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Abstract
Threshold implementations have emerged as one of themost popular masking countermeasures for hardware implementations
of cryptographic primitives. In this work, we provide three TI optimization techniques: First, a generic construction for d + 1
TI sharing achieves the minimal number of output shares for any n-input Boolean function of degree t = n− 1 and for any d.
Next, we present a methodology for finding minimal number of output shares in d + 1 TI when t < n − 1. Third, a heuristic
for minimizing the number of output shares for higher-order td + 1 TI for any n, any t and d ≤ 2 is proposed. In addition,
we describe an optimization for the secure AES schedule which achieves maximum throughput for a serial implementation.
Then, we demonstrate the applicability of our results on d + 1 and td + 1 TI versions, for first- and second-order secure,
low-latency and low-energy implementations of the PRINCE block cipher. We show the fastest and the most energy efficient
known TI-protected implementations of PRINCE.
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1 Introduction

Historically, the field of lightweight cryptography has been
focused on designing algorithms that leave an as small
footprint as possible when manufactured in silicon. Small
area implicitly results in low power consumption, which is
another, equally important, optimization target.

Hitting these two targets comes at a price since the perfor-
mance and energy consumption of lightweight cryptographic
primitives are far frombeing competitive, and formost online
applications, they are often not meeting the requirements.
There are only a handful of designs that consider latency
and energy consumption among their main design goals.
PRINCE [3] and Midori [2] are two prominent examples.

The inherent vulnerability to physical attacks is a seri-
ous threat that the field of lightweight cryptography has been
exposed to since its creation. Side-channel analysis is one
of the most powerful examples of such an attack. To resist
an adversary that has access up to d wires inside the cir-
cuit [27], the secret value has to be shared into at least d + 1
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random shares using a masking technique. An example of
such a scheme is Boolean masking where the secret is shared
into shares using Boolean addition and the shares are then
independently processed in a way that prevents revealing the
secret information.

In order to circumvent a masked implementation, attack-
ers need to extract and combine the secret information from
several shares, i.e., they need to employ a higher-order attack
of degreed at least. These attacks are harder tomount because
they are susceptible to the amount of noise collected during
the trace acquisition. Higher-order SCA protection incurs
penalties in the silicon area, execution time, power con-
sumption and the number of random bits required for secure
execution. Increased cost comes from the number of shares
that are required. When protecting a nonlinear function, the
number of output shares grows significantly and depends
on the number of input shares, the algebraic degree of the
function, the number of nonlinear terms the function has
and the security order that needs to be achieved. For exam-
ple, the number of output shares in consolidated masking
scheme [41] exponentially grows with the algebraic degree
of the function with the number of shares being lower bound
by (d + 1)t , with t being the algebraic degree.

The challenge of designing secure cryptographic circuits
becomes significantly harder once the strict requirements
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have to bemet for at least one of the followingmetrics: silicon
area, latency, power or energy consumption. In the context
of this paper, and as stated in [29], we consider latency as
the total time needed to execute a single cryptographic oper-
ation. Minimizing latency can be achieved by increasing the
frequency the circuit can operate on or by reducing the clock
cycle count of the operation. Hence, one design outperforms
another with regard to latency if the product of the number
of clock cycles and the minimal clock period is smaller in
that design.

Recently, multiple examples targeting both low-latency
and side-channel protection emerged. The resulting effort
produced a variety of AES [22,44,46], KECCAK [1] and
PRINCE [33]. Their results indicate that low-latency side-
channel design is a significantly more difficult problem
than designing a countermeasure by optimizing area or the
amount of randomness, which are the typical design criteria
addressed by the scientific community. Therefore, designing
side-channel countermeasures for low-latency or low-energy
implementations is considered to be an important open prob-
lem.

Threshold implementation (TI) [36] is a provably secure
masking scheme specifically designed to counter side-
channel leakage caused by the presence of glitches in hard-
ware. The countermeasure removes the dependency between
the number of nonlinear terms and the number of input shares,
which is a big advantage over classical masking schemes.
In [6], the authors extended the approach of TI to counter
higher-order (uni-variate) attacks. The theory suggests the
usage of at least td + 1 number of input shares in order
to make a Boolean function with algebraic degree t secure
against a dth-order side-channel attack. That is the reason
why the TI scheme introduced in [6] is often referred to as
a td + 1 TI. In 2015, the authors of [41] proposed a con-
solidated masking scheme (CMS) and reduced the required
number of input shares needed to resist a dth-order attack
to d + 1, regardless of the algebraic degree of the shared
function. Recall that this is theoretically the lowest bound
on the number of input shares with respect to the order of
security d. Recently, more schemes using d + 1 shares such
as domain-oriented masking (DOM) and unified masking
approach (UMA) emerged [23,24], where the essential dif-
ference with CMS is in the way the refreshing of the output
shares is performed. Since the security ofCMS,DOM,UMA,
HPC [14], and other descendant schemes relies on the TI
principles [19], in this paper we refer to all these schemes as
d + 1 TI.

The goal of generic low-latency masking (GLM) [22] is
to be a generalized concept for low-latency masking that is
supposed to be applicable to any implementation and protec-
tion order. However, the authors have applied their concept
to designs that are not low-latency, and therefore, it is dif-
ficult to compare their approach. We have to stress that the

goal to achieve minimal latency is not equivalent to get only
execution within fewer cycles since, at the same time, the
complexity of the circuit grows, resulting in a longer critical
path. In other words, one gets a design that can be executed
in fewer cycles but also with a lower max frequency. It has
been pointed out in [31] that all these generalized concepts
have to use another re-sharing technique since the original
ones have flaws for d > 2.

While the established theory of TI guarantees that the
number of input shares linearly grows with the order of pro-
tection d, it does not provide efficient means to keep the
exponential explosion of the number of output shares under
control. The state of the art is a lower bound of (d + 1)t

given in [41], while in [6] the authors described a method to
obtain a TI sharing with

(td+1
t

)
output shares. The latter work

also notes that the number of output shares can sometimes be
reduced by using more than td + 1 input shares. Aside from
a formula for the lower bound in [41], there was not much
other work of applying d + 1 TI to functions with a higher
degree than 2. The only exception is the AES implementa-
tions by [46,47] where d + 1 TI is applied to the inversion of
GF(24), which is a function of algebraic degree 3. However,
even for this particular case, the first attempt [47] resulted
in sharing with the minimal number of output shares, but it
did not satisfy the non-completeness property of TI. Only in
the follow-up publication [46] was the sharing correct and
minimal. Also, for the particular case of a cubic function, it
is fairly easy to find the minimal first-order sharing of eight
output shares by exhaustive trial-and-error approach.

1.1 Our contribution

In this paper, we introduce three optimization techniques
for optimizing threshold implementations, making the low-
latency implementations of side-channel secure designs
practical. In particular, we first provide a generic construc-
tion for d + 1 TI that achieves the optimal number of output
shares for any n-input Boolean function of degree t = n − 1
for any security order d. Second,when t < n−1,we present a
methodology based on discrete optimization techniques that
provides optimal or near-optimal sharings of several classes
of Boolean functions of any degree up to eight variables, for
first- and second-order TI. Third, for td + 1 TI, we present a
heuristic for higher-order protection for any n-input Boolean
function of any degree t and up to second-order protection,
which yields a number of output shares significantly lower
than

(td+1
t

)
. Last but not least is the optimization for secure

serial AES implementation schedule which achieves maxi-
mum throughput.

Next, we investigate the energy consumption of different
approaches, an important design factor yet often overlooked
in the literature. To demonstrate the feasibility of the above
methods, we have applied the optimized d + 1 TI and td + 1
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TI on the hardware implementation of PRINCE. Then, we
demonstrate how to reduce the latency to achieve the fastest
knownTI-protected implementation of PRINCE, andwe also
show the most energy-efficient round-based secure imple-
mentation of PRINCE using d + 1 TI sharing.

Finally, we would like to point out that the method of
minimizing the number of output shares is of general interest
since it can equally well be applied to any cryptographic
implementation and any design optimization criteria.

2 Preliminaries

We use small letters to represent elements of the finite field
Fn
2 . Subscripts are used to specify each bit of an element

or each coordinate function of a vectorial Boolean func-
tion, i.e., x = (x1, . . . , xn), where xi ∈ F2 and S(x) =
(S1(x), . . . , Sm(x)), where S is defined from Fn

2 to Fm
2 and

Si ’s are defined fromFn
2 toF2.Weomit subscripts if n = 1 or

m = 1. We use subscripts also to represent shares of one-bit
variables. The reader should be able to distinguish from the
context if we are referring to specific bits of unshared vari-
able or specific shares of a variable. We denote Hamming
weight, concatenation, cyclic right shift, right shift, compo-
sition, multiplication and addition with wt(.), ||, ≫, �, ◦, .
and +, respectively.

Every Boolean function S can be represented uniquely by
its Algebraic Normal Form (ANF): S(x) = ∑

i=(i1,...,in)∈Fn
2

ai x
i1
1 xi22 · · · xinn . Then, the algebraic degree of a Boolean

function S is deg(S) = max{wt(i) : i ∈ Fn
2 , ai �= 0}. The

algebraic degree of a vectorial Boolean function S is equal to
the highest algebraic degree of its coordinate functions S j .

Two permutations S and S′ are affine equivalent if and
only if there exist affine permutations C and D satisfying
S′ = C ◦ S ◦ D. We refer to C as the output and D as the
input transformation.

2.1 Threshold implementations

The TI sharing designed to protect against the dth-order
attack we will simply refer to as the dth-order TI. The most
important property that ensures the security of TI even in
the presence of glitches is non-completeness. The dth-order
non-completeness property requires any combination of up
to d component functions to be independent of at least one
input share. As shown in [19], non-completeness is a neces-
sary condition for the security of masking in the presence of
glitches. When cascading multiple nonlinear functions, the
first-order sharing must also satisfy the uniformity; namely,
a sharing is uniform if and only if the sharing of the output
preserves the distribution of the unshared output. In other
words, for a given unmasked value, all possible combinations

of output shares representing that value are equally likely to
happen. Finding a uniform sharing for any vectorial Boolean
function is still an open problem, although several heuristics
exist, such as sharing with correction terms or adding virtual
shares [8,11]. Fortunately, uniformity can still be achieved
by refreshing the output shares when no uniform sharing is
available.

Given the shares x1, . . . , xn a (first and second order)
refreshing can be realized by mapping (x1, . . . , xn) to
(y1, . . . , yn) using n random values r1, . . . , rn as follows:

y1 =x1 + r1 + rn

yi =xi + ri−1 + ri , i ∈ {2, . . . , n}. (1)

This refreshing scheme is called ring re-masking. A simpler
refreshing using n − 1 random values exists especially for
the first-order secure implementations as we can re-mask the
shares x1, . . . , xn in the following way:

yi =xi + ri , i ∈ {1, . . . , n − 1},
yn =xn + r1 + · · · + rn−1. (2)

An improvement regarding the number of random bits used
when multiplication gate is shared has been achieved in [24]
where the amount of randomness required is halved com-
pared to CMS. In [23], the authors have shown that the
amount of randomness for sharing a multiplication gate can
be further reduced to one-third, although this comes at a
significant performance cost. Since our goal is to build low-
latency side-channel secure implementations, we do not take
the approach of UMA. Instead, we choose CMS/DOM for
d + 1 TI designs. In this paper, we will interchangeably use
the terms mask refreshing and re-masking. We would also
like to mention an alternative mask refreshing technique pre-
sented by Daemen [17], which achieves a uniform td + 1
sharing by reusing shares of adjacent S-box inputs to cre-
ate a statewide permutation, which automatically creates the
entire S-box layer stage uniform without needing any exter-
nal randomness.

In order to prevent glitch propagation when cascading
nonlinear functions, TI requires register (s) to be placed
between the nonlinear operations. Otherwise, the non-
completeness property may be violated, and the leakage of
the secret internal state is likely to be manifested.

When sharing a nonlinear function using TI in a single-
cycle implementation, the number of output shares is typi-
cally larger than the number of input shares. This is likely to
occur when applying td + 1 TI, in which constructions like
one provided in [6] produce sharings of Boolean functions
of degree t with

(td+1
t

)
output shares and with td + 1 inputs

shares. The number of output shares in d+1 TI for nonlinear
functions is always larger than the fixed d+1 input shares and
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is lower bound by (d+1)t , in which t is the algebraic degree
of the Boolean function. In order to minimize the number
of output shares, we need to refresh and recombine (com-
press) some shares by adding several of them together. To
prevent glitches from revealing unmasked values, decreas-
ing the number of shares can only be done after storing these
output shares into a register. The output shares that are going
to be recombined together still need to be carefully chosen
such that they do not reveal any unmasked value.

A sharing of a nonlinear function can also be real-
ized without output share explosion, albeit at the cost of
making the evaluation take several cycles, like already men-
tioned decomposition approach or techniques such as Toffoli
gate [20].

While using d+1 TI the relation between the input shares
needs to obey a stronger requirement, namely shared input
variables need to be independent [41]. This can be achieved
in various ways—for example, by refreshing some of the
inputs or by using a technique proposed in [24].

2.2 Minimizing implementation overheads using
S-box decomposition

Similar to other side-channel countermeasures, the area over-
head of applying TI increases polynomially with respect
to the security order and exponentially with respect to the
algebraic degree of the function we are trying to protect.
To keep the large overheads caused by exponential depen-
dency under control, designers often use decomposition of
the higher-degree functions into several lower-degree func-
tions. This approach has originally been demonstrated in [40]
where the authors implemented a TI-protected PRESENT
block cipher [10] by decomposing its cubic S-box into two
simpler quadratic S-boxes. Finally, decomposition of the
cubic 4-bit S-boxes into chains of smaller quadratic S-boxes
was given in [11], which eventually enables compact, side-
channel secure implementations of all 4-bit S-boxes.

Although a decomposition of nonlinear functions into sev-
eral simpler functions of lower algebraic degree is the proper
approach to use for area reduction of the TI-protected imple-
mentations, its side effect is the increased latency of theS-box
evaluation and hence the entire implementation. Recall that
the TI requires registers to be placed between the nonlinear
operations in order to prevent glitch propagation, which in
turn increases the latency.Wewill not use this approach since
our goal is to achieve low latency.

2.3 A note on latency and energy efficiency

As already mentioned, most of the effort the scientific com-
munity has spent on designing secure implementations has
been focused on reducing area overheads. Another important
metric that had been given lots of attention is the amount of

randomness used in protected implementations. While both
of these metrics are important, the performance and energy
consumption of secure implementations have been unjustly
treated as less significant. It has been widely accepted that
performance is the metric to sacrifice in order to achieve the
lowest possible gate count. Contrary to this view, most of
the practical applications nowadays require (very) fast exe-
cution, and it is often latency of the actual implementation
that matters rather than the throughput. Energy consumption
is another equally important metric, and, unlike power con-
sumption, it cannot be well controlled by keeping the area
low while sacrificing performance. Optimizing for energy
consumption is, in fact, one of the most difficult optimization
problems in (secure) circuit design since the perfect balance
between the circuit power consumption and its execution
speed needs to be hit.

The absolute latency is directly proportional to the num-
ber of clock cycles a certain operation takes to execute. At
the same time, the absolute latency is inversely proportional
to the clock frequency the system is running at. While the
clock frequency is determined by taking into account mul-
tiple factors from the whole system, the most important of
which is the overall power/energy consumption, the number
of clock cycles a certain algorithm takes to execute is under
the complete control of the designer. Especially when con-
sidering embedded devices, the tendency is to keep the clock
frequency as low as we can while still meeting the perfor-
mance requirements. That is the reason why minimizing the
number of clock cycles of a certain algorithm is the most
important strategy when it comes to minimizing the overall
latency of that algorithm.

Although the majority of results available in public litera-
ture deal with area-efficient hardware architectures, there are
still a few notable examples in which latency reduction has
been the main target. In [33], the authors particularly explore
the extreme case of a single clock cycle side-channel secure
implementations of PRINCE and Midori. Moreover, they
conclude that designing a low-latency side-channel secure
implementation of cryptographic primitives remains an open
problem.

2.4 PRINCE

As a proof of concept, we apply different flavors TI to
PRINCE [3], a block cipher designed for low-latency hard-
ware implementations. PRINCE block size is 64 bits, with a
128-bit key, used to derived three 64-bit internally used keys
k0, k′

0 and k1. Its α-reflection property allows reuse of the
same circuitry for both encryption and decryption.

Although not designed to be efficient in software, a bit-
sliced software implementation of PRINCE is also fast and
can even be executed in fewer clock cycles than other
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lightweight block ciphers such as PRESENT and KATAN,
for example [38].

Here, we give a brief overview of PRINCE, and for amore
detailed explanation of the cipher, we refer the reader to the
original paper [3]. The block size is 64 bits, and a key has a
length of 128 bits. The key is split into two 64-bit parts k0||k1
and expanded to k0||k′

0||k1 shown as follows:

(k0||k′
0||k1) = k0||((k0 ≫ 1) + (k0 � 63))||k1.

As depicted in Fig. 1, k0 and k′
0 are used as whitening keys at

the start and at the endof the cipher and k1 is used as roundkey
in PRINCEcore which consists of 12 rounds. More precisely,
six rounds followed by the middle involution layer which is
then followed by the six inverse rounds.

S-box layer The S-box is a 4-bit permutation of algebraic
degree 3, and its look-up table is S(x) = [B, F, 3, 2, A,C, 9,
1, 6, 7, 8, 0, E, 5, D, 4]. The S-box inverse is in the same
affine equivalence class as the S-box itself. Moreover, input
and output transformations are the same:

S−1 = Aio ◦ S ◦ Aio. (3)

The affine transformation Aio is given as Aio(x) =
[5, 7, 6, 4, F, D,C, E, 1, 3, 2, 0, B, 9, 8, A].
Linear layerMatricesM andM ′ define the diffusion layer of
PRINCE. M ′ is an involution and M matrix can be obtained
from M ′ by adding a shift-rows operation SR so that M =
SR ◦ M ′. Recall that SR is a linear operation that permutes
the nibbles of the PRINCE state.

RCi addition is a 64-bit round constant addition. The
round constants RC0 . . .RC11 are chosen such that RCi +
RC11−i = α where α is a 64-bit constant. This property,
called α-reflection property, together with the construction
of PRINCEcore rounds makes the decryption of PRINCEcore

same as the encryption with k1 + α key.

2.5 PRINCE S-box decomposition

PRINCE S-box has an algebraic degree three and belongs
to class C231 [11]. According to [11] and the tables given
in [34], there are several hundreds of decompositions into
three quadratic S-boxes and four affine transformations.

We choose a decomposition where all three quadratic S-
boxes are the same, belonging to class Q294, for its small area
footprint. The look-up table of Q294 class is given in Eq. (4),
while its ANF form is given with Eq. (5). Decomposition of
PRINCES-box to three quadratic S-boxes using other classes
of 4-bit quadratic S-boxes exists, but there is no decomposi-
tion in which the same quadratic S-box is used in all three
stages. This allows for an implementation that reuses the
same quadratic implementation, with only the extra cost of a

multiplexer to ensure correct evaluation during three stages.
Additionally, using a decomposition containing a class that
has no known uniform sharing (Q300 as stated in [11]), would
mandate mask refreshing. Increased mask refreshing puts
more burden on the PRNG which is used, making the entire
system more complex, power inefficient and large [8].

Q294(x) = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, B, A, E, F, D,C] (4)
o1 = x

o2 = y

o3 = xy + z

o4 = xz + w. (5)

Decomposition leads to lower area and randomness
requirement as they depend on the algebraic degree of
the function when applying TI. On the other hand, perfor-
mance is penalized. PRINCE S-box ANF (o1, o2, o3, o4) =
F(x, y, z, w) is given by:

o1 = 1 + wz + y + zy + wzy + x + wx + yx

o2 = 1 + wy + zy + wzy + zx + zyx

o3 = w + wz + x + wx + zx + wzx + zyx

o4 = 1 + z + zy + wzy + x + wzx + yx + wyx . (6)

S-box and its inverse decompositions used in our implemen-
tation are given in Eq. (7).

S = A1 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A4

S−1 = A5 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A6. (7)

Here, A1 to A6 are affine transformations and their respec-
tive look-up tables are: A1(x) = [C, E, 7, 5, 8, A, 3, 1, 4, 6,
F, D, 0, 2, B, 9], A2(x) = [6, D, 9, 2, 5, E, A, 1, B, 0, 4, F,

8, 3, 7,C], A3(x) = [0, 8, 4,C, 2, A, 6, E, 1, 9, 5, D, 3, B,

7, F], A4(x) = [A, 1, 0, B, 2, 9, 8, 3, 4, F, E, 5,C, 7, 6, D],
A5(x) = [B, 8, E, D, 1, 2, 4, 7, F,C, A, 9, 5, 6, 0, 3], A6(x) =
[9, 3, 8, 2, D, 7,C, 6, 1, B, 0, A, 5, F, 4, E].

TheANFof theQ294 function, (x, y, z, w) = F(a, b, c, d),
is given in Eq. (8)

x = a

y = b

z = ab + c

w = ac + d. (8)

We recall that, for a secure implementation with this
decomposition method, nonlinear operations need to be sep-
arated by registers, making the evaluation of a single S-box
take 3 clock cycles.

As discussed in Sect. 2.2, we explore the implementation
of the decomposed S-box in order to address the issue of
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Fig. 1 PRINCE cipher

low-area and low-power applications but, in what follows,
we also explore the sharing of the non-decomposed S-box to
address the issue of low latency and low energy.

3 Efficiency techniques

To find a td + 1 or d + 1 sharing for a quadratic vec-
torial Boolean function is fairly straightforward in general
and especially easy for the functions that have a simple
ANF, e.g., a quadratic function with a single higher degree
term. However, to find an efficient sharing for a vectorial
Boolean function of algebraic degree three or higher and
with several higher-degree terms may not be evident and
the work required to find the minimal number of the out-
put shares becomes increasingly difficult. In this section, we
propose methods to deal with this complexity and we explic-
itly describe an optimal solution for the d+1 sharing for any
security order d.

3.1 Efficient first- and second-order td + 1 sharing:
(td + 1, ∀n, ∀t, d ≤ 2)

To obtain a td+1 TI implementation, where t is the algebraic
degree of the function and d is the security order, one needs
to go through the following two computational phases:

(a) The expansion phase in which the shared function f uses
sin ≥ td+1 input shares and results in sout output shares.
Output share functions fi are referred to as component
functions.

(b) The compression phase in which re-masked sout out-
put shares stored in a register are combined again to sin
shares.

This process takes two clock cycles except when sin =
sout. For example, for the first-order TI only the first phase
suffices. Additionally, if the TI sharing is uniform, the
refreshing step can be removed.

The dth-order TI (more specifically, its non-completeness
property) requires that any combination of up to d compo-

nent functions fi is missing at least one share for each of the
input variables. The method presented in [6] demonstrates
how to find a sharing with the minimum number of input
shares, i.e., sin = td + 1, which results in sout = (sin

t

)
out-

put shares. However, this approach does not guarantee that
sout is indeed the theoretical minimum. Even more, there are
examples which show that by increasing sin it is possible to
decrease sout.

We use sout as a figure of merit since the amount of reg-
isters required to store the output shares and the amount of
random bits required for refreshing increases with the num-
ber of output shares. Further on, we will describe a way to
find a td+1 sharingwith small sout. It should be noted that the
number of input shares sin also contributes to the total number
of registers used, so it would also be interesting to investigate
sout + sin as a figure of merit while investigating td + 1 TI
sharings. However, increasing the number of input shares sin
significantly increases the combinatorial logic needed in a
hardware implementation, which can negatively impact the
area and power consumption.

For every output share, there is a subset of input shares of
all variables that are permitted to be part of that share’s equa-
tion. Definition 1 introduces the notions of output sets and
output sharing sets, which will be used to argue TI properties
of correctness and non-completeness for td + 1 TI.

Definition 1 Given a td + 1 TI sharing of a function f with
sin input and sout output shares, we can enumerate the input
shares as elements of a setI = {0, . . . sin−1}. For eachoutput
share fo, we can associate a set O, which is a subset of I ,
containing indices of allowed input shares that can appear in
the ANF of fo. We refer to O as the output set of the oth
output share of f . The set S containing all output sets of a
sharing as elements is output sharing set.

Set representation determines the maximum degree of the
output share component function and is equal to the num-
ber of elements in it. Further on, we will refer to a set
with k elements as k-set. It should be noted that output sets
impose no special restrictions for any particular input vari-
able. Each input variable can have any of the allowed input
shares present in the output share.
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Equation (9) shows an example of how second-order
secure sharing of function xy + z can be obtained using six
input shares and seven output shares. An illustration of this
sharing is additionally represented by their output share sets
on the left.

{0, 1, 2} o1 = x0y1 + x1y0 + x0y2 + x1y2 + x2y1

{0, 3, 4} o2 = z4 + x4y4 + x0y3 + x0y4 + x3y4 + x4y3

{1, 3, 5} o3 = z3 + x3y3 + x1y3 + x3y1 + x1y5

+ x3y5 + x5y3

{2, 4, 5} o4 = z5 + x5y5 + x2y4 + x4y2 + x2y5

+ x5y2 + x4y5 + x5y4

{0, 1, 4} o5 = z0 + x0y0 + x4y0 + x1y4 + x4y1

{0, 1, 5} o6 = z1 + x1y1 + x0y5 + x5y0 + x5y1

{0, 2, 3} o7 = z2 + x2y2 + x2y0 + x3y0 + x2y3 + x3y2.
(9)

As it can be seen, the output share sets dictate which
indexes of variables are allowed in the corresponding output
share. For example, for o1 only input shares (i.e., indexes)
0, 1 and 2 are allowed. That requirement is indeed fulfilled
by the formula describing o1. Note that these sets do not
uniquely define the sharing. We could, for example, remove
the term x0y1 from o1 and assign it to o5 or o6, as {0, 1}
is a subset of both {0, 1, 4} and {0, 1, 5}. Output share sets
would still be the same, and the sharing would still be correct
second-order td + 1 sharing. A good heuristic for assigning
monomials to output shares is that all output shares should
have about the same amount of terms. That way the imple-
mentation becomes balanced and the critical path is roughly
equal among all output shares.

We can reason about the properties of a given td + 1
sharing by inspecting its output sets. Consider a sharing of a
function of degree t and the set St that contains all

(sin
t

)
differ-

ent t-sets of input shares. Correctness is satisfied if and only
if the set that contains all different t-sets that are subsets of
at least one output set is equal to the St . Indeed, if that is not
the case, there would exist a cross-product of degree t that
could not be part of any output share, making correctness
of the sharing violated. For Eq. (9), given that the unshared
function is of degree 2, we can check and confirm that all of
the

(6
2

)
2-sets are contained in output sets of the sharing. For

non-completeness property, which ensures dth-order secu-
rity, no union of d output sets is equal to a set covering all
input shares {0, . . . , sin − 1}. Equivalently, any combination
of d output shares does not contain all input shares. In Eq. (9),
this is true for d = 2 as no union of two output sets gives the
set of all input shares {0, 1, 2, 3, 4, 5}.

An interesting question when searching for the minimal
number of shares is the size of output sets, as definedin Def-

inition 1. Since any subset of output shares that contains all
possible t-sets also contains all possible k-sets with k < t ,
and these smaller output sets do not contribute in the genera-
tion of a correct sharing of degree t function,we can conclude
that k-sets with k smaller than t are redundant and can be
omitted. On the other hand, the size of each output share set
cannot be larger than sin − (t(d−1)+1). Let us assume oth-
erwise, i.e., there is an output set of size at least sin−t(d−1).
To cover the set of all input shares, we need to add missing
t(d − 1) input shares to it from other output sets. Since the
cardinality of an output set is at least t , we can do it with at
most (d−1) other output sets. But now the non-completeness
would be violated since there are d output shares which cover
all input shares.

Now, we are ready to describe the greedy algorithm
(Fig. 2) which finds the sharing with small number of output
shares.

Step 2b in algorithmdescribed in Fig. 2 involves randomly
choosing k-set o among all possible k-set with the desired
property. This nondeterministic behavior leads to different
output sharings with different cardinalities. Hence, we iterate
the greedy algorithm multiple times and choose the output
sharing So with the smallest cardinality among all execu-
tions. After 100 iterations which complete on a regular PC
within seconds, we have observed that the number of output
shares Algorithm 2 provides remains the same, even if we
increase the number of iterations to 10,000, while the exe-
cution time increases. Thus, for the results we present here
we have run the greedy algorithm 100 times and chosen the
smallest sharing among all executions.

The example of a single pass of the greedy algorithm is
given in Table 1, for Sin = 6, d = 2 and t = 2, making set O
containing all sets of size k = sin−(t(d−1)+1) = 3. In each
step of the greedy algorithm, these sets are scored according
to the step 2b. In bold, we mark the chosen set to be added
to the output sharing, and in light gray, we highlight the sets
thatmust be removed, because if they remain in the next steps
of the algorithm, they could violate the non-completeness of
the constructed sharing. The left column in each table is the
score of a given k-set, or the amount of t-sets it contains,
that are not present in So. The right column is all remaining
k-sets that do not violate non-completeness if added to So.
In the same column, above the horizontal line is partially
constructed So represented by k-sets that are added to it. If
we take the fourth table, k-set {0, 1, 4} has a score of 1 as only
{1, 4} is the new t-set it would add, given {0, 1} and {0, 4}
are already subsets of output shares {0, 1, 2} and {0, 3, 4}.
On the other hand, k-set {2, 4, 5} has a score of 3 since none
of the t-sets {2, 4}, {2, 5} and {4, 5} are present in any of the
output shares. For this particular order of the k-sets, we end
up with output sharing that contains seven shares.
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Fig. 2 Greedy algorithm for
efficient td + 1 sharing

Table 1 Example execution of
the greedy algorithm for the
case sin = 6, d = 2, t = 2

{0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
{0, 3, 4} {0, 3, 4} {0, 3, 4} {0, 3, 4} {0, 3, 4} {0, 3, 4}

{1, 3, 5} {1, 3, 5} {1, 3, 5} {1, 3, 5} {1, 3, 5}
{2, 4, 5} {2, 4, 5} {2, 4, 5} {2, 4, 5}

{0, 1, 4} {0, 1, 4} {0, 1, 4}
{0, 1, 5} {0, 1, 5}

{0, 2, 3}
3 {0, 1, 2} 2 {0, 1, 3} 1 {0, 1, 3} 0 {0, 1, 3} 1 {0, 1, 4} 1 {0, 1, 5} 1 {0, 2, 3}
3 {0, 1, 3} 2 {0, 1, 4} 1 {0, 1, 4} 1 {0, 1, 4} 1 {0, 1, 5} 1 {0, 2, 3} 0 {0, 2, 5}
3 {0, 1, 4} 2 {0, 1, 5} 2 {0, 1, 5} 1 {0, 1, 5} 1 {0, 2, 3} 1 {0, 2, 5} 0 {0, 3, 5}
3 {0, 1, 5} 2 {0, 2, 3} 1 {0, 2, 3} 1 {0, 2, 3} 1 {0, 2, 5} 1 {0, 3, 5} 0 {0, 4, 5}
3 {0, 2, 3} 2 {0, 2, 4} 1 {0, 2, 4} 2 {0, 2, 5} 1 {0, 3, 5} 1 {0, 4, 5} 1 {1, 2, 3}
3 {0, 2, 4} 2 {0, 2, 5} 2 {0, 2, 5} 1 {0, 3, 5} 1 {0, 4, 5} 1 {1, 2, 3} 0 {1, 2, 4}
3 {0, 2, 5} 3 {0, 3, 4} 2 {0, 3, 5} 2 {0, 4, 5} 1 {1, 2, 3} 0 {1, 2, 4} 0 {1, 3, 4}
3 {0, 3, 4} 3 {0, 3, 5} 2 {0, 4, 5} 1 {1, 2, 3} 1 {1, 2, 4} 0 {1, 3, 4} 0 {1, 4, 5}
3 {0, 3, 5} 3 {0, 4, 5} 2 {1, 2, 3} 2 {1, 2, 4} 1 {1, 3, 4} 0 {1, 4, 5}
3 {0, 4, 5} 2 {1, 2, 3} 2 {1, 2, 4} 1 {1, 3, 4} 1 {1, 4, 5} 1 {2, 3, 4}
3 {1, 2, 3} 2 {1, 2, 4} 2 {1, 3, 4} 2 {1, 4, 5} 1 {2, 3, 4}
3 {1, 2, 4} 2 {1, 2, 5} 3 {1, 3, 5} 2 {2, 3, 4} 1 {2, 3, 5}
3 {1, 2, 5} 3 {1, 3, 4} 3 {1, 4, 5} 2 {2, 3, 5}
3 {1, 3, 4} 3 {1, 3, 5} 2 {2, 3, 4} 3 {2, 4, 5}
3 {1, 3, 5} 3 {1, 4, 5} 3 {2, 3, 5}
3 {1, 4, 5} 3 {2, 3, 4} 3 {2, 4, 5}
3 {2, 3, 4} 3 {2, 3, 5}
3 {2, 3, 5} 3 {2, 4, 5}
3 {2, 4, 5}
3 {3, 4, 5}
Each table shows a single step of algorithm execution. Left column is the amount of t-sets not covered in So
by the set on the right. Sets above the horizontal line are partially constructed sharing So
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3.2 Optimal d + 1 sharing for functions with degree
n − 1: (d + 1, ∀n, t = n − 1, ∀d)

To achieve dth-order security using d+1 sharing for a single
term of degree t , i.e., a product of t variables, one gets exactly
(d + 1)t shares for the product [41]. Alternatively, for sin =
d + 1 input shares and a product of t variables one gets
sout = (d + 1)t output shares.

Main difference with td + 1 sharing is how the non-
completeness property is interpreted. Unlike with td + 1 TI
sharing in the d+1 TI sharing each output share should con-
tain only one share per input variable, in other words if in an
output share there are two shares of an input variable, then
the dth-order non-completeness will be violated. Recall that
for the td + 1 TI using more shares per input variable is pos-
sible since the number of input shares is bigger. We observe
this in Eqs. (9) and (11). In the first output share of Eq. (9),
we see three input shares of x : x0, x1 and x2. In d+1 sharing
of Eq. (11), the first output share only has one input share of
x : x0.

Therefore, for d + 1 case to ensure non-completeness it is
enough to have only one share of each input variable present
in any given output share. We will assume that the indepen-
dence of input shares is always satisfied for the d + 1 case.

Correctness of the sharing in d + 1 case is achieved by
verifying that each monomial of a shared term (product) in
the unshared function f must be present in one of the output
shares.

Consider again the function xy + z. One possible first-
order d + 1 sharing of it is given in Eq. (10).

(x, y, z)

(0, 0, 0) o1 = x0y0 + z0

(0, 1, ∗) o2 = x0y1

(1, 0, ∗) o3 = x1y0

(1, 1, 1) o4 = x1y1 + z1. (10)

The sharing can also be represented with a table as shown
in the left side of Eq. (10). Each output share is a row of a
table, and each column represents the shares of a different
input variable. Entry in row i and column j is the allowed
input share of j th input variable for i th output share.

Columns are representing the variables x , y and z,
respectively. Compared to td + 1 set representation, table
representation restricts input shares per each variable sepa-
rately, while output sets impose the restriction that was the
same for all input variables.

The asterisk values indicate that we do not care about what
input share of z is there, because the sharing of linear term z
is ensured by combining rows 1 and 4 of the table. This also
shows that the table representation of the sharing does not
uniquely determine the exact formula for each output share,

and there is a certain freedom in determining where we can
insert the input shares.

For example, we can use the table of Eq. (10) to share
function x + y + xy + z. There are two options for terms
x0 and x1, rows 1 and 2 and rows 3 and 4, respectively. The
same holds for terms y0 and y1, y0 can be either in output
share 1 or 3, and y1 can be in output share 2 or 4.

Properties of non-completeness and correctness can be
easily argued from the table representation. Since for every
table row, each column entry in the table can represent only
one input share of that column’s variable, first-order non-
completeness is automatically satisfied. For row 3 of the table
in Eq. (10) by fixing the entries representing x to 1 and y to 0,
we ensure that only x1 and y0 can occur in that output shar-
ing. Hence, there is no way that x0 or y1 can be a part of that
particular output share, which is the only way to violate non-
completeness in d + 1 sharing. Correctness of the table can
be verified by checking correctness for every monomial in
unshared function f individually. If the combined columns
representing variables of the monomial contain all possible
combinations of share indexes, sharing is correct. Indeed, if
this is the case, all terms of shared product for eachmonomial
can be present in the output sharing. Following example from
Eq. (10), for monomial xy we see that all four combinations
{(0, 0), (0, 1), (1, 0), (1, 1)} are present in two columns rep-
resenting variables x and y. Hence, all of the terms of shared
product xy = (x0+x1)(y0+y1) = x0y0+x0y1+x1y0+x1y1
can be present in at least one output share. The same holds
for z = z0 + z1 as both combination {(0), (1)} are present
in output table of Eq. (10). Also, it is easy to see that the
number of rows in correct sharing table is lower-bounded by
the (d + 1)t , when the degree of the function is t .

Now, consider a function xy + xz + yz. One possible
first-order d + 1 sharing and its table are given in Eq. (11)
with table entries on the left. Columns represent x , y and z,
respectively.

(0, 0, 0) o1 = x0y0 + x0z0 + y0z0

(0, 1, 1) o2 = x0y1 + x0z1 + y1z1

(1, 0, 0) o3 = x1y0 + x1z0

(1, 1, 1) o4 = x1y1 + x1z1

(∗, 0, 1) o5 = y0z1

(∗, 1, 0) o6 = y1z0. (11)

The table represented with Eq. (11) now has 6 rows
representing different output shares, which is larger than the-
oretically minimal four shares, and is also easily obtained
when we try to derive it by hand. The naive approach is to
start by sharing xy into four shares. Next, we try to incorpo-
rate xz into these four shares by setting all indexes of z to
be equal to y. The problem arises when we now try to add
sharing of yz. In the existing four output shares, we have z
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and y have the same indexes; thus, we are required to add
two more shares for terms y0z1 and y1z0.

Further on, wewill show that for any function with n input
variables of degree t = n − 1 it is possible to have a d + 1
sharing with minimal (d + 1)t shares.

Definition 2 Table with n columns representing output shar-
ing of a function of degree t with n input variables is referred
to as a Dn-table. The number of rows of the table is the num-
ber of output shares for a given sharing. If the output sharing is
correct, then Dn-table is t-degree correct Dn-table. t-degree
correct Dn-table with minimal numbers of rows is called an
optimal Dn-table. Optimal Dn-table that has (d + 1)t rows
is called ideal Dn-table, denoted Dn

t -table

Obviously, for t = n ideal Dn
n -table is just a table that

contains all different (d + 1)t indexes of input variables in
the terms of the shared product that occur when sharing a
function of degree t . We can also consider each row of a Dn-
table as an ordered tuple of size n. i th value in a such tuple
represents the i th input variable, and its value is the allowed
input share of that variable in the output share represented
by the tuple. All tuple entries can have values from the set
{0, . . . , d}.
Definition 3 Dt -table D1 is t-subtable of Dn-table D2 for
given t columns if D2 reduced to these t columns is equal to
D1.

We have shown with the sharing in Eq. (10) how one can
check the correctness of the table. Now, we generalize this
by showing how to check if a given Dn-table can be used
for sharing of any function of degree t . It turns out that it is
sufficient to check correctness only for the terms of degree
t , since if we are able to share a product of t variables with
a number of output shares, we can also always share any
product of a subset of these t variables using the same output
shares.

It is easy to see that a Dn-table D can be used to share any
function of degree t if and only if for any combination of t
columns, Dt -table formed by chosen t columns contains all
possible (d + 1)t ordered tuples of size t . In, other words, t-
subtable of D for any t columns is t-degree correct Dt -table.

This comes from the fact that Dt -table that contains all
possible (d + 1)t ordered t-tuples represents a correct shar-
ing for functions of degree t . If this is true for any combination
of t columns of D, we can correctly share any combination
of products of size t from n input variables.

An example is given in Table 2 where D3-table on the left
can be used for first-order sharing of any function of degree
2 since all 3 D2-tables obtained from it have all 4 possible
ordered 2-tuples (0, 0), (0, 1), (1, 0) and (1, 1) as at least one
of its rows.

Next, we show how one can construct ideal Dn-table for
any function for given n, d and t = n − 1. To recap, we

Table 2 D3-table and its 3
2-subtables

xyz xy xz yz

000 00 00 00

011 01 01 11

100 10 10 00

111 11 11 11

001 00 01 01

110 11 10 10.

first build a (d + 1)t × n table D, where every row is a tuple
of indexes (in a single row no variable index is allowed to
be missing and, naturally, no variable index is duplicated)
and t-subtable of D for any t columns is a t-degree cor-
rect Dt -table. Since t = n − 1, we can consider t-subtable
generation as column removal from D. Such a Dn-table D is
then equivalent to a sharing which fulfills the correctness and
the non-completeness properties of TI. Constructing an ideal
Dn
n -table is trivial by enumerating all ordered index n-tuples.

The number of rows in it is (d + 1)n .
Showing that a particular Dn-table with (d + 1)n−1 rows

is a Dn
n−1-table becomes equivalent to proving that removal

of any single column (restriction to n− 1 columns or, equiv-
alently, variables) from the Dn-table yields a Dn−1

n−1-table.

Alternatively, any (n−1)-subtable of Dn
n−1-table is a D

n−1
n−1-

table.
Here, we will show how to build the Dn

t -table for the case
when t = n − 1. For any given Dn

n−1-table and security
order d, we will prove the existence of other d Dn

n−1-tables
such that no n-tuple exists in more than one table. In other
words, no two tables contain rows that are equal. We call
such d + 1 Dn

n−1-tables conjugate tables, and the sharings
produced from them conjugate sharings. Having all rows
different implies that these d + 1 Dn

n−1-tables cover (d +
1)(d + 1)n−1 = (d + 1)n index n-tuples, i.e., all possible
index n-tuples. Therefore, these d + 1 Dn

n−1-tables together
form a Dn

n -table.
We build the d + 1 conjugate Dn

n−1-tables inductively.
For a given d, we build d + 1 conjugate D2

1-tables; then,
assuming d + 1 conjugate Dn

n−1-tables exist, we construct
d + 1 conjugate Dn+1

n -tables.
The initial step is simple: D2

1 has two columns (for the
variables x and y) and in each row i (enumerated from 0 to
d) of each conjugate table j (enumerated from 0 to d) we
set the value in the first column to be i , and the value of the
second column to be (i + j) mod (d + 1), hence obtaining
the (d + 1) conjugate D-tables with d + 1 rows. Indeed,
both columns of any of the constructed D2

1-tables contain
all values between 0 and d; so, by removing either column
we always obtain a correct D1

1-table. Also, this construction
ensures that the second column never has the same index
value in one row for different tables; therefore, no two rows
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Fig. 3 Algorithm for optimal
d + 1 sharing

Fig. 4 Generating conjugate D3
2-tables from D2

1-tables

for different tables are the same, ensuring that formed tables
are indeed conjugate.

Induction step Assume we have d + 1 conjugate Dn
n−1-

tables. Using them,we are now going to build d+1 conjugate
Dn+1
n -tables in a following manner:
The example of the iterative step fromAlgorithm3 is given

in Fig. 4.

Lemma 1 Given d + 1 conjugate Dn
n−1-tables the algorithm

described in Fig. 3 constructs d + 1 conjugate Dn+1
n -tables.

Proof First, let us show that the constructed d + 1 Dn+1
n -

tables are conjugate, i.e., there is no (n + 1)-tuple which
belongs to more than one of them. Let us assume there exists
an (n + 1)-tuple which belongs to two Dn+1

n -tables. This
implies the existence of an n-tuple which belongs to two of
the initial d+1 Dn

n−1-tables, contradicting the fact that these
initial tables are conjugate.

Finally, any restriction to a particular set of columns has
to have all the combinations of index n-tuples, i.e., the cor-
rectness property. In fact, it is sufficient to prove that any
set of n columns in any of the new conjugate tables contains
all possible n-tuples. Indeed, if we remove the last column
in any of the so constructed tables, we get the union of the
original d +1 Dn

n−1-tables forming one Dn
n -table. By defini-

tion, Dn
n -table satisfies this property. Lastly, we are left with

the other case of removing one of the first n columns, which
results in a table of dimensions (d + 1)n × n. If we prove
there are no duplicates among the (d + 1)n tuples within this
table, all combinations will be the table, making it again a
Dn
n -table. Consider two n-tuples. If they are equal, their last

indexes are also equal. By Algorithm 3 design, equality of
the last indexes (these are in the (n + 1)-st column) implies
that the two (n − 1)-tuples belong to one of the starting con-

jugate Dn
n−1-tables, i.e., they cannot be in different conjugate

Dn
n−1-tables. However, for the (n − 1)-tuples which belong

to one of the starting Dn
n−1-tables by assumption it is known

that there are no duplications and hence the considered two
(n − 1)-tuples cannot be equal. 
�
Theorem 1 Any of the constructed conjugate Dn

n−1-tables by
algorithm in Fig. 3 provides optimal sharing for given n, d
and t = n − 1.

Proof The algorithm is applied inductively for the number of
variables from 2 till n. Since one Dn

n−1-table contains exactly
(d + 1)n−1 rows, we conclude it is optimal because this is
the theoretical lower bound for the number of output shares
for the case t = n − 1. 
�

Recall that aside from a formula for the lower bound
in [41], there was not much other work of applying d + 1 TI
to functions with higher degree than 2 with the only excep-
tion: the AES implementations by [46,47] where d + 1 TI
was applied to the inversion of GF(24), which function has
algebraic degree 3. When we tried to obtain by hand d+1 TI
for PRINCE S-box of algebraic degree 3, we only managed
to find output sharing for the most significant bit of the S-
box with 12 and 44 output shares, for the first-order and the
second-order d + 1 TI prior to the discovery of Algorithm 3.
The optimal solution is 8 and 27 output shares for these two
cases, respectively, which is easily found using the approach
described here.

Another benefit of using an algorithmic solution is it can
easily be automated using a computer, removing the possi-
bility of human error that is likely to occur, themore complex
the ANF becomes.

It is well known that a balanced Boolean function of n
variables has a degree at most n − 1. Therefore, all n × n
S-boxes which are permutations have a degree of at most
n−1. Indeed, nearly all bijective S-boxes used in symmetric
ciphers are chosen to have a maximum degree of n − 1. In
particular, inversion in the field always has the maximum
degree of n − 1, most notable example of its usage being the
AES S-box. In the particular case of AES inversion, applying
the algorithm shown here will produce the minimal number
of shares, which is 128. This is, however, too large for any
practical application.
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The most notable exception where a low-degree function
is used isKECCAK’s [4]χ -functionwhich is a 5×5 S-box of
degree 2. A sharing with eight shares can be easily found for
χ by hand, while a conjugate D5-table will have 16 entries
which corresponds to the optimal sharing for degree 4.

3.3 Optimal d + 1 sharing for functions of up to 8
bits: (d + 1, n ≤ 8, t < n − 1, ∀d)

In case when t < n − 1 as was already shown from the
KECCAK example, we see that the sharing obtained using
Algorithm 3 does not give a solution with minimal number
of output shares. Or in other words the method presented in
the previous section is not optimal when the degree of the
function is lower than n − 1. Therefore, finding the optimal
sharing for functions with a degree lower than n − 1 needs
to be performed in a different manner. In order to try to find
a solution for this particular case, we must first reformulate
our problem.

Recall that using sharing tables correctness of a given out-
put sharing of a function F is equivalent to all of the terms in
the ANF representation of F being correctly shared. In other
words, for each term l of t variables, columns representing
output shares should contain all different (d + 1)t combi-
nations with repetitions. We evaluate the shares of l from 1
to (d + 1)t in lexicographic order and say that output share
S covers i th share of term l if columns of S representing
variables of l form the i th share of t variables.

The problem of finding a correct sharing can further be
reduced to the set covering problem (SCP). Each different
output share among different (d + 1)n shares will be consid-
ered as a different set, and the family of these sets will be
referred to as D. The universe U of all elements to be cov-
ered is created by going through ANF, and for each term l,
we add (d + 1)t elements, where t is the degree of l, repre-
senting different shares of l. In other words, each share of
each term is a separate element to be covered. Set S from D
will contain element e from U if output share represented by
S covers term share from F represented by e. Now given D
and U we need to find subfamily C ⊆ D with the minimal
cardinality such that union of sets from C is U . With respect
to elements e from U , there exists at least one set S from C
that contains e.

We can further represent SCP in terms of decision vari-
ables. For all possible output shares from D 1 . . . (d + 1)n ,
we associate a {0, 1} variable xS denoting if share S is chosen.
Now, our goal of finding correct and non-complete minimal
sharing can be formulated as:

minimize
∑

S∈D
xS (12)

subject to
∑

S:e∈S
xS ≥ 1, (∀e, e ∈ U). (13)

Expression (12) is referred to as objective function, while
inequalities given by (13) are called constraints.

Set covering problem is a well-known discrete optimiza-
tion problem, which pops up in various applications, for
example, in logical minimizer design, mobile network base
station placement, etc. Hence, since we have reduced the
problem of finding minimal sharing to set covering, we can
try and use discrete optimization methods to find good solu-
tions to it.

3.3.1 Constraint programming optimization techniques

We have used four different techniques to solve the under-
lying set covering problem: constraint programming, mixed
integer programming, randomized greedy with restarts and
simulated annealing with a greedy heuristic.

Constraint programming (CP) [42] focuses on finding a
feasible solution given a number of constraints. Its origi-
nal use is to determine if a problem is satisfiable. But it
can also be used in minimization optimization, by finding
a feasible solution with objective cost N , then adding new
constraint such that objective functions has to be ≤ N and
restarting the process. The cycle is repeated until the prob-
lem becomes infeasible, and the final objective value where
a feasible solution is found is the minimal one. We have used
freely available MiniZinc [37] software to solve our set cov-
ering problem.

Mixed integer linear programming (MILP) [45] relaxes
the problem such that decision variables become non-binary,
but continuous real values, xS ∈ [0, 1], and then tries to solve
the underlying linear programming problem [18] to establish
a lower bound of the objective function. Afterward, it tries
to find the smallest solution such that all decision variables
are integer, satisfying the original problem constraints. Like
CP, MILP is able to prove the optimality of the solution. We
have used Gurobi 9.0 [26] solver for this part.

The randomized greedy heuristic with restarts or iterated
greedy (IG) is a technique where a solution is constructed
in a greedy manner, and in each step, we take the set S that
covers most uncovered elements so far. We stop when all
elements are covered. All ties are broken randomly, i.e., if
multiple sets cover an equal number of still uncovered ele-
ments, the algorithm randomly chooses one of them to add to
the solution being built.We loop this approachmultiple times
and in the end take the solution from the iteration that has
the smallest number of sets. Since ties are broken randomly,
solutions will differ from run to run. The optimality of this
technique cannot be proven, since the greedy algorithm finds
local minima, not a global one for SCP. However, in practice,
the solutions it finds are often close to optimal.
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Simulated annealing [28] is a meta-heuristic where a
neighbor solution with a higher objective function cost is
accepted with a probability that gradually decreases during
execution time. Intuitively, accepting worse solutions allows
us to explore more of the search space and escape local min-
ima. Over time lowering of the acceptance probability guides
the search more and more toward good solutions, while the
earlier rounds are used to explore large search space in amore
indiscriminate fashion. The probability parameter is called
temperature. We utilized the implementation approach given
in [9,30] where we separate execution into multiple rounds.
After each round, the temperature is decreased by a con-
stant factor cool. In each round, a number I of neighbors are
explored. Neighbor is constructed by removing some of the
sets from the solution, then constructing a new solution using
remaining sets as a starting point and adding new ones until
all elements are covered again. We accept the new solution
if it is better than the previous one, or if not we still accept it
with probability exp(−δ/temp) where δ is the difference in
objective functions of the new and the current solution.

The implementation details from [30] are given in the fol-
lowing table, while the simulated annealing algorithm for
SCP is given in Algorithm 1.

Parameter Description

A Data structure providing relation
information of which sets cover which
element, typically given as a {0, 1}
matrix.

cool Temperature reduction ratio between
rounds tempr+1 = tempr × cool

ρ Used to determine the percentage of
shares to be dropped from current
solution, during neighbor construction.

R Number of rounds to run.
I Number of neighbors examined in each

round.
rand() Function that returns uniformly randomly

value in range [0, 1].
temp Temperature parameter used to determine

the probability of accepting bad
neighbor.

Construct() Greedy heuristic method used to construct
new covering after a percentage of
shares has been removed from it.

Perturb() Neighbor defining function. ρ factor of
shares is stripped from the current
solution. Shares removed have the least
amount of uniquely covered elements.

RemoveRedundant() Executed after a new solution has been
constructed. It can happen that some of
the chosen shares are redundant since all
of the elements covered by it are already
fully covered by other shares in the
candidate solution.

Algorithm 1 Simulated Annealing algorithm for set cover
problem.
Input: A, R, I , temp, cool, ρ
Result: Smallest found sharing Cbest
C∗ := {}
C∗ := Construct(A, C∗)
r := 0
repeat

i := 0
repeat

C′ := Perturb(A, C∗, ρ)

C′ := Construct(A, C′)
C′ := RemoveRedundant(A, C′)
δ := ObjectiveCost(C′) − ObjectiveCost(C∗)
rnd = rand()

if (δ ≤ 0) or (rnd ≤ e−δ/temp) then
C∗ := C′
if ObjectiveCost(C′ < ObjectiveCost(Cbest ) then

Cbest := C′
end

end
i := i + 1

until i == I
temp := temp × cool
r := r + 1

until r == R
return Cbest

3.3.2 Sharing solutions

Wehave focused on applying four discrete optimization tech-
niques on a set of different Boolean functions of up to eight
bits, whose sharings can be used on any Boolean functions
with the same number of input bits and algebraic degree.
Since optimal sharing has already been explored for the case
where degree t ≥ n − 1 with n number of bits, we have
investigated Boolean functions where t < n − 1. In order
for the solution to be generic enough, we further assume the
most extreme case. That is, if we have n variables and degree
t , we search for a sharing of a function that has all

(n
t

)
t-

degree terms present in the ANF. Sharing of such a function
can be used for any n-bit function of degree t . However, a
more efficient sharing for a given n-bit function F of degree
t might exists, depending on the number of t-degree terms
that are present in the ANF and their structure, and the same
discrete optimization methodology can be applied on F to
find possibly better sharing.

First, we have applied CP using Minizinc [37] with
Chuffed 0.10.4 [16] and Google OR-tools [39] solvers. The
resulting number of shares using CP solvers is given in
Table 3. For d = 1, both options are able to find optimal
sharing for all cases, except for 8-bit functions of degree
5, where a solution with 52 shares is found after few hours
but without proof of optimality, even after running for the
CP solver for several days on a regular PC. Optimality for
other cases is proven within several tens of minutes. For the
second-order case d = 2, CP solver is only able to prove
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Table 3 Number of shares found using CP solver

t d = 1 d = 2

2 3 4 5 6 2 3 4 5 6

n = 4 5 9

n = 5 6 10 15 44

n = 6 6 12 21 – – –

n = 7 6 12 24 42 – – – –

n = 8 6 12 24 52 85 – – – – –

Values in bold mean that solver proved optimality. Dashes mean that
solver found no solution after running for an hour

Table 4 Number of shares found using MILP solver

t d = 1 d = 2

2 3 4 5 6 2 3 4 5 6

n = 4 5 9

n = 5 6 10 11 33

n = 6 6 12 21 12 33 119

n = 7 6 12 24 42 12 45 153 440

n = 8 6 12 24 52 85 14 63 – – –

Values in bold mean that solver proved optimality. Dashes mean that
solver found no solution after running for an hour

optimality for the simplest of cases of 4 bits and degree 2. It
is able to find some solutions when n = 5, but without proof
of optimality. For n > 5, the solver is unable to provide any
solutions within few minutes, so we deem it not suitable for
those cases, due to the size of the search space. We did not
see much difference in solution times between Chuffed and
OR-tools solvers, although Chuffed seems to be able to finish
the search slightly faster.

Next, we have tried to use MILP solver, in particular
Gurobi 9.0 solver [26]. The resulting number of shares using
MILP solver is given in Table 4. For d = 1, the solver was
able to find the same solutions and prove optimality in less
time. However, for the case of 8 bits and degree 5, a solu-
tion of 52 was found again, but without proof of optimality.
When d = 2, MILP solver was more successful than CP
one, finding optimal solutions for degree 2 functions for all
n = 4, 5, 6, 7, and degree 3 functions of 5 and 6 bits. How-
ever, more complex cases seem to quickly become difficult
for the solver.

From Tables 3 and 4, it becomes apparent that CP and
MILP solvers struggle with d = 2, particularly for 8-bit
functions of degree 4 or more. The CP solver struggles much
more, as it is unable to find solutions for second-order shar-
ings of functions with six or more input bits. This is not
surprising due to the exponential increase in the number of
decision variables. Hence, for the more difficult cases heuris-
tics are the only possible way to find good solutions. Iterated
greedy approachwasmade by using 100,000 runs and choos-

Table 5 Number of shares found using IG heuristic

t d = 1 d = 2

2 3 4 5 6 2 3 4 5 6

n = 4 5 9

n = 5 6 12 11 36

n = 6 6 12 22 13 40 128

n = 7 6 12 24 47 14 45 138 409

n = 8 6 12 30 56 96 15 45 135 405 1387

Table 6 Number of shares found using SA heuristic

t d = 1 d = 2

2 3 4 5 6 2 3 4 5 6

n = 4 5 9

n = 5 6 10 11 33

n = 6 6 12 21 12 33 115

n = 7 6 12 24 42 12 40 130 379

n = 8 6 12 24 52 85 14 45 135 405 1234

ing the best solution among these runs. It finishes is just
a matter of seconds even for harder cases. The program is
sometimes able to find optimal solutions of CP and MILP
approaches, but evenwhen it does not the solutions it finds are
within 30% of minimal, where a minimal solution is known.
IG run results are given in Table 5.

As a way to improve on the results of the IG heuristic,
we have also tested the simulated annealing technique. SA
run results are given in Table 6. First, the IG technique was
used with 20,000 runs to provide an initial solution, and then,
SA was run with R = 150 rounds and I = 100 iterations
in each round. The program ran extremely fast on a regular
PC, and it was the slowest for 8-bit functions of degree six
where it finished in about 5 min. SA programwas able to find
the same results for d = 1 as CP and MILP solver, finding
optimal solutions in much faster times. For d = 2, it was
able to improve on some of the instances compared to the
IG approach, but solution quality was at most 10% better
in instances where CP and MILP were unable to provide
solutions in a reasonable amount of time. In some instances
with 8 bits and degrees of 3, 4 and 5, it was unable to improve
upon the solution provided by the IG approach. Modifying
SA annealing parameters had a limited impact on the quality
of the solution. We determine that the cooling factor of 0.91,
starting temperature of 100 and removal coefficient ρ of 0.2
to be working well in almost all cases. ρ had the most impact
on the improvements, and we notice that smaller values are
more beneficial for larger t values, about 0.1, while values
of 0.3 work better on smaller t values.

Finally, we can put together the solutions of all four
approaches to collect the best ones. Aggregate results are
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Table 7 Best sharing using all four approaches

t d = 1 d = 2

2 3 4 5 6 2 3 4 5 6

n = 4 5 9

n = 5 6 10 11 33

n = 6 6 12 21 12 33 115

n = 7 6 12 24 42 12 40 130 379

n = 8 6 12 24 52 85 14 45 135 405 1234

Values in bold mean that solver proved optimality

presented in Table 7. Examining the best found solutions,
we can determine that the optimal sharing does not give a
large increase in the number of output shares compared to
the trivial bound of (d + 1)t . For d = 1, increase is up to
50%, except in the hardest case with 8 variables and degree
5 functions where, we have 52 shares compared to the bound
32 shares, an increase of a little over 60%. A similar situa-
tion happens with d = 2 where found solutions are within
70% increase. Due to the particular case of SCP for shar-
ing being somewhat pathological, where all shares cover an
equal amount of elements, it is difficult for the solver to
find optimal solutions with the increasing number of total
shares, while good solutions are still relatively easily discov-
ered using greedy heuristic.

Comparison of our result with the recent ones presented
in Sect. 3.2 and [48] is presented in Table 8. Obviously, the
method presented in Sect. 3.2, although achieving optimal-
ity when t = n − 1 is ineffective in cases where t < n − 1.
Greedy heuristic given in [48] finds solutions that are mul-
tiples of (d + 1)t . However, the authors only presented the
solution for a specific case of 8-bit degree 3 function, and for
(n = 4, t = 2, d = 2), (n = 4, t = 2, d = 3), (n = 5, t =
2, d = 4), (n = 5, t = 3, d = 3), (n = 6, t = 3, d = 3)
cases, optimal solution is found while not providing more
information. Hence, in Table 8 we indicate the smallest
number of output shares algorithm presented in [48] could
potentially find. Our method provides better results in all
cases for first and second security order.

Concrete sharings are given in Tables 11, 12, 13 and 14 in
“Appendix A.” If we examine the found solutions for d = 1,
we can see that many of the solutions have symmetric order.
One would assume that optimal solutions will always have
sharings with such structure, but apparently this is not the
case. For example, if we provide this additional constraint
to the CP solver, it will no longer find optimal sharing of
7-bit functions of degree 2 to be 12, but 14. The symmetric
structure is obtained from the CP solver, probably based on
the heuristic it was using to parse the search space.

3.3.3 Sharing for AES cubic power functions

As an example of an application of the generic method pre-
sented here, we demonstrate the improved sharing of power
functions x26 and x49 that are used to create AES inversion in
work given by [35,48]. Both of them are cubic functions, and
in [48], a sharing using 16 output shares is used to produce a
first-order secure d + 1 implementation. The sharing is only
valid for the lowest bit of the power functions, but using the
rotational symmetry of power functions in a normal basis, we
can use the same sharing for other output bits as well. The
normal basis generator chosen in [48] is β = 205. Table 7
gives a sharing with 12 shares which is 4 shares or 25% less
for a generic cubic function. However, if we apply the small-
est sharing on the exact ANF of the cubic power functions,
we can improve upon this result. Using theMILP set covering
program, we were able to find a first-order sharing for both
power functions x26 and x49 with ten shares each, six shares
or 37.5 percent less than the original sharing. Furthermore,
we have applied the same method to a second-order d + 1
of the same power function and normal basis generator. Sur-
prisingly, both functions have sharing with (d + 1)t = 27
shares, the theoretical minimum. In order to make sure this
is the best sharing, we have investigated seven other pairs of
cubic functions that yield inversionwhen composed together:
(13, 98), (19, 161), (38, 208), (52, 152), (67, 137), (76,
104), (134, 196). In addition, we have expanded the search
over all 128 normal basis generators. However, the exhaus-
tive search showed that ten shares is the smallest number of
shares in every case. Other generators that can be used to pro-
duce the sharing with ten shares of the cubic power functions
are {36, 96, 117, 124, 140, 199, 202}. Interestingly enough,
in all the pairs of cubic power functions that produce inver-
sion, the generators that have ten shares in output sharing are
always the same. To make the notation as succinct as pos-
sible, we will only enumerate the chosen shares of power
functions x26 and x49 with normal basis generator 205 in
their lexicographical order, first share having index 0 and the
last share having the index (d + 1)n − 1. In other words, we
look at all possible shares as n digit words in base d + 1. For
example, if we had a sharing with d = 2, n = 4, t = 2 given
as [2, 12, 25, 31, 44, 45, 60, 64, 77], it means that the actual
nine shares are

(0, 0, 0, 2) (0, 1, 1, 0) (0, 2, 2, 1) (1, 0, 1, 1) (1, 1, 2, 2)

(1, 2, 0, 0)(2, 0, 2, 0) (2, 1, 0, 1) (2, 2, 1, 2).

A shortcut to getting actual output shares for first-order
designs using this notation where allowed shares are 0 and
1 is to observe the binary representation of the index value,
and each bit represents allowed share of that input variable. It
should be noted that this representation of the sharing, while
succinct, is not unique with respect to the actual distribu-
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Table 8 Comparison to
previously known results

t d = 1 d = 2

2 3 4 5 6 2 3 4 5 6

Proposed methodology

n = 4 5 9

n = 5 6 10 11 33

n = 6 6 12 21 12 33 115

n = 7 6 12 24 42 12 40 130 379

n = 8 6 12 24 52 85 14 45 135 405 1234

Construction from Table 3

n = 4 8 27

n = 5 16 16 81 81

n = 6 32 32 32 243 243 243

n = 7 64 64 64 64 729 729 729 729

n = 8 128 128 128 128 128 2187 2187 2187 2187 2187

Construction from [48]

n = 4 ≥ 8 9

n = 5 ≥ 8 ≥ 16 ≥ 18 ≥ 54

n = 6 ≥ 8 ≥ 16 ≥ 32 ≥ 18 ≥ 54 ≥ 162

n = 7 ≥ 8 ≥ 16 ≥ 32 ≥ 64 ≥ 18 ≥ 54 ≥ 162 ≥ 486

n = 8 ≥ 8 ≥ 16 ≥ 32 ≥ 64 ≥ 128 ≥ 18 ≥ 54 ≥ 162 ≥ 486 ≥ 1458

Values in bold indicate that the found solution is optimal with respect to the number of output shares, meaning
no better solution can be found

tion of ANF terms, as low-degree monomials have multiple
possible output shares they can be a part of. For the first-
order sharing of an 8-bit function, there are 28 = 256
possible shares, while for the second-order sharing there are
38 = 6561 total shares. The chosen shares for the first-order
sharing are given as follows:

shares(x26) =[0, 30, 43, 93, 114, 154, 181, 195, 232, 246]
shares(x49) =[0, 30, 79, 115, 124, 165, 187, 214, 217, 234].

The chosen shares for the second-order sharing are given
as follows:
shares(x26) =[0, 439, 626, 796, 1145, 1338, 1511, 1938,

2044, 2388, 2575, 2690, 3103, 3290, 3474,

3863, 3975, 4162, 4533, 4639, 5069, 5212,

5408, 5754, 5927, 6111, 6550]
shares(x49) =[0, 338, 673, 930, 1025, 1324, 1617,

1919, 2011, 2218, 2553, 2882, 3148, 3231,

3542, 3745, 4053, 4148, 4436, 4762, 5097,

5276, 5368, 5676, 5963, 6271, 6354].

3.4 Optimizing secure AES schedule for maximum
throughput

The design of side-channel secureAES schemes has been tra-
ditionally optimized for very low area, most commonly using
a single S-box instance to compute both the SubBytes and

roundkeyupdate.While this approach is justified, as there are
multiple applications such as RFID devices, where area and
power are quite constrained, it still fares rather poorly with
regards to latency and throughput. In the case ofAES-128, the
AESvariant that ismost prominent in the academic literature,
taking this approach limits the execution time asymptotically
to 200 cycles per execution with each round performing 20
S-box operations. To ease the notation from now on, we will
refer to AES-128 simply as AES.

Adding the required ShiftRows, MixColumns, key sched-
ule operations and the several clock cycle latency of theS-box
in side-channel protected implementations increases the total
latency even further. Several side-channel AES implemen-
tations [7,15,25,32] require at least 246 cycles to complete
one AES encryption. Recently, several approaches have been
proposed that achieve the throughput of one encryption per
200 cycles, while achieving latency of 216 cycles [25,47].
But they are only feasible for S-boxes that compute the out-
put in five or less cycles, which is a restrictive requirement,
with most existing side-channel secure AES S-box imple-
mentations take six or more cycles, going as far as nine
cycles in the work presented in [21]. Here, we propose a new
method of scheduling that can achieve a throughput of 20
cycles per round for S-box latency up to 11 cycles, allowing
for serialized AES implementation with the highest possible
latency/throughput. First, we declare a set of data dependen-
cies that need to be followed in order to have a correct AES
round implementation using a serialized S-box:
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• All state bytes that are to be overwritten by the S-box
output need either to be in the S-box pipeline or to have
finished S-box operation.

• All MixColumn input operation column bytes need to
have finished S-box operation. The last byte can be col-
lected straight from the S-box output and not from the
state registers, however.

• State byte in the next round can only be used as S-box
input if the MixColumn operation for that byte’s column
has been performed.

• Key byte must not be updated before it is used in the
current round.

• First four bytes of the key can only be updated if the
corresponding S-box output has been completed.

• Except for the first column of the key, each byte in subse-
quent columns can only be updated if the corresponding
byte from the previous column has been updated.

We can program these rules in the MiniZinc constraint
modeling language, providing latency of the S-box as a
parameter. MiniZinc will then try to satisfy all constraints
and output a solution if it exists or if it cannot find a solution
after exploring the entire search space it will state that the
problem is unsatisfiable. We have run our constraint model
for different latency, and it has always found a scheduling for
latency up to 11 clock cycles. The model is unsatisfiable for
S-box latency of 12, proving that we cannot find a solution
for any S-box latency of 12 or more cycles.

We illustrate our solution on the nine-cycle latency S-box,
which can, for example, be used to improve the scheduling
of M&M implementation [21].

All other solutions are presented in “Appendix B.” The
state and key update schedule is shown in Fig. 5, while the
corresponding timing diagram is shown in Fig. 6. In our
design, ShiftRows operation is performed together with the
S-box output. That is, the output of the S-box is written to
the state byte where it would be after performing the shift
row operation. Another way to look at it is that each column
is written back diagonally with rotational wrapping around
to the state matrix, not back to itself. This is clearly shown in
Figs. 5 and 6. MixColumn operation is performed as soon as
all of the column bytes are ready, i.e., in 28th, 24th, 29th and
30th cycle, respectively. The result ofMixColumn is ready in
the following cycle. The key addition is only performed after
theMixColumn operation, except in the last roundwhere it is
performed before ShiftRows. The initial key addition is per-
formed during the loading stage. From the timing diagram in
Fig. 6, we see that the actual output for all the state bytes is
ready 10 cycles after the beginning of the following round.

It should be noted that the trade-off in using our approach
is an additional multiplexer as we are required to read from
and write to arbitrary bytes of the state and the key matrix,
which slightly increases the area occupied by the imple-

mentation. However, we can achieve speed-ups of roughly
20–35% for existing implementations with S-box latency
greater than 6.

4 Implementations, results and evaluation

4.1 Implementations

In this section, we provide eight implementations of
PRINCE: first- and second-order protection, using td + 1
and d + 1 sharing, with and without S-box decomposition.

4.1.1 PRINCE unprotected implementation

Figure 7 represents the architecture of unprotected round-
based PRINCE. Here, we evaluate the S-box in one cycle.
One encryption is performed in 12 clock cycles. We utilize
the fact that the S-box and its inverse are in the same equiv-
alence class to reuse the same circuitry for both first and last
rounds, with the exception that affine transformation circuits
Aio are used during the evaluation of S−1. By adding an extra
multiplexer, we can perform decryption as well. Tominimize
the overhead of adding decryption, we use the round counter
design as explained in [33].

Following Fig. 7, when evaluating the S-box, the data
travel through multiplexers α1 − β2 − δ1, except in the first
round where the path is α1 − β1 − δ1. Similarly, when eval-
uating the inverse S-box, active path is α2 − γ1 − δ2, except
in the last round where we use α1 − γ2 − δ2.

Next, in Sects. 4.1.2–4.1.6 we first present the TIs of the
S-box and its building block Q294, and then, in Sect. 4.1.7
we present the actual secure implementations of PRINCE.

4.1.2 TIs of Q294

We have implemented td + 1 and d + 1 variants of TI for
both the first- and the second-order Q294 implementations.
We use the first-order td + 1 direct TI sharing [11] and
the second-order td + 1 sharing with five input shares and
ten output shares, as explained in [6]. For the d + 1 first-
and second-order implementations, we used sharing given
in [41]. Compression is applied to the second-order td + 1
and both d+1 versions. Detailed description of the hardware
architecture is given in “Appendix B.”

4.1.3 First-order secure td + 1 TI of PRINCE S-box

For the first-order td + 1 design, we generated sharing with
four input and output shares following [11].

Output bits are refreshed using Eq. (2), requiring 12 ran-
dom bits per S-box. The exact sharing does not fit within the
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Fig. 5 S-box pipeline schedule
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Fig. 6 Timing diagram of S-box usage in the pipeline schedule

Fig. 7 Unprotected PRINCE round-based architecture
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margins of this paper and will be provided as a Verilog code
online [12].

4.1.4 Second-order secure td + 1 TI of PRINCE S-box

To create a second-order secure masking for the PRINCE S-
box with d = 2, we have used the iterated greedy algorithm
described in Sect. 3.1. This algorithm provides a solution
that has 17 output shares and 8 input shares. Compared to
the solution given in [6], which had 35 output shares and 7
input shares, we have reduced the total number of shares by
almost a half. All output bits are refreshed using the ring re-
masking from Eq. (1), requiring 68 random bits per S-box.
Since the rest of the PRINCE core is using three shares (see
Sect. 4.1.7), we generate five extra shares before the S-box
input which consumes 20 random bits extra. Therefore, the
whole S-box evaluation uses 88 randombits. Again, the exact
sharing will be provided as an online Verilog code [12].

4.1.5 First-order secure d + 1 TI of PRINCE S-box

To implement the first-order secure masking of PRINCE S-
box, with d = 1, we use the algorithm described in Sect. 3.2
to obtain a conjugate D4

3-table. This table represents an opti-
mal solution for two input shares with eight output shares for
each input/output bit of the S-box. Recall that the PRINCE
S-box is a 4 × 4-bit S-box and that it has a degree 3.

All output bits are refreshed using the mask refreshing as
given in Eq. (2), requiring 7 bits of randomness per output bit,
or 28 bits per S-box in total. The optimal sharing is given in
Eq. (14) as conjugate D4

3-table. The exact sharing will again
be provided as an online Verilog code [12].

(x, y, z, w)

(0, 0, 0, 0)

(1, 1, 0, 0)

(0, 1, 1, 0)

(1, 0, 1, 0)

(0, 0, 1, 1)

(1, 1, 1, 1)

(0, 1, 0, 1)

(1, 0, 0, 1). (14)

As an example consider the first coordinate function of
PRINCE as given in Eq. (6): o1 = 1 ⊕ wz ⊕ y ⊕ zy ⊕
wzy ⊕ x ⊕ wx ⊕ yx . Then, the optimal sharing is obtained
as follows:

o11 =1 + w0z0 + y0 + z0y0 + w0z0y0 + x0 + w0x0 + y0x0

o12 =y1 + z0y1 + w0z0y1 + x1 + w0x1 + y1x1

o13 =w0z1 + z1y1 + w0z1y1 + y1x0

o14 =z1y0 + w0z1y0 + y0x1

o15 =w1z1 + w1z1y0 + w1x0

o16 =w1z1y1 + w1x1

o17 =w1z0 + w1z0y1

o18 =w1z0y0. (15)

Continuing for the second bit’s algebraic function o2 =
1 + yw + yz + xz + yzw + xyz optimal sharing is:

o21 =1 + y0w0 + y0z0 + x0z0 + y0z0w0 + x0y0z0

o22 =y1z0w0 + x1y1z0

o23 =y1w0 + y1z1 + y1z1w0 + x0y1z1

o24 =x1z1 + y0z1w0 + x1y0z1

o25 =y0w1 + y0z1 + x0z1 + y0z1w1 + x0y0z1

o26 =y1z1w1 + x1y1z1

o27 =y1w1 + y1z0 + y1z0w1 + x0y1z0

o28 =x1z0 + y0z0w1 + x1y0z0. (16)

Optimal sharing for the third bit with algebraic function
o3 = w + x + zw + xw + xz + xzw + xyz is:

o31 =w0 + x0 + z0w0 + x0w0 + x0z0 + x0z0w0 + x0y0z0

o32 =x1z0w0 + x1y1z0

o33 =z1w0 + x0z1w0 + x0y1z1

o34 =x1w0 + x1z1 + x1z1w0 + x1y0z1

o35 =w1 + z1w1 + x0w1 + x0z1 + x0z1w1 + x0y0z1

o36 =x1z1w1 + x1y1z1

o37 =z0w1 + x0z0w1 + x0y1z0

o38 =x1 + x1w1 + x1z1 + x1z0w1 + x1y0z0. (17)

Finally, for the fourth bit of PRINCE S-box and its function
o4 = 1 + z + x + yz + xy + yzw + xzw + xyw optimal
sharing is given with:

o41 =1 + z0 + x0 + y0z0 + x0y0 + y0z0w0 + x0z0w0 + x0y0w0

o42 =x1y1 + y1z0w0 + x1z0w0 + x1y1w0

o43 =y1z1 + y1z1w0 + x0z1w0 + x0y1w0

o44 =y0z1w0 + x1z1w0 + x1y0w0

o45 =z1 + y0z1 + y0z1w1 + x0z1w1 + x0y0w1

o46 =y1z1w1 + x1z1w1 + x1y1w1

o47 =y1z0 + x0y1 + y1z0w1 + x0z0w1 + x0y1w1

o48 =x1 + x1y0 + y0z0w1 + x1z0w1 + x1y0w1. (18)

Note that the sharing of the cubic terms is unique, while
there are more options for the sharings of the lower-degree
terms and that is why one needs to avoid repetitions.

4.1.6 Second-order secure d + 1 TI of PRINCE S-box

For the second-order securemasking of PRINCES-box, with
d = 2, we again use the algorithm described in Sect. 3.2 to
obtain the conjugate D4

3-table. This table represents an opti-
mal solutionwith 3 input shares and 27 output shares for each
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input/output bit of the S-box. All output bits are refreshed
using the ring re-masking as given in Eq. (1), requiring 108
randombits for thewhole S-box. The optimal sharing is given
in Eq. (19) as a conjugate D4

3-table, where the same rules are
used as in the previous section for d = 1 case. The exact
sharing will be provided as an online Verilog code [12].

(x, y, z, w)

(0, 0, 0, 0) (0, 0, 1, 1) (0, 0, 2, 2)

(1, 1, 0, 0) (1, 1, 1, 1) (1, 1, 2, 2)

(2, 2, 0, 0) (2, 2, 1, 1) (2, 2, 2, 2)

(0, 1, 1, 0) (0, 1, 2, 1) (0, 1, 0, 2)

(1, 2, 1, 0) (1, 2, 2, 1) (1, 2, 0, 2)

(2, 0, 1, 0) (2, 0, 2, 1) (2, 0, 0, 2)

(0, 2, 2, 0) (0, 2, 0, 1) (0, 2, 1, 2)

(1, 0, 2, 0) (1, 0, 0, 1) (1, 0, 1, 2)

(2, 1, 2, 0) (2, 1, 0, 1) (2, 1, 1, 2). (19)

4.1.7 Protected implementations of the PRINCE cipher

Figure 8 depicts the data path of the hardware implemen-
tation for the four protected round-based implementations of
PRINCE which use the S-box decomposition. All the data
lines have the width of 64 × s bits, where s is the num-
ber of input shares. The only exception is the RC constant
output, which has a width of 64 bits. The sharing of the non-
linear layer, followed by the linear layer, re-masking and
compression layer is denoted with the NLRC block in Fig. 8.
Hardware implementations of NLRC layers of Q294 are dis-
cussed in “Appendix B.”

In order to support both encryption and decryption, input
and output whitening keys, kwi and kwo are either k0 or k′

0,
depending on what is being executed. We only require one
extra multiplexer to implement this feature.When evaluating
the S-box, the data path of the multiplexers is α1−β2 −δ1 in
the first, α2 − δ2 in the second and α2 − δ3 in the third clock
cycle, except in the first round where the third cycle path is
α1 − β1 − δ1. Similarly, when evaluating the inverse S-box,
the active inputs of multiplexers are α3 − γ1 − δ4 in the first,
α2 − δ2 in the second, and α2 − δ3 in the third clock cycle,
except in the last round where the path during the third cycle
is α2 − γ2 − δ4.

For td + 1 implementations, we use three and five shares,
respectively, for the affine operations in order to reduce the
amount of randomness required for the execution. This incurs
an additional penalty in the area occupied by the implementa-
tion. Recall that the output of the S-box component functions
for td+1 TI is shared with three and ten shares, respectively,
for the first- and the second-order secure implementations.
Re-masking and compression are done only for the second-

order td + 1 TI. The d + 1 implementations use two and
three shares for the first- and the second-order secure imple-
mentation, respectively. The output of the S-box component
functions is shared with four and nine shares, respectively,
for the first- and the second-order secure implementations.
Re-masking and compression are required in both cases.

The round constant is added to only one of the shares. The
key is shared with the same number of shares as the plaintext.
Unlike most of the secure implementations available in the
literature, in this paper we focus on the round based imple-
mentation instead of the serialized one. This greatly reduces
the execution time, at the expense of increased area and the
required amount of randomness per clock cycle. In order to
decrease area, we employ multiplexers to avoid instantiating
additional registers for the three stages of the S-box eval-
uation. Since PRINCE has 12 rounds and each with S-box
evaluations has 3 (for d = 1 and td + 1 TI) or 2 ∗ 3 stages
(for d + 1 TI and td + 1 TI but d > 1), the total execution
takes 36 or 72 clock cycles.

Figure 9 represents the architecture for the four protected
round-based implementations of PRINCE without S-box
decomposition. The architecture is almost the same as for
the unprotected design. The implementations of NLRC lay-
ers of PRINCE S-box are discussed in Sects. 4.1.3–4.1.6.

When evaluating the S-box, the data path of themultiplex-
ers is α1 −β2 − δ1 except in the first round where the path in
the first clock cycle is α1 − β1 − δ1. Similarly, when evalu-
ating the inverse S-box, the active inputs of multiplexers are
α2 − γ1 − δ2, except in the first cycle of the last round where
the path is α1 − γ2 − δ2. Unlike in the unprotected version,
the S-box evaluation takes two cycles (S-box layer and linear
layer are separated into two cycles); hence, it takes 24 cycles
for one encryption/decryption operation. The exception is
the first-order td + 1 implementation where S-box evalua-
tion takes one cycle, making encryption/decryption latency
12 cycles.

For td+1 implementations, we use four and three shares,
respectively, for the affine operations. Recall that the out-
put of the S-box component functions for td + 1 TI is
shared with 4 and 17 shares, respectively, for the first- and
the second-order secure implementations. Compression is
required only for the second-order td + 1 implementation,
while re-masking is applied for both of them. The d + 1
implementations use two and three shares for the first- and
the second-order secure implementation, respectively. Recall
that the output of the S-box component functions is shared
with 8 and 27 shares, respectively. Re-masking and compres-
sion are required in both cases.

4.1.8 Randomness reduction

The resharing of the first-order secure implementation is
performed according to the DOM [24] rules, in which
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Fig. 8 TI PRINCE round-based architecture with decomposition

Fig. 9 TI PRINCE round-based architecture without decomposition
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complementary domains are re-masked using the same ran-
domness, with no re-masking for output shares containing
only one domain. It can be noticed from Eq. (14) that output
shares o1, o2, o3, o4 have complementary domains of shares
o6, o5, o8, o7, respectively. If we consider eight output shares
of 4-bit length, the re-masking is given with Eq. (20), where
oi and roi are S-box outputs before and after re-masking and
ri are random 4-bit values, requiring 12 random bits. Recom-
bination is achieved by adding shares ro1, ro2, ro3, ro4 into
one and ro5, ro6, ro7, ro8 into another recombined share.

ro1 = o1 ro2 = o2 + r1 ro3 = o3 + r2 ro4 = o4 + r3

ro5 = o5 + r1 ro6 = o6 ro7 = o7 + r3 ro8 = o8 + r2.
(20)

Let us take a closer look at thePRINCE round structure.As
explained in Sect. 2.4, the mixing layer consists of matrices
M , M ′ or M−1. Recall that M can be obtained from M ′
using nibble shuffling operation SR, i.e., M = SR ◦ M ′.
The involution 64 × 64 matrix M ′ is constructed as block
diagonal matrix with entries (M0, M1, M1, M0), where M0

and M1 are 16 × 16 matrices.
This structure implies that 16-bit chunks of the state are

processed independently. Therefore, we can use the same
randomness for all four 16-bit blocks for the attacker case of
d = 1 and d = 2.

Namely, assuming the PRINCE state is composed of 16
nibbles enumerated from 0 to 15 then the following four
groups can be formed (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)
and (12, 13, 14, 15). When evaluating the S-boxes in a given
group, the randomness required can be reused for the evalua-
tion of the S-boxes in the other groups. It can also be observed
that the nibble shuffling

SR : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

→ (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

SR−1 : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

→ (0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3)

does not cause mixing of the S-boxes outputs obtained
with the same randomness. Hence, using this structure in
round-based implementation reduces the amount random-
ness by a factor of four. Although the probingmodel does not
accurately reflect the HW specifics like glitches and the par-
allelism of the implementations, note the first increases the
attacker capabilities, while the second diminishes it, below
we will still use this attacker model in the argumentations.

When we consider the first-order attacker, he can probe
one share out of two at a given cycle; thus, the reuse of
randomness is not exploitable. For the case of second-order
attacker, he is able to get either (a) two shares out of three of
one nibble or (b) one share of the two nibbles using the same

randomness at a given cycle. In case of (a), again the attacker
cannot exploit the reuse of randomness since he does not
know anything about this second value which can be com-
bined with his own knowledge for the first value. In the case
of (b), the attacker is unable to mount a bivariate attack using
points from different rounds (and hence cycles) due to the
re-masking after each operation and the key addition (all of
them done in the same cycle), and since the nibble shuffling
does not cause mixing of the S-boxes outputs in the same
round.

4.2 Results

To demonstrate our results, we first use the 90-nm CMOS
library provided by TSMC and consider the worst power
voltage temperature (PVT) corner case (the temperature of
+125◦ C and the supply voltage of 1.0 V). Please note that the
worst corner case is used in almost all industrial applications.
In most of the scientific publications, however, a typical cor-
ner case is usually reported, giving an optimistic estimate of
what will eventually be manufactured in silicon. However, in
order to have a fair comparison, we have also synthesized our
designs as well as the previously existing TI PRINCE imple-
mentation [33] using TSMC 90-nm library using the typical
case of +25◦ C. The authors of [33] provided us with their
implementations, allowing for an apple to apple comparison
of the best designs using the same compiler and library, as
the synthesis results for design presented in [33] differ from
the original paper.

For synthesis, we use Cadence Encounter RTL Compiler
version 14.20-s034 to evaluate the proposed architectures.
The designs are synthesized using the operating frequency of
10MHz and the power consumption is estimated by simulat-
ing a back-annotated post-synthesis netlist with 100 random
test vectors, using Cadence Incisive Enterprise Simulator
version 15.10.006. Energy is calculated for one complete
encryption/decryption operation. Table 9 shows area, power
and energy consumption, the number of random bits required
per clock cycle and the maximum frequency for all the hard-
ware implementations measured at the worst PVT corner
case. All the designs have their unconstrained critical paths
well below 100 ns and, hence, collecting area figures and
power/energy consumption at the frequency of 10MHz guar-
antees fair comparison.

It should be noted that the area, power and energy con-
sumption of PRNG is not included in Tables 9 and 10, thus
making the obtained results favoring solutionswithmore ran-
domness. In practice, one must take the impact of PRNG into
account and it is expected that higher-throughput PRNGs
consume more area, power and energy. However, in most
security applications, PRNG is a component shared between
multiple resources, making its impact on the overall area,
power and energy consumption limited.
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Table 9
Area/power/energy/randomness/
latency/max frequency
comparison at worst-case PVT

PRINCE Areaa Powera Energya Rand/ Clock fmax Latency
Cycle # @ fmax

(GE) (uW) (pJ) (bits) (cycle) (MHz) (ns)

Unprotected 3597 57 69 0 12 285 42.2

[33] 1st (td + 1)2 9484 66 264 0 40 328 122

1st (d + 1)b 8701 97 698 24 72 260 277

1st (td + 1)b 14,153 75 270 0 36 268 134

1st (d + 1)3,4 11,613 99 238 112 24 285 84.0

1st (td + 1)3,4 31,116 576 691 48 12 204 58.8

2nd (d + 1)b 13,421 161 1159 72 72 250 288

2nd (td + 1)b 18,767 232 1670 40 72 243 296

2nd (d + 1)3,4 32,444 374 898 432 24 292 82.2

2nd (td + 1)3,4 177,647 1533 3679 352 24 282 85.1

aArea, power and energy figures given at 10 MHz operating frequency
bWith S-box decomposition
cWithout S-box decomposition
dDesigns introduced in this paper

Table 10
Area/power/energy/randomness/
latency/max frequency
comparison at normal case PVT

PRINCE Area Power Energy Rand/ Clock fmax Latency
Cycle # @ fmax

(GE) (uW) (pJ) (bits) (cycle) (MHz) (ns)

Unprotected 3596 57 68 0 12 381 31.5

[33] 1st (td + 1)a 9502 66 264 0 40 421 95.1

1st (d + 1)b 11,634 100 241 48 24 379 63.3

2nd (d + 1)b 32,477 364 874 1728 24 375 64.0

aWith S-box decomposition
bWithout S-box decomposition

As expected, the first-order d + 1 TI design with S-box
decomposition occupies the smallest area, compared to other
secure implementations. Compared to the first-order td + 1
TI architecture with S-box decomposition, this comes at the
cost of extra randomness required.

We report an interesting observation when comparing the
energy consumption of different architectures. The small-
est energy consumption of 238 pJ has been achieved for
the first-order secure d + 1 TI architecture without S-box
decomposition presented here. This is closely followed by
design from [33] with the S-box decomposition 264 pJ. We
attribute the absence of randomness needed for resharing in
this specific design to its low power consumption, despite
the area of both versions of first-order td+1 TI architectures
with the S-box decomposition being larger compared to sev-
eral other designs in Table 9. The absence of randomness
greatly reduces the switching activity of the circuit lowering
the power consumption considerably. Still, we observe that
the first-order d+1 TI architecture without the S-box decom-
position consumes only 5% more energy, while being 33%
faster. Another interesting observation is that the first-order
secure designs consume considerably less energy compared
to second-order designs.

For second-order designs, those without decomposition
lead to large area overheads (particularly in td + 1 sce-
nario) and a high number of random bits compared to simpler
designs. We conclude that the d + 1 designs are still inter-
esting implementation choices if enough randomness can be
provided. Second-order td + 1, on the other hand, is quite
unpractical due to its large area overheads and large power
and energy consumption.

One can see that all protected designs except first-order
td + 1 without the S-box decomposition have their maxi-
mal frequency within 20% of each other. The reason for the
first-order td + 1 without the S-box decomposition smaller
maximum frequency is the absence of register prior to the
S-box operation. Also, the implementation from [33] has a
smaller critical path compared to our designs. The critical
path for all implementations goes from the round counter to
the S-box input register. In the first-order td + 1 without the
S-box decomposition case, we do not have the S-box input
register, thus making the critical part longer. Still, even with
this limitation, the td+1 first-order version has smaller total
latency compared to other designs.

Compared to our designs, the design described in [33]
stores the key in plain, requiring less area for key storage, we
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leave out the question ofwhether this is a good approach from
the security point of view, but it has certainly impact on the
area, power and energy consumption. In addition, the authors
of [33] proposed different affine transformations of decom-
posed S-boxes and their architecture has simplified interface
and control logic. That is the reason why their design is con-
siderably smaller and has lower power consumption than the
first-order td + 1 version of our proposal with the S-box
decomposition. When the energy consumption is compared,
however, the two designs perform similarly with the design
of [33] being 2.3% more efficient. This is obviously due to
the fact that our first-order td + 1 design with the S-box
decomposition is 10% faster in terms of the required number
of clock cycles.

Another interesting observation is that our first-order
td+1 design with the S-box decomposition has lower power
consumption than four other designs from Table 9, while
having larger area. As discussed previously, this is due to
no additional randomness being required during the encryp-
tion/decryption process. We have investigated the impact
of mask refreshing further and came to the conclusion that
adding (or removing) the mask refreshing might change the
power consumption up to a factor of two. An example of this
is the first-order d + 1 TI without the S-box decomposition,
where the power/energy consumption drops by 40% if the
random inputs are set to zero. Hence, when achieving lower
power/energy is the main requirement using uniform sharing
is the best approach.

Table 9 also clearly shows the difference between power
and energy consumption. The most extreme example is
comparison between first-order td + 1 design without the
S-box decomposition and d + 1 design with the S-box
decomposition. Although td + 1 design without the S-box
decomposition has almost six times the power consumption,
it has slightly smaller energy consumption, as it takes six
times less clock cycles to complete.

As can be seen by the reported figures, adding side-
channel countermeasures increases the size of the unpro-
tected PRINCE by at least a factor of 2.5. It should be noted
that one has the penalty of extra clock cycles as well in all the
cases except the first-order td + 1 without the S-box decom-
position version.

The fastest unprotected PRINCEwith the worst-case PVT
synthesis takes 42.2 ns, followed by first-order td + 1 TI
without decomposition which takes 58.8 ns, i.e., 39% latency
increase; next is the second-order d + 1 TI without decom-
position which takes 82.2 ns, i.e., additional 41% latency
increase. Also, all designs without the S-box decomposition
have significantly smaller latency compared to the imple-
mentation presented in [33], ranging from 1.4 to 2 times
performance increase.

Table 10 shows area, power and energy consumption, the
number of random bits required per clock cycle and the max-

Fig. 10 Example power trace waveform used to perform the t-test on
first-order PRINCE

Fig. 11 Leakage detection test results on first-order PRINCE. PRNG
off (left) and PRNG on (right). First-order (top) and second-order (bot-
tom) t-test results

imum frequency for three hardware implementations, one
given by Moradi [33], and two that newly proposed ones all
measured at the typical PVT case.

At the maximum frequency, our first-order design sur-
passes the previous state of the art by reducing latency by
almost a third. The energy consumption of our first-order at
the frequency of 10 MHz is lower by almost 10%. On the
other hand, the implementation from [33] beats our version
with respect to area, power consumption, maximal running
frequency and randomness required. Potentially, it also can
achieve higher throughput, with small modifications to the
finite state machine, so it processes three messages at once.
Given that our goal was to minimize implementation latency
and energy, these results are not surprising.

4.3 Side-channel evaluation

We first provide an evaluation of the first-order PRINCE
without S-box decomposition using optimal d + 1 shar-
ing which design was programmed onto a Xilinx Spartan-6
FPGA. The platform used is a Sakura-G board. The design
is separated into two FPGAs to minimize the noise: One per-
forms the PRINCE encryption and the second FPGA handles
the I/O and the start signal.Our core runs at 3.072MHz,while
the sampling rate is 500 million samples per second. Since
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Table 11 Sharing indices of
best shares for security order
d = 1

t Sharing indices

n = 4

2 (1, 6, 8, 11, 13)

n = 5

2 (3, 12, 20, 24, 29, 30)

3 (2, 5, 8, 11, 14, 17, 20, 23, 26, 29)

n = 6

2 (2, 21, 30, 35, 45, 56)

3 (3, 9, 10, 15, 20, 27, 36, 43, 48, 53, 54, 60)

4 (1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61)

n = 7

2 (24, 43, 54, 66, 85, 109)

3 (6, 25, 37, 43, 50, 60, 67, 76, 85, 90, 96, 127)

4 (0, 9, 14, 21, 23, 26, 35, 36, 47, 50, 57, 60, 67,

70, 77, 80, 91, 92, 101, 104, 106, 113, 118, 127)

5 (1, 6, 10, 12, 15, 16, 19, 21, 25, 30, 32, 35, 37, 41, 46, 50, 52, 55, 56, 59, 61, 66, 68,

71, 72, 75, 77, 81, 86, 90, 92, 95, 97, 102, 106, 108, 111, 112, 115, 117, 121, 126)

n = 8

2 (15, 64, 119, 154, 177, 236)

3 (12, 27, 33, 54, 85, 106, 130, 189, 207, 216, 228, 243)

4 (9, 20, 31, 36, 42, 51, 66, 71, 88, 109, 113, 126, 129, 142, 146,

167, 184, 189, 204, 213, 219, 224, 235, 246)

5 (1, 6, 8, 15, 19, 28, 36, 43, 50, 53, 57, 62, 69, 74, 80, 87, 89, 94, 96, 99, 109, 110,

118, 122, 124, 127, 128, 131, 133, 137, 145, 148, 154, 159, 161, 162, 173, 174,

183, 184, 193, 198, 203, 204, 210, 221, 231, 232, 241, 244, 251, 254)

6 (3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 31, 33, 34, 36, 40, 47, 48, 55, 59, 61, 62, 65, 66,

68, 72, 79, 80, 87, 91, 93, 94, 96, 103, 107, 109, 110, 115, 117, 118, 121, 122,

124, 129, 130, 132, 136, 143, 144, 151, 155, 157, 158, 160, 167, 171, 173, 174,

179, 181, 182, 185, 186, 188, 192, 199, 203, 205, 206, 211, 213, 214, 217, 218,

220, 227, 229, 230, 233, 234, 236, 241, 242, 244, 248, 255)

one trace consists of 2500 points, we are able to cover the
first seven rounds of the execution. The power waveform is
given in Fig. 10.

We apply a non-specific leakage detection test [13] on the
input plaintext following the standardmethodology [43], and
the resulting t-test graphs are shown in Fig. 11. First, we turn
PRNG off to verify the validity of the setup and leakage is
detected with 1 million traces. The left-hand side in Fig. 11
demonstrates a strong first-order leakage during the loading
of the plaintext and the key. This can be attributed to one
share of both the key and the plaintext being equal to the
unshared value, while the other share is zero. Another strong
peak is during the first S-box execution as there is still a high
correlation to the input. Leakage is present in later rounds
as well due to a lack of additional randomness, although it
becomes smaller, potentially due to jitter and misalignment
in later rounds. Second-order leakage can also be observed
when the masks are off. When PRNG is on, no first-order

leakage is detected after 100 million traces, while second-
order leakage is observed as expected.

Due to the size and randomness needed, the second-order
design did not fit onto the same FPGA board. Instead, the
design is tested against simulated power traces.Wemeasured
the estimatedpower consumptionby running apost-synthesis
simulation with back-annotated netlist. Input-to-output tim-
ing delays and current consumption of every gate in the netlist
were taken into account andmodeled as specified by the tech-
nology liberty timing file. In our simulations, one clock cycle
is represented with 50 sample points and we cover the first
seven rounds of the execution. One million traces have been
obtained with PRNG switched on, and two thousand traces
with PRNG off. Simulated traces are perfectly aligned, they
do not contain any measurement noise, and the numerical
noise of the samples isminimizedbyhaving a precision of 32-
bit floating-point representation compared to 8-bit obtained
from the FPGA setup.
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Table 12 Sharing indices of
best shares for security order
d = 2, part 1

t Sharing indices

n = 4

2 (2, 12, 25, 31, 44, 45, 60, 64, 77)

n = 5

2 (0, 49, 71, 93, 106, 110, 139, 185, 195, 199, 234)

3 (0, 5, 17, 19, 31, 38, 51, 61, 64, 66, 77, 87, 94, 101, 109, 116, 117, 131, 138, 152,

153, 160, 169, 171, 183, 188, 192, 203, 205, 208, 218, 231, 238)

n = 6

2 (0, 41, 143, 238, 295, 369, 408, 470, 555, 580, 674, 676)

3 (0, 52, 68, 104, 112, 145, 159, 178, 201, 209, 224, 269, 275, 280, 312, 331, 336,

369, 380, 416, 438, 481, 499, 534, 547, 560, 586, 611, 624, 653, 672, 676, 711)

4 (7, 11, 23, 24, 32, 34, 39, 44, 46, 54, 67, 75, 80, 82, 86, 96, 103, 108, 121, 128,

132, 143, 146, 147, 158, 160, 165, 176, 178, 180, 188, 191, 199, 204, 210, 220,

222, 225, 233, 235, 246, 251, 256, 261, 268, 271, 276, 281, 292, 302, 307, 312,

317, 324, 331, 338, 344, 359, 360, 367, 372, 382, 395, 397, 402, 407, 415, 420,

427, 436, 446, 450, 458, 459, 466, 471, 482, 488, 490, 498, 503, 505, 513, 529,

536, 537, 547, 549, 554, 562, 573, 577, 588, 593, 598, 608, 609, 613, 623, 624,

637, 639, 655, 657, 671, 678, 683, 686, 700, 703, 707, 715, 719, 722, 726)

n = 7

2 (0, 483, 632, 679, 872, 995, 1144, 1257, 1525, 1667, 1812, 2050)

3 (1, 131, 173, 222, 288, 349, 380, 445, 521, 552, 570, 611, 721, 753, 873, 877, 920,

977, 1009, 1043, 1086, 1209, 1264, 1316, 1393, 1419, 1435, 1488, 1501, 1532,

1547, 1642, 1762, 1794, 1863, 1916, 1953, 2053, 2103, 2174)

4 (0, 23, 52, 65, 66, 97, 111, 118, 149, 157, 166, 186, 198, 209, 224, 255, 268, 287,

302, 315, 330, 365, 371, 379, 389, 404, 425, 439, 453, 472, 496, 515, 517, 519,

565, 572, 585, 601, 636, 665, 687, 694, 702, 725, 737, 748, 769, 807, 822, 852,

857, 871, 873, 887, 905, 919, 944, 948, 976, 999, 1022, 1043, 1064, 1069, 1088,

1099, 1110, 1152, 1176, 1190, 1200, 1213, 1224, 1258, 1272, 1285, 1289, 1297,

1322, 1334, 1344, 1363, 1383, 1399, 1409, 1441, 1473, 1490, 1503, 1513, 1541,

1564, 1583, 1614, 1629, 1633, 1653, 1669, 1690, 1694, 1703, 1738, 1740, 1761,

1777, 1805, 1813, 1833, 1845, 1866, 1870, 1880, 1882, 1901, 1931, 1951, 1955,

1965, 1997, 2012, 2038, 2040, 2052, 2087, 2098, 2108, 2145, 2149, 2164, 2184)

Fig. 12 Leakage detection test results on second-order PRINCE.PRNG
off (left) and PRNG on (right). First-, second- and third-order (top–
middle–down) t-test results

The second-order implementation t-test results are shown
in Fig. 12. We notice that with PRNG off, leakage occurs in
all orders with only two thousand traces. With PRNG on, the
design exhibits no leakage in the first and second-order t-test,
while several points leak in the third order. More precisely,
third-order leakage occurs during the writing of the S-box
output to the register every other cycles.

5 Conclusion and outlook

As discussed in [33], designing a low-latency side-channel
protection in general, and for PRINCE block cipher in partic-
ular, has been identified as an open problem. In this work, we
have shown the fastest round-based first- and second-order
secure implementations of PRINCE using td+1 and d+1 TI
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Table 13 Sharing indices of best shares for security order d = 2, part 2

t Sharing indices

n = 7

5 (0, 8, 14, 19, 24, 30, 36, 43, 47, 49, 56, 58, 69, 77, 83, 90, 95, 97, 103, 109, 113, 123, 134, 135,

143, 148, 154, 156, 163, 165, 179, 184, 185, 196, 199, 201, 206, 207, 221, 222, 227, 241, 245,

250, 256, 258, 266, 276, 282, 289, 296, 300, 307, 314, 315, 325, 327, 341, 342, 349, 353, 365,

367, 372, 382, 385, 389, 393, 401, 410, 414, 421, 425, 429, 432, 436, 443, 457, 460, 467, 472,

478, 480, 481, 485, 490, 497, 502, 507, 514, 521, 527, 531, 545, 546, 552, 560, 565, 572, 573,

577, 579, 593, 597, 601, 603, 614, 616, 622, 635, 637, 645, 648, 655, 662, 667, 677, 688, 690,

698, 699, 705, 711, 719, 724, 731, 736, 741, 746, 751, 764, 767, 769, 779, 780, 784, 786, 799,

801, 808, 809, 814, 816, 820, 830, 837, 841, 849, 853, 856, 860, 871, 872, 873, 878, 888, 896,

900, 910, 915, 920, 925, 933, 940, 945, 958, 962, 965, 966, 972, 977, 982, 992, 997, 1000,

1016, 1020, 1032, 1035, 1040, 1048, 1061, 1064, 1066, 1068, 1074, 1087, 1089, 1100, 1102,

1104, 1107, 1112, 1123, 1126, 1128, 1133, 1135, 1146, 1160, 1164, 1169, 1171, 1175, 1179,

1190, 1192, 1203, 1211, 1213, 1216, 1224, 1238, 1239, 1242, 1246, 1257, 1262, 1267, 1277,

1280, 1281, 1282, 1288, 1297, 1310, 1314, 1321, 1328, 1333, 1340, 1344, 1352, 1353, 1358,

1365, 1372, 1376, 1380, 1385, 1388, 1393, 1399, 1405, 1410, 1416, 1430, 1438, 1441, 1445,

1449, 1461, 1468, 1484, 1487, 1492, 1500, 1504, 1506, 1517, 1518, 1521, 1526, 1534, 1540,

1544, 1554, 1560, 1565, 1572, 1577, 1579, 1584, 1591, 1596, 1603, 1610, 1613, 1628, 1631,

1633, 1638, 1645, 1647, 1651, 1661, 1673, 1675, 1686, 1690, 1697, 1698, 1705, 1708, 1713,

1718, 1719, 1722, 1728, 1733, 1739, 1741, 1753, 1756, 1763, 1769, 1771, 1775, 1779, 1789,

1791, 1801, 1805, 1806, 1812, 1819, 1826, 1832, 1838, 1842, 1848, 1850, 1858, 1865, 1869,

1873, 1877, 1885, 1889, 1897, 1905, 1910, 1911, 1920, 1926, 1934, 1936, 1946, 1950, 1958,

1961, 1963, 1974, 1981, 1993, 1997, 1998, 2005, 2013, 2019, 2021, 2025, 2036, 2038, 2041,

2048, 2053, 2060, 2064, 2076, 2083, 2090, 2097, 2098, 2104, 2110, 2121, 2126, 2127, 2131,

2138, 2142, 2144, 2149, 2152, 2162, 2166, 2173, 2186)

n = 8

2 (0, 1255, 1923, 2045, 2347, 3100, 3210, 3599, 3844, 4729, 4796, 4926, 5490, 5909)

3 (33, 424, 512, 635, 740, 919, 1191, 1348, 1534, 1608, 1706, 1830, 1907, 2025, 2170, 2261,

2277, 2354, 2589, 2626, 2710, 2784, 3148, 3227, 3269, 3423, 3852, 3982, 4193, 4318, 4510,

4667, 4846, 5037, 5223, 5287, 5353, 5445, 5633, 5730, 5825, 5861, 5939, 6138, 6511)

4 (5, 33, 92, 151, 188, 207, 238, 268, 318, 378, 446, 495, 613, 644, 682, 807, 839, 904, 954, 984,

1015, 1037, 1102, 1133, 1140, 1162, 1273, 1310, 1338, 1397, 1495, 1560, 1651, 1682, 1703,

1731, 1799, 1936, 1997, 2016, 2026, 2057, 2085, 2122, 2172, 2261, 2268, 2299, 2364, 2497,

2562, 2594, 2653, 2674, 2705, 2733, 2792, 2820, 2857, 2888, 2955, 2986, 3023, 3042, 3073,

3083, 3133, 3194, 3250, 3368, 3396, 3426, 3448, 3486, 3635, 3652, 3770, 3789, 3857, 3906,

3937, 3975, 4028, 4062, 4093, 4115, 4145, 4195, 4291, 4320, 4387, 4418, 4474, 4593, 4645,

4676, 4710, 4741, 4763, 4797, 4859, 4908, 4949, 5064, 5086, 5103, 5165, 5252, 5317, 5369,

5457, 5488, 5544, 5605, 5627, 5692, 5742, 5752, 5783, 5811, 5858, 5877, 5908, 5946, 5968,

6005, 6033, 6144, 6181, 6203, 6241, 6374, 6439, 6504, 6557)

5 (6, 9, 21, 35, 38, 61, 76, 100, 123, 140, 152, 188, 202, 214, 216, 245, 271, 295, 309, 330, 333,

374, 388, 409, 424, 447, 450, 464, 476, 479, 502, 516, 545, 560, 569, 581, 595, 607, 619, 633,

645, 657, 669, 683, 724, 734, 775, 798, 801, 810, 834, 839, 851, 863, 865, 877, 898, 901, 939,

956, 979, 982, 994, 1005, 1020, 1037, 1049, 1070, 1084, 1110, 1125, 1146, 1163, 1175, 1213,

1239, 1256, 1268, 1270, 1303, 1318, 1332, 1358, 1394, 1397, 1408, 1420, 1434, 1446, 1449,

1471, 1485, 1497, 1538, 1550, 1562, 1573, 1614, 1623, 1635, 1652, 1667, 1678, 1690, 1693,

1719, 1745, 1759, 1771, 1795, 1807, 1809, 1821, 1833, 1838, 1862, 1871, 1886, 1900, 1923,

123



42 Journal of Cryptographic Engineering (2022) 12:15–51

Table 13 continued

t Sharing indices

1952, 1955, 1967, 1981, 1993, 2004, 2007, 2028, 2072, 2095, 2098, 2107, 2133, 2157, 2174,

2204, 2207, 2218, 2259, 2280, 2297, 2323, 2347, 2356, 2359, 2382, 2385, 2397, 2414, 2426,

2452, 2466, 2478, 2492, 2516, 2528, 2531, 2542, 2554, 2568, 2583, 2616, 2633, 2647, 2659,

2673, 2697, 2714, 2726, 2728, 2740, 2752, 2761, 2787, 2802, 2819, 2840, 2852, 2881, 2904,

2929, 2941, 2943, 2955, 2972, 2984, 2996, 3020, 3034, 3046, 3057, 3081, 3096, 3122, 3136,

3162, 3174, 3206, 3229, 3241, 3291, 3308, 3320, 3329, 3344, 3355, 3358, 3370, 3381, 3384,

3413, 3436, 3439, 3477, 3486, 3498, 3501, 3515, 3530, 3553, 3556, 3577, 3591, 3620, 3644,

3651, 3680, 3695, 3709, 3730, 3742, 3745, 3768, 3771, 3785, 3797, 3809, 3859, 3873, 3885,

3890, 3902, 3916, 3940, 3942, 3954, 3966, 3978, 4004, 4007, 4045, 4066, 4069, 4080, 4124,

4135, 4150, 4173, 4190, 4238, 4252, 4266, 4278, 4302, 4314, 4328, 4331, 4343, 4354, 4369,

4375, 4387, 4425, 4442, 4463, 4478, 4492, 4504, 4515, 4518, 4530, 4539, 4568, 4583, 4606,

4620, 4632, 4649, 4661, 4664, 4687, 4690, 4711, 4723, 4725, 4778, 4790, 4813, 4839, 4854,

4883, 4897, 4920, 4923, 4959, 4985, 4988, 4999, 5023, 5035, 5047, 5049, 5061, 5078, 5102,

5112, 5138, 5164, 5179, 5200, 5214, 5226, 5258, 5267, 5279, 5291, 5293, 5317, 5331, 5343,

5348, 5372, 5386, 5400, 5436, 5448, 5462, 5465, 5488, 5491, 5503, 5527, 5550, 5553, 5567,

5593, 5608, 5619, 5631, 5634, 5648, 5660, 5672, 5684, 5722, 5736, 5757, 5801, 5815, 5827,

5849, 5852, 5863, 5875, 5878, 5889, 5904, 5913, 5937, 5954, 5968, 6016, 6030, 6056, 6059,

6082, 6123, 6140, 6152, 6161, 6187, 6202, 6225, 6237, 6249, 6261, 6278, 6290, 6292, 6304,

6330, 6342, 6347, 6397, 6406, 6409, 6432, 6447, 6461, 6464, 6476, 6497, 6511, 6523, 6552)

sharing correspondingly, as well as the most energy-efficient
round-based first-order secure implementation of PRINCE
using d + 1 TI sharing. We have introduced several meth-
ods for optimizing threshold implementations, which make
the low latency, low energy and higher throughput of side-
channel secure designs practical. Then, we have investigated
several different trade-offs that occur in side-channel secure
designs. Particularly, we discuss the energy consumption of
given implementations, an important factor in several appli-
cations, such as battery-powered devices.

On the methods for optimized TI sharings: First, we pro-
vided an algorithm that produces a d + 1 TI sharing with
the optimal (minimum) number of output shares for any n-
input Boolean function of degree t = n − 1 and for any
security order d. Second, when t < n − 1, we presented dis-
crete optimization-based methodology, which can be used to
find good, and in many cases optimal, sharings of Boolean
functions up to 8 bits. Third, we presented a heuristic for
minimizing the number of output shares for higher-order
td + 1 TI. We highlight that these contributions are of gen-
eral interest since the method of minimizing the number of
output shares can be applied to any cryptographic design.
The last optimization is on the secure AES scheduling which
achieves maximum throughput for a serial implementation.
The proposed algorithms should be of use during the design
of low-latency side-channel hardware implementations of
many symmetric designs, since almost all in-use symmetric
algorithms incorporate S-boxes that have no more than eight

input bits. We would like to add that improving the heuris-
tics to provide sharing solutions for security orders higher
than two would be beneficial, especially for software imple-
mentations which are typically realized in higher security
orders [5].

Next, we reported, evaluated and compared hardware fig-
ures for eight different TI-protected round-based versions of
PRINCEcipher, namelyd+1 and td+1TI versions, first- and
second-order secure, with or without the S-box decomposi-
tion. The td+1TI versions tend to consume less randomness.
The d + 1 TI versions with decomposition achieve lower
area and power consumption. The first-order designs with-
out decomposition have favorable energy consumption. The
comparison with state of the art showed that our designs have
more than 30% lower latency compared to the architecture
presented in [33], while the energy consumption is lower by
about 10%. It should, however, be noted that the design pre-
sented in [33] still has the highest power efficiency reported
in the literature.

Wewould like to summarize that the generic algorithm for
achieving theminimal number of output shares is a necessary,
but not sufficient condition when designing for low-latency
and low-energy applications. Applying TI on higher-degree
functions reduces the total clock count, in effect reducing
latency and energy consumed during one operation. How-
ever, due to increased circuit complexity it increases the area
and the critical path of the design, which have a negative
impact on energy consumption and latency, respectively. A
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Table 14 Sharing indices of best shares for security order d = 2, n = 8, t = 6

Shares used

(1, 12, 20, 24, 33, 38, 41, 43, 50, 54, 58, 62, 68, 75, 79, 84, 87, 90, 97, 103, 107, 108, 113, 115, 116, 119, 125,

127, 129, 137, 138, 145, 148, 159, 162, 170, 173, 175, 185, 193, 201, 207, 209, 214, 223, 226, 230, 231, 236,

245, 246, 260, 265, 277, 279, 283, 288, 289, 296, 302, 307, 321, 328, 332, 335, 336, 344, 353, 357, 361, 374,

379, 392, 393, 396, 403, 410, 414, 421, 424, 429, 433, 437, 449, 450, 453, 459, 462, 465, 470, 471, 481, 485,

494, 496, 500, 504, 511, 515, 516, 528, 535, 544, 549, 552, 556, 560, 568, 572, 582, 583, 588, 598, 605, 606,

618, 621, 628, 638, 640, 644, 651, 655, 657, 665, 668, 670, 681, 684, 689, 691, 694, 701, 704, 715, 726, 732,

738, 743, 745, 751, 758, 760, 768, 774, 782, 790, 794, 798, 802, 806, 815, 821, 825, 831, 835, 840, 847, 850,

860, 861, 865, 872, 876, 882, 892, 897, 903, 909, 917, 925, 927, 935, 938, 940, 945, 950, 958, 969, 973, 980,

987, 990, 995, 1004, 1005, 1010, 1024, 1028, 1029, 1035, 1039, 1043, 1044, 1053, 1060, 1063, 1070, 1074,

1078, 1081, 1089, 1096, 1100, 1101, 1112, 1113, 1118, 1119, 1129, 1133, 1136, 1138, 1140, 1148, 1159, 1162,

1164, 1169, 1173, 1183, 1185, 1195, 1197, 1204, 1207, 1211, 1215, 1222, 1227, 1235, 1239, 1243, 1245, 1255,

1259, 1261, 1263, 1274, 1275, 1279, 1287, 1295, 1302, 1309, 1310, 1315, 1322, 1331, 1337, 1341, 1348, 1352,

1354, 1359, 1366, 1371, 1382, 1387, 1392, 1399, 1404, 1415, 1417, 1419, 1427, 1432, 1439, 1445, 1451, 1452,

1456, 1458, 1466, 1471, 1476, 1481, 1483, 1490, 1495, 1500, 1505, 1507, 1513, 1515, 1525, 1529, 1536, 1541,

1543, 1549, 1553, 1554, 1558, 1574, 1578, 1584, 1591, 1599, 1602, 1607, 1609, 1613, 1615, 1623, 1627, 1629,

1637, 1642, 1648, 1652, 1653, 1658, 1660, 1663, 1666, 1676, 1686, 1693, 1695, 1700, 1706, 1707, 1712, 1713,

1717, 1720, 1727, 1728, 1732, 1745, 1749, 1762, 1764, 1769, 1775, 1777, 1780, 1783, 1791, 1805, 1806, 1812,

1816, 1822, 1823, 1826, 1828, 1835, 1838, 1846, 1851, 1857, 1871, 1876, 1883, 1884, 1892, 1900, 1905, 1913,

1915, 1917, 1921, 1925, 1934, 1935, 1941, 1945, 1948, 1959, 1965, 1967, 1979, 1980, 1985, 1987, 1990, 1994,

1995, 2000, 2004, 2009, 2016, 2020, 2028, 2033, 2036, 2043, 2050, 2052, 2062, 2067, 2072, 2074, 2080, 2084,

2092, 2094, 2105, 2108, 2110, 2116, 2120, 2128, 2130, 2138, 2140, 2145, 2150, 2151, 2163, 2169, 2176, 2183,

2187, 2192, 2194, 2200, 2204, 2206, 2208, 2217, 2223, 2230, 2234, 2243, 2251, 2264, 2265, 2270, 2276, 2278,

2286, 2291, 2293, 2296, 2304, 2309, 2310, 2321, 2326, 2328, 2334, 2339, 2341, 2353, 2363, 2364, 2368, 2375,

2378, 2383, 2387, 2398, 2400, 2406, 2411, 2412, 2419, 2426, 2434, 2436, 2439, 2442, 2450, 2455, 2458, 2465,

2471, 2478, 2484, 2495, 2499, 2500, 2506, 2510, 2512, 2524, 2528, 2535, 2541, 2549, 2554, 2556, 2560, 2570,

2572, 2574, 2585, 2586, 2594, 2595, 2599, 2602, 2615, 2619, 2632, 2634, 2638, 2645, 2647, 2660, 2666, 2670,

2678, 2684, 2688, 2689, 2695, 2699, 2700, 2704, 2712, 2717, 2724, 2725, 2728, 2730, 2733, 2741, 2745, 2757,

2761, 2763, 2768, 2779, 2781, 2789, 2794, 2800, 2804, 2810, 2818, 2821, 2823, 2829, 2834, 2836, 2843, 2847,

2853, 2867, 2868, 2872, 2882, 2883, 2889, 2893, 2906, 2914, 2924, 2926, 2934, 2939, 2941, 2944, 2957, 2965,

2967, 2974, 2976, 2982, 2987, 2990, 3001, 3003, 3014, 3017, 3024, 3026, 3031, 3037, 3043, 3045, 3056, 3060,

3067, 3073, 3077, 3080, 3090, 3094, 3100, 3108, 3113, 3115, 3120, 3123, 3128, 3133, 3143, 3153, 3157, 3160,

3162, 3170, 3185, 3186, 3191, 3196, 3201, 3208, 3220, 3227, 3232, 3237, 3248, 3252, 3256, 3258, 3262, 3266,

3269, 3271, 3273, 3284, 3292, 3294, 3304, 3309, 3313, 3317, 3318, 3326, 3330, 3340, 3345, 3355, 3362, 3368,

3369, 3377, 3378, 3388, 3392, 3393, 3400, 3406, 3416, 3417, 3421, 3423, 3432, 3437, 3441, 3445, 3449, 3458,

3465, 3469, 3478, 3481, 3483, 3485, 3493, 3506, 3507, 3511, 3515, 3521, 3525, 3527, 3532, 3536, 3540, 3544,

3545, 3551, 3555, 3557, 3564, 3567, 3571, 3575, 3577, 3590, 3593, 3595, 3600, 3615, 3616, 3624, 3630, 3634,

3637, 3641, 3648, 3656, 3660, 3667, 3674, 3679, 3689, 3693, 3698, 3699, 3707, 3713, 3715, 3718, 3733, 3735,

3739, 3747, 3752, 3753, 3758, 3759, 3763, 3770, 3773, 3775, 3781, 3783, 3791, 3804, 3808, 3812, 3813, 3816,

3827, 3831, 3834, 3838, 3846, 3851, 3859, 3868, 3874, 3876, 3879, 3884, 3890, 3895, 3898, 3905, 3906, 3911,

3921, 3924, 3928, 3935, 3940, 3943, 3947, 3957, 3963, 3974, 3975, 3980, 3984, 3988, 3997, 4008, 4019, 4020,

4027, 4031, 4037, 4039, 4041, 4050, 4054, 4064, 4067, 4071, 4075, 4080, 4085, 4088, 4093, 4095, 4106, 4110,

4114, 4116, 4126, 4130, 4131, 4139, 4144, 4155, 4161, 4165, 4169, 4176, 4177, 4181, 4189, 4195, 4197, 4202,

4205, 4209, 4213, 4216, 4224, 4229, 4232, 4241, 4255, 4260, 4272, 4275, 4289, 4291, 4299, 4302, 4309, 4312,

4316, 4321, 4334, 4335, 4342, 4346, 4348, 4352, 4358, 4368, 4373, 4377, 4383, 4396, 4400, 4402, 4409, 4414,
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Table 14 continued

Shares used

4419, 4426, 4435, 4442, 4443, 4448, 4460, 4462, 4467, 4472, 4474, 4486, 4492, 4502, 4506, 4509, 4520, 4525,

4532, 4534, 4538, 4542, 4546, 4557, 4561, 4566, 4573, 4578, 4580, 4586, 4591, 4595, 4602, 4603, 4608, 4612,

4616, 4618, 4622, 4633, 4638, 4647, 4655, 4660, 4666, 4668, 4675, 4677, 4680, 4683, 4688, 4690, 4694, 4698,

4709, 4713, 4721, 4723, 4727, 4732, 4737, 4739, 4744, 4751, 4755, 4760, 4762, 4765, 4776, 4780, 4787, 4793,

4797, 4801, 4805, 4810, 4812, 4815, 4826, 4831, 4835, 4849, 4854, 4862, 4864, 4866, 4871, 4872, 4879, 4883,

4892, 4894, 4897, 4902, 4907, 4914, 4922, 4927, 4935, 4939, 4941, 4954, 4955, 4959, 4961, 4967, 4968, 4985,

4989, 4993, 4996, 5000, 5001, 5004, 5015, 5017, 5027, 5031, 5038, 5046, 5049, 5050, 5057, 5062, 5067, 5079,

5083, 5087, 5091, 5095, 5099, 5105, 5110, 5116, 5118, 5124, 5136, 5141, 5146, 5153, 5157, 5162, 5167, 5169,

5175, 5179, 5183, 5185, 5193, 5197, 5210, 5216, 5223, 5228, 5229, 5236, 5240, 5244, 5245, 5252, 5259, 5265,

5269, 5276, 5279, 5284, 5289, 5293, 5305, 5313, 5318, 5322, 5327, 5328, 5335, 5339, 5352, 5355, 5359, 5366,

5371, 5377, 5385, 5390, 5391, 5392, 5399, 5401, 5408, 5416, 5421, 5423, 5429, 5430, 5441, 5446, 5448, 5451,

5454, 5462, 5467, 5469, 5477, 5485, 5490, 5501, 5506, 5515, 5518, 5520, 5525, 5531, 5540, 5546, 5551, 5553,

5562, 5576, 5577, 5584, 5588, 5594, 5599, 5606, 5607, 5618, 5623, 5625, 5630, 5638, 5640, 5646, 5650, 5654,

5658, 5666, 5671, 5675, 5676, 5682, 5686, 5692, 5700, 5704, 5707, 5717, 5724, 5735, 5737, 5741, 5743, 5748,

5754, 5759, 5760, 5771, 5772, 5776, 5784, 5790, 5795, 5797, 5801, 5807, 5809, 5815, 5823, 5831, 5836, 5838,

5842, 5846, 5852, 5859, 5863, 5871, 5876, 5878, 5888, 5893, 5895, 5909, 5910, 5913, 5924, 5935, 5937, 5941,

5943, 5948, 5956, 5963, 5972, 5980, 5982, 5986, 5988, 5993, 6002, 6006, 6010, 6012, 6017, 6023, 6028, 6030,

6035, 6041, 6043, 6045, 6051, 6052, 6054, 6058, 6065, 6073, 6075, 6083, 6089, 6097, 6099, 6104, 6109, 6112,

6117, 6125, 6132, 6140, 6142, 6147, 6155, 6160, 6164, 6168, 6172, 6176, 6188, 6189, 6194, 6201, 6205, 6210,

6211, 6227, 6233, 6235, 6240, 6248, 6252, 6256, 6265, 6277, 6285, 6290, 6296, 6298, 6300, 6310, 6315, 6321,

6327, 6335, 6338, 6343, 6346, 6351, 6358, 6366, 6371, 6377, 6388, 6391, 6396, 6401, 6406, 6409, 6414, 6422,

6430, 6432, 6434, 6435, 6440, 6445, 6450, 6460, 6464, 6465, 6471, 6481, 6485, 6491, 6493, 6501, 6506, 6510,

6518, 6523, 6532, 6534, 6542, 6548, 6549, 6554, 6556)

circuit designer should take all these parameters into consid-
eration since the optimal design choice heavily depends on
the algorithm in question, alongside the constraints imposed
upon the design. In the case of PRINCE block cipher, our
work shows that for achieving low latency it is more efficient
not to perform S-box decomposition.

Acknowledgements Wewould like to thankAmirMoradi for providing
us with HDL code of PRINCE TI presented in [33].

Appendix A

A.1. First-order secure td + 1 TI ofQ294

We use first-order td + 1 direct TI sharing [11] with three
shares. Here, we recall that d = 1 and t = 2. The actual
sharing is given in Eq. (21).

x1 = a1 z1 = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ c1

x2 = a2 z2 = a2b2 ⊕ a2b3 ⊕ a3b2 ⊕ c2

x3 = a3 z3 = a3b3 ⊕ a3b1 ⊕ a1b3 ⊕ c3

y1 = b1 w1 = a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ d1

y2 = b2 w2 = a2c2 ⊕ a2c3 ⊕ a3c2 ⊕ d2

y3 = b3 w3 = a3c3 ⊕ a3c1 ⊕ a1c3 ⊕ d3.

(21)

Figure 13 depicts the hardware implementation of the td+
1 version of Q294.

A.2. Second-order secure td + 1 TI ofQ294

We use the second-order td + 1 TI sharing of Q294 with five
input shares and ten output shares as shown in Eq. (22). In
this case, we have d = 2 and t = 2. The shares are first
processed and thus expanded, then refreshed and stored into
a register. Next, they are compressed into five shares using
the method explained in [6]. Values in Eq. (22) denoted with
the overline represent the output after the compression step.
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a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

in1
1,2,3 in2

1,2,3 in3
1,2,3 in4

1,2,3

Fig. 13 First-order secure sharing of Q294 with td + 1 TI

x1 = a1 y1 = b1

x2 = a2 y2 = b2

x3 = a3 y3 = b3

x4 = a4 y4 = b4

x5 = a5 y5 = b5

z1 = a1b3 ⊕ a3b1 z6 = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ c1 z̄1 = z1 ⊕ z6

z2 = a2b4 ⊕ a4b2 z7 = a2b2 ⊕ a2b3 ⊕ a3b2 ⊕ c2 z̄2 = z2 ⊕ z7

z3 = a3b5 ⊕ a5b3 z8 = a3b3 ⊕ a3b4 ⊕ a4b3 ⊕ c3 z̄3 = z3 ⊕ z8

z4 = a4b1 ⊕ a1b4 z9 = a4b4 ⊕ a4b5 ⊕ a5b4 ⊕ c4 z̄4 = z4 ⊕ z9

z5 = a5b2 ⊕ a2b5 z10 = a5b5 ⊕ a5b1 ⊕ a1b5 ⊕ c5 z̄5 = z5 ⊕ z10

w1 = a1c3 ⊕ a3c1 w6 = a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ d1 w̄1 = w1 ⊕ w6

w2 = a2c4 ⊕ a4c2 w7 = a2c2 ⊕ a2c3 ⊕ a3c2 ⊕ d2 w̄2 = w2 ⊕ w7

w3 = a3c5 ⊕ a5c3 w8 = a3c3 ⊕ a3c4 ⊕ a4c3 ⊕ d3 w̄3 = w3 ⊕ w8

w4 = a4c1 ⊕ a1c4 w9 = a4c4 ⊕ a4c5 ⊕ a5c4 ⊕ d4 w̄4 = w4 ⊕ w9

w5 = a5c2 ⊕ a2c5 w10 = a5c5 ⊕ a5c1 ⊕ a1c5 ⊕ d5 w̄5 = w5 ⊕ w10. (22)

Please note that in order to avoid multivariate attacks,
where the attacker probes values fromdifferent time samples,
only nonlinear parts need to be refreshed, namely z1, . . . , z5
andw1, . . . , w5. Therefore, we need ten random bits for each
shared Q294 function.

The sub-circuit used to generate two output bits of a partial
evaluation of shared nonlinear function xy + z is shown in
Fig. 14. Figure 15 showcases the hardware implementation
of the td + 1 Version of Q294.

A.3. First-order secure d + 1 TI ofQ294

We use the first-order sharing given in [41] and shown in
Eq. (23). In this case, it holds d = 1. Unlike td + 1 TI, the
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x3
x2
x1

y1 y2 y3z1

sh 1

1
1
1

1 1

1 1

1

Fig. 14 Generating two outputs bits for partial evaluation of xy + z

first-order secure sharing here has four output shares for the
nonlinear component functions. For the linear parts, however,
we need only two shares instead of three. Compression and
mask refreshing are needed to reduce the number of output
shares and make the output uniform, respectively.

x1 = a1 y1 = b1

x2 = a2 y2 = b2

z1 = a1b1 ⊕ c1 w1 = a1c1 ⊕ d1

z2 = a1b2 w2 = a1c2

z3 = a2b2 ⊕ c2 w3 = a2c2 ⊕ d2

z4 = a2b1 w4 = a2c1

z̄1 = z1 ⊕ z2 w̄1 = w1 ⊕ w2

z̄2 = z3 ⊕ z4 w̄2 = w3 ⊕ w4. (23)

Shares that contain quadratic terms are refreshed as given
in Eq. (2) before storing into a register. We have two shared
output component functions with four shares, for which we
need six random bits. As in the second-order secure td + 1
version we set appropriate register bits to 0 during initial
loading to ensure correctness of the execution. A detailed
hardware implementation of the d + 1 TI sharing of Q294 is
depicted in Fig. 16.

A.4. Second-order secure d + 1 TI ofQ294

Next, we create a second-order secure masking of Q294 fol-
lowing the work of [41]. In this case, d = 2. Three input
shares are needed for all the operations. However, sharing
a nonlinear operation xy + z produces nine output shares
that need to be first refreshed, then stored into a register and
finally compressed. We give the formula for d + 1 second-
order secure sharing in Eq. (24).

x1 = a1 y1 = b1

x2 = a2 y2 = b2

x3 = a3 y3 = b3

z1 = a1b1 ⊕ c1 w1 = a1c1 ⊕ d1

z2 = a1b2 w2 = a1c2

z3 = a1b3 w3 = a1b3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

sh1
2
3

in3
1 0

1

sh2
3
4

in3
2 0

2

sh3
4
5

in3
3 0

3

sh4
5
1

in3
4 0

4

sh5
1
2

in3
5 0

5

sh1
2
3

in4
1 0

1

sh2
3
4

in4
2 0

2

sh3
4
5

in4
3 0

3

sh4
5
1

in4
4 0

4

sh5
1
2

in4
5 0

5

in1
1..5

in2
1..5

1 2 3 2 3 4 3 4 5 4 5 1 5 1 2 1 2 3 2 3 4 3 4 5 4 5 1 5 1 2

a1..5 b1..5 c1..5 d1..5

R6

5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 5 5

55 5 5

R1

Fig. 15 Second-order secure sharing of Q294 with td + 1 TI
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R1 R2 R3 R4 R5 R6 R7 R8

0in1
1,2 in2

1,2 in3
01 in3

2 0in4
1 0in4

2

a1 a 2 b1 b2 c1 c2 d1 d2

Fig. 16 First-order secure sharing of Q294 with d + 1 TI

z4 = a2b1 w4 = a2c1

z5 = a2b2 ⊕ c2 w5 = a2c2 ⊕ d2

z6 = a2b3 w6 = a2c3

z7 = a3b1 w7 = a3c1

z8 = a3b2 w8 = a3c2

z9 = a3b3 ⊕ c3 w9 = a3c3 ⊕ d3

z̄1 = z1 ⊕ z2 ⊕ z3 w̄1 = w1 ⊕ w2 ⊕ w3

w̄2 = w4 ⊕ w5 ⊕ w6 w̄2 = w4 ⊕ w5 ⊕ w6

w̄3 = w7 ⊕ w8 ⊕ w9 w̄3 = w7 ⊕ w8 ⊕ w9. (24)

A hardware diagram of this sharing is depicted in Fig. 17.

Appendix B

Scheduling for the AES control for single S-box implemen-
tation where S-box latency is 6, 7, 8, 10 or 11 cycles is given
with Figs. 18, 19, 20, 21, 22.
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18R9

in2
1,2,3 in3

1in1
1,2,3 0 in3

2
0 in3

3
0 in4

1
0 in4

2
0 in4

3
0

R18

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

Fig. 17 Second-order secure sharing of Q294 with d + 1 TI

Fig. 18 S-box pipeline schedule
with six-cycle latency

Key update

12 21

18 21

22 23

22 23

11 21

10 21

22 23

22 23

State update

SRow update

22 9

2325

27 16

19 14

21 8

20 24

26 13

1715

MixCol update

27 21

27 21

28 24

28 24

27 21

27 21

28 24

28 24

S-Box Schedule

15 2

16 18

20 9

12 7

14 1

13 17

19 6

10 8

State

3

5

11

4

Key

For 11-cycle S-box latency schedule, MixColumn input
of the last byte is obtained directly from the S-box output
and is not being written being read from the state, unlike in
other cases presented here.

Appendix C

Here, we give a quick reference for the found sharings for
the cases examined in Sect. 3.3. Again, we use the succinct
notation, where we only given chosen shares in their lexico-
graphical order.
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Fig. 19 S-box pipeline schedule
with seven-cycle latency
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S-Box Schedule
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Fig. 20 S-box pipeline schedule
with eight-cycle latency

Key update
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State update

SRow update

26 15
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20 27

19 28
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MixCol update

30 24

30 24

29 28

29 28

30 24

30 24

29 28

29 28

S-Box Schedule

17 6

15 7

11 18

10 19

16 4

14 5

13 8

12 20

State

2

3

9

1

Key

123



50 Journal of Cryptographic Engineering (2022) 12:15–51

Fig. 21 S-box pipeline schedule
with ten-cycle latency
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SRow update
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Fig. 22 S-box pipeline schedule with 11-cycle latency
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