishai,Y. (eds.)Advances inCryptology—
EUROCRYPT 2020, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12106, pp. 493–522. Springer, Cham (2020)

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.:
CSIDH: an efficient post-quantum commutative group action.
In: Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology—
ASIACRYPT 2018, Part III. Lecture Notes in Computer Science,
vol. 11274, pp. 395–427. Springer, Cham (2018)

9. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J., De Feo,
L., Rodríguez-Henríquez, F., Smith, B.: Stronger and faster side-
channel protections forCSIDH. In: Schwabe, P., Thériault,N. (eds.)
Progress in Cryptology—LATINCRYPT 2019. Lecture Notes in
Computer Science, vol. 11774, pp. 173–193. Springer, Cham
(2019)

10. Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-
Henríquez, F.: The SQALE of CSIDH: sublinear Vélu quantum-
resistant isogeny action with low exponents. J. Cryptogr.
Eng. (2021). https://link.springer.com/article/10.1007/s13389-
021-00271-w

11. Chi-Domínguez, J., Rodríguez-Henríquez, F.: Optimal strate-
gies for CSIDH. Advances in Mathematics of Communi-
cations (2020). https://www.aimsciences.org/article/doi/10.3934/
amc.2020116. Preprint version: https://eprint.iacr.org/2020/417

12. Connolly, D.: Code for SIDH key exchange with optional public
key compression. Github (2017). Available at: https://github.com/
dconnolly/msr-sidh/tree/master/SIDH-Magma

13. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using
twisted torsion. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology—ASIACRYPT 2020—Proceedings, Part II. Lecture
Notes in Computer Science, vol. 12492, pp. 440–463. Springer,
Cham (2020)

14. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH
with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.)
Advances in Cryptology—ASIACRYPT 2017, Part II. Lecture
Notes in Computer Science, vol. 10625, pp. 303–329. Springer,
Cham (2017)

15. Costello, C., Longa, P., Naehrig,M.: Efficient algorithms for super-
singular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.)
Advances in Cryptology—CRYPTO 2016, pp. 572–601. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2016)

16. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291 (2006). http://eprint.iacr.org/2006/291

123

https://sike.org/
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s13389-021-00271-w
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s13389-021-00271-w
https://www.aimsciences.org/article/doi/10.3934/amc.2020116
https://www.aimsciences.org/article/doi/10.3934/amc.2020116
https://eprint.iacr.org/2020/417
https://github.com/dconnolly/msr-sidh/tree/master/SIDH-Magma
https://github.com/dconnolly/msr-sidh/tree/master/SIDH-Magma
http://eprint.iacr.org/2006/291

106 Journal of Cryptographic Engineering (2023) 13:89–106

17. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. J. Math. Cryptol.
8(3), 209–247 (2014)

18. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange
from ordinary isogeny graphs. In: Peyrin, T., Galbraith, S.D. (eds.)
Advances in Cryptology—ASIACRYPT 2018, Part III. Lecture
Notes in Computer Science, vol. 11274, pp. 365–394. Springer,
Cham (2018)

19. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of
supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology—ASIACRYPT 2016, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 10031, pp. 63–91.
Springer, Berlin (2016)

20. Hutchinson, A., LeGrow, J.T., Koziel, B., Azarderakhsh, R.: Fur-
ther optimizations of CSIDH: a systematic approach to efficient
strategies, permutations, and bound vectors. In: Conti, M., Zhou,
J., Casalicchio, E., Spognardi, A. (eds.) Applied Cryptography and
Network Security—18th International Conference, ACNS 2020,
Part I. Lecture Notes in Computer Science, vol. 12146, pp. 481–
501. Springer, Cham (2020)

21. Jao,D.,DeFeo, L.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In: Yang, B. (ed.) Post-
Quantum Cryptography–4th International Workshop, PQCrypto
2011. Lecture Notes in Computer Science, vol. 7071, pp. 19–34.
Springer, Berlin (2011)

22. Kohel, D.R.: Endomorphism rings of elliptic curves over finite
fields. Ph.D. thesis, University of California at Berkeley, The
address of the publisher (1996). Available at:http://iml.univ-mrs.
fr/~kohel/pub/thesis.pdf

23. Meyer, M.: Isogeny School 2020: Constant-time implementations
of isogeny schemes. Isogeny-based cryptography school, Week 11
(2020). https://isogenyschool2020.co.uk/schedule/isogenyschool-
constant-time.pdf

24. Meyer, M., Campos, F., Reith, S.: On lions and elligatorsaefficient
constant-time implementation of CSIDH. In: Ding, J., Steinwandt,
R. (eds.) Post-Quantum Cryptography—0th International Confer-
ence. LectureNotes inComputer Science, vol. 11505, pp. 307–325.
Springer, Cham (2019)

25. Meyer,M., Reith, S.: A faster way to the CSIDH. In: INDOCRYPT
2018,LectureNotes inComputerScience, vol. 11356, pp. 137–152.
Springer (2018)

26. Montgomery, P.L.: Speeding the Pollard and elliptic curvemethods
of factorization. Math. Comput. 48(177), 243–264 (1987)

27. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isoge-
nies on alternate models of elliptic curves. Math. Comput. 85(300),
1929–1951 (2016)

28. Nakagawa, K., Onuki, H., Takayasu, A., Takagi, T.: L1-norm ball
for CSIDH: optimal strategy for choosing the secret key space.
IACR Cryptol. ePrint Arch. p. 181 (2020)

29. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (short paper) A
faster constant-time algorithm of CSIDH keeping two points. In:
Attrapadung, N., Yagi, T. (eds.) 14th International Workshop on
Security, IWSEC 2019. Lecture Notes in Computer Science, vol.
11689, pp. 23–33. Springer, Cham (2019)

30. Peikert, C.: He gives c-sieves on the CSIDH. In: Canteaut, A.,
Ishai, Y. (eds.) Advances in Cryptology—EUROCRYPT 2020—
Proceedings, Part II. Lecture Notes in Computer Science, vol.
12106, pp. 463–492. Springer, Berlin (2020)

31. Renes, J.: Computing isogenies betweenMontgomery curves using
the action of (0, 0). In: Lange, T., Steinwandt, R. (eds.) Post-
QuantumCryptography—9th International Conference, PQCrypto
2018.LectureNotes inComputerScience, vol. 10786, pp. 229–247.
Springer, Cham (2018)

32. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on
isogenies. IACR Cryptology ePrint Archive, vol. 2006, p. 145
(2006). http://eprint.iacr.org/2006/145

33. Schönhage, A.: Schnelle multiplikation von polynomen über kör-
pern der charakteristik 2. Acta Informatica 7, 395–398 (1977)

34. Stolbunov, A.: Constructing public-key cryptographic schemes
based on class group action on a set of isogenous elliptic curves.
Adv. Math. Commun. 4(2), 215–235 (2010)

35. Washington, L.: Elliptic Curves: Number Theory and Cryptogra-
phy, 2nd edn. Chapman & Hall/CRC, Boca Raton (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://isogenyschool2020.co.uk/schedule/isogenyschool-constant-time.pdf
https://isogenyschool2020.co.uk/schedule/isogenyschool-constant-time.pdf
http://eprint.iacr.org/2006/145

	Karatsuba-based square-root Vélu's formulas applied to two isogeny-based protocols
	Abstract
	1 Introduction
	2 Background
	2.1 Overviewing the CSIDH
	2.2 Playing the B-SIDH

	3 Optimal strategies for the CSIDH and the B-SIDH
	4 New Vélu's formulas
	4.1 Construction and evaluation of odd degree isogenies
	4.2 Implementation speedups
	4.3 A concrete complexity analysis

	5 Experiments and discussion
	5.1 Experiments on the CSIDH
	5.2 Experiments playing the B-SIDH
	5.3 Discussion

	6 Conclusions
	Acknowledgements
	A Appendix
	A.1 Algorithms
	A.2 Schönage-FFT vs Karatsuba
	A.3 Cost of computing resultants via remainder trees
	A.4 B-SIDH primes

	References

