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Abstract
Physical cryptographic implementations are vulnerable to side-channel attacks, including fault attacks, which can be used
to recover a secret key. Using a deep neural network (NN) with fault intensity map analysis (FIMA), we present a new
highly efficient statistical fault injection analysis (FIA) technique called FIMA-NN. This technique employs a convolutional
neural network to rank the key candidates based on multiple features in data distribution under fault with varying intensities
and generalizes most existing statistical techniques including fault sensitivity analysis, differential fault intensity analysis,
statistical ineffective fault analysis, and FIMA. As FIMA-NN does not rely on a single feature of data distribution, it is
successful even in the presence of a wide variety of countermeasures against FIA. We introduce a generic statistical model
for timing failure attacks using dynamic timing analysis of an AES S-box implemented in TSMC 65 nm technology with
standard ASIC design flow. Using the simulated fault mechanism, we demonstrate that, in terms of required amount of
collected ciphertexts, FIMA-NN is 12.6 times more efficient than statistical techniques using bias alone, when faulty and
fault-free values are not filtered. Further, in the presence of error detection and infective countermeasures, FIMA-NN is 4.8
and 5 times more efficient than bias-alone techniques, respectively.

Keywords Convolutional neural network (CNN) · Dynamic timing analysis · Fault image · Fault injection analysis (FIA) ·
FIMA · AES

1 Introduction

Cryptography is an important component of robust end-to-
end cybersecurity. Standardized cryptographic algorithms
are generally secure against cryptanalysis or brute force
attacks, but are subject to implementation vulnerabilities
resulting from physical manifestation in hardware or soft-
ware, called side-channel analysis (SCA).

Fault injection analysis (FIA) has emerged as a power-
ful active SCA technique used to compromise the security
of many ciphers implemented in hardware or software
[7,23,30,37]. Fault injection mechanisms may induce vari-
ous properties in faulty or even fault-free data that can be
exploited to recover a secret key. FIA techniques can be
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divided into the two broad categories of differential fault
analysis (DFA) and statistical fault injection analysis (SFIA).

In differential fault analysis, fault-free and faulty outputs
of the cipher for the same plaintext and initial state are used to
calculate the error in an intermediate variable. Certain prop-
erties of the error are exploited to identify the correct key
among all key candidates [19,21]. While DFA recovers the
secret key with a small number of fault injections, as, for
example, in [24], it assumes a strong fault model; fault man-
ifestation must be precise.

Statistical fault injection analysis techniques relax the
assumptions of fault model; however, more fault injections
are required to recover the secret key. In SFIA, distinct sta-
tistical properties of data distribution under fault induction
are exploited to recover the key. As a result, running multiple
encryptions with the same input and initial conditions, nec-
essary to calculate the error, might not be required. Further,
noisy fault inductions, in which timing or location of the fault
is not precise, can be tolerated. In particular, the authors in
[26] introduce fault intensity map analysis (FIMA), which
combines observables of fault bias, and the variation in fault
distribution with fault intensity, to recover a secret key, with
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imprecise fault models or in the presence of countermeasures
against fault attack.

Deep learning techniques are being increasingly used to
improve and evaluate information security.Applications such
as intrusion detection systems (IDS) [11], anomaly detec-
tion [16], malware [14], and hardware Trojan (HT) detection
[29] constitute a wide range of research exploiting the power
of deep learning. Deep learning is also powerful in identi-
fying features of data distribution in side-channel analysis.
An example is [28] that employs neural networks for a non-
profiled attack on a FPGA implementation of AES.

FIMA is augmented with a deep learning technique in
[25], introduced as fault intensity map analysis with neu-
ral network key distinguisher (FIMA-NN), which is used to
recover the secret key of the Advanced Encryption Standard
(AES). While FIMA-NN demonstrated significant improve-
ment in the efficiency of a fault attack, the success of a
deep learning FIA (DL-FIA) technique relies on employing
a proper training set. In this paper, we introduce a generic
methodology for simulating timing failure attacks on hard-
ware implementation of ciphers using standard electronic
design automation (EDA) tools. The results of simulations
are used to develop a generic statistical model for fault dis-
tribution under timing failure attacks which is employed to
generate the proper training set for the neural network key
distinguisher. We demonstrate that dynamic timing analysis
(DTA) is necessary to simulate a fault injection analysis based
on timing failure attacks. We implement the physical layout
of AES S-box in TSMC 65 nm technology using standard
ASIC design tools.

Our contributions in this work are as follows: (1)We intro-
duce a generic fault model for simulating biased fault attacks
based on timing failure of hardware implementations; (2)
We demonstrate substantial quantitative improvements in the
effectiveness of statistical fault injection analysis techniques;
(3) We further stimulate the field of deep learning applied to
cryptographic security, by introducing a convolutional neural
network to learn themost efficientmetric to evaluate different
features of the data distribution to recover a secret key.

The rest of the paper is organized as follows: In Sect. 2,
background and prior works on statistical fault analysis are
presented. Section 3 describes our design and simulation flow
for dynamic timing analysis of the AES S-box. Section 4
introduces the extracted timing-based fault model along with
multiple features of data distribution under fault injection
with varying intensities. In Sect. 5, the architecture of the
convolutional neural network employed in FIMA-NN is pre-
sented, and important guidelines for training the network are
discussed in Sect. 6. Section 7 presents the results, and the
paper concludes in Sect. 8.

Fig. 1 Statistical properties of a cryptographic hardware implementa-
tion exploited by various statistical fault analysis techniques

Fig. 2 Pictorial representation of the hardware implementation of a
logic function with the corresponding data-dependent distribution of
datapath delays

2 Background and prior work

2.1 Statistical fault analysis

The fundamental properties of hardware implementations
exploited by most statistical fault analysis (SFA) techniques
are data-dependent and intensity-dependent response of the
hardware to fault injections. Various properties of an imple-
mentation employed as observables to identify the correct
key in different SFA techniques are illustrated in Fig. 1.
The intensity-dependent error distribution is exploited in
techniques such as DFIA and statistical DFA while data-
dependent error is the property used in biased fault tech-
niques.

In the hardware implementation of a logic function with
multiple input/outputs using standard CMOS gates, the delay
of signal propagation from input to output is distributed
which also depends on data. Most likely only a small number
of output bits experience the longest delay which corre-
sponds to the critical path delay, as illustrated schematically
in Fig. 2. By injecting faults into the logic block in a
clock/voltage glitch scenario, most likely, only the output
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bit corresponding to the critical path delay experiences an
error at low intensities. As a result, most errors have a low
Hamming weight (HW). Hence, the distribution of the error
values is non-uniform which also depends on the intensity.
This property is exploited in the statistical DFA [17].

While statistical DFA still requires differential encryp-
tions to capture the distribution of the error, it relaxes the
assumptions on precise control of the attacker on fault
injection. Differential fault intensity analysis (DFIA) fur-
ther reduces the assumptions of fault model [10]. By slightly
increasing fault intensity, only 1–2 more bits of the out-
put experience an error (Fig. 2). DFIA exploits the fact
that the HW of the error, hence the HW of faulty values,
changes slightly with gradual increase in the fault intensity.
Although DFIA is more efficient compared to biased-based
fault attacks, it requires the faulty values for the same set of
plaintexts and initial conditions which can be a limitation in
nonce-based authenticated ciphers.

Statistical fault analysis (SFA) is based on the observa-
tion that the distribution of faulty values at the output of the
logic function under attack is non-uniform, or biased [18].
SFA requires only the faulty outputs for random plaintexts to
calculate the distribution of the intermediate variable under
attack. The faultmodel of SFA ismuch simpler thanDFA and
DFIA. However, a wide range of countermeasures have been
developed that either detect errors in the cipher operations
and suppress the faulty values, or randomize the distribution
of data under fault attack [3,12,31].

One of the first SFA techniques that obviated the need for
the faulty values is fault sensitivity analysis (FSA) [20]. The
property of faults exploited in FSA is data-dependent fault
sensitivity, which is defined as the fault intensity at which
errors start to appear. FSA is successful even in the pres-
ence of countermeasures suppressing faulty values; however,
it requires a precise control over fault intensity to observe
the correlation between intensity and data. Further, although
FSA does not require faulty values for analysis, the attacker
must still distinguish between the faulty and correct cipher-
texts.

An alternative technique that does not require faulty values
is statistical ineffective fault analysis (SIFA) [8]. Ineffective
faults are defined as fault injections that do not induce an
error into the intermediate variable. Due to data dependency
of error, the distribution of correct values, under fault injec-
tion, is biased, which is exploited in SIFA. Depending on the
fault model, i.e., location and injection mechanism, the bias
of correct values canbe less than the bias of faulty values. Fur-
ther, the probability that the fault induces errors is higher than
ineffective faults. Hence, SIFA requires more fault injections
than other biased-based techniques to acquire a sufficient
amount of data with meaningful bias. However, the simple
fault model of SIFA results in a powerful technique; SIFA

only requires correct outputs for random plaintexts and ini-
tial conditions.

Later, fault intensity map analysis (FIMA), a technique
whichbuilds on andgeneralizesDFIAandbiased-based tech-
niques, such as SIFA and SFA, was introduced in [26]. FIMA
combines the biased distribution of correct ciphertexts under
a correct key hypothesiswith the variation in data distribution
with fault intensity to reduce the number of fault experiments
required to recover a secret key. The authors in [26] used
FIMA with a classical metric measuring bias and variation
in distributionwith intensity based on the L4-norm to recover
the secret key of a software simulation of the Ascon cipher,
but did not explore neural networks. FIMA, augmented with
a neural network key distinguisher (FIMA-NN), as well as
its application to the recovery of an AES secret key, is sub-
sequently described in detail.

3 Timing-based fault model

3.1 Timing failure attacks

A wide range of FIA techniques exploit the timing failure of
CMOS circuits as a result of fault injection mechanisms such
as voltage/clock glitch and temperature variations [2,5,32].
Further, it has been shown that electromagnetic (EM) fault
injectionsmay result in timing failure of CMOS circuits [22].
Depending on how the timing failure is exploited to find the
secret key, we divide FIA techniques into three categories as
follows.

3.1.1 Classical differential fault analysis (DFA)

This group of techniques exploit the propagation of errors in
cipher state due to diffusion operations of the cipher. Exam-
ples of DFA attacks on AES are [13,35]. In these attacks, an
error in a particular location of the cipher state propagates
through the state, after cipher operations, with deterministic
relations between the errors. Rather than particular properties
of the fault, classical DFA techniques rely on the determin-
istic flow of errors in the cipher structure to find the secret
key. Hence, any type of error induced by a fault injection
mechanism in a desired location of the state results in a suc-
cessful attack. Major limitations of classical DFA techniques
include the requirement for both correct and faulty values and
the precise location of fault induction.

3.1.2 Statistical DFA

Rather than the flow of errors in the cipher state, statisti-
cal DFA techniques, including the attack in [17] and DFIA,
exploit the properties of the error induced by fault injection.
As illustrated in Fig. 2, timing failure as a result of fault
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injection, with proper intensity, only affects one or a few
output bits, corresponding to the critical path. Hence, the dis-
tribution of the induced error will be non-uniform, or biased.
Statistical DFA relaxes the assumption of classical DFA on
precise fault location; however, both correct and faulty values
are still required for a successful attack. Since the distribution
of error is biased, this class of techniques is often referred to
as biased fault analysis in literature. However, in this work,
we define a biased fault technique as follows.

3.1.3 Biased fault analysis

The class of techniques that exploit the biased distribution
of an intermediate variable under fault attack, rather than the
distribution of the error, is called biased fault analysis. As we
will demonstrate in the next section, the distribution of a vari-
able under attack is biased only if the probability of error, for a
given fault intensity, depends on data. As illustrated in Fig. 2,
the propagation delay of a CMOS logic circuit depends on
data. Consequently, by injecting a fault with proper intensity,
the output will be faulty only for a particular set of data. This
results in the biased distribution of data under fault injection.
Fault injection analysis techniques such as SFA and SIFA
exploit the biased distribution of only faulty values and only
correct values, respectively. As a result, these techniques do
not require both faulty and correct values.

Standard timing analysis methodologies in VLSI cir-
cuit design flow can be used to detect vulnerability of the
hardware implementation of a cipher to timing-based fault
attacks. We employ timing analysis to develop a statistical
fault model for training neural network key distinguishers.
Before introducing the fault model, we describe proper mod-
els for the vulnerability of a hardware implementation of
cipher operations to different classes of timing-based fault
injection analysis.

3.1.4 Static timing analysis (STA)

STA is the dominantmethodology for timing closure ofVLSI
circuits in the automated IC design flow. STA provides the
propagation delay of all paths of a logic block at the cir-
cuit level. The delay distribution obtained by STA shows
the worst case scenario and does not provide information
about the data dependency of the delays. As a result, STA is
not sufficient to provide information about the vulnerability
of a cipher implementation to biased fault analysis. How-
ever, STA reveals the distribution of delays over different
output bits of a logic block and thus is useful for modeling
the response of the hardware to differential fault attacks.

3.1.5 Dynamic timing analysis (DTA)

The proper timing model of a hardware implementation for
simulating the response to biased fault attack must include
the data dependency of delays when the cipher operation
under attack is executed in one clock cycle. Hence, DTA is
necessary for simulating a biased fault analysis. We employ
the transient time simulation on the transistor-level netlist
of the hardware, in the analog domain, to capture the data-
dependent timing.

3.1.6 Nonlinear model

In addition to data-dependent timing failure, a bias can also
be induced in the distribution of values at the output of a
nonlinear logic function if a fault is injected in the internal
operations of the function. In this case, the error does not
need to be data dependent; any random error can result in a
biased data distribution. The bias is a result of non-bijective
nonlinear components of the function. This type of fault is
exploited in the SIFA attack of [7] on a software implemen-
tation of AES. Further, if a hardware implementation of a
nonlinear function is executed in several clock cycles, a ran-
dom fault at an intermediate cycle can result in a similar
biased distribution, as shown in [27].

3.2 Timing analysis

Timing-based biased fault attacks target the nonlinear oper-
ation of ciphers as the fault location. In many block ciphers,
including AES, SubBytes or S-box constitutes the nonlinear
operation. In order to obtain a statistical model for data dis-
tribution under fault injections, we simulate the datapath of
the S-box in AES as shown in Fig. 3. The state register con-
tains the intermediate variable under attack. At each round of
AES operation, the contents of the state are processed by the
S-box and the result is loaded into the state at the next clock
cycle. A multiplexer is included at the input of the register
to enable loading of input data at the start of AES execution.
The buffer at the output of the register simulates the load-
ing effect of the circuits for cipher operations subsequent to
S-box.

The physical layout of the circuit for the S-box datapath
of Fig. 3 is implemented using standard electronic design
automation (EDA) tools as shown in Fig. 4. In this work,
the compact Canright S-box scheme [6] is implemented in
TSMC 65 nm technology at nominal threshold voltage. The
HDL code of the S-box datapath is synthesized using Synop-
sys compiler and TSMC standard cell library. The resulting
netlist is used in Cadence SOC Encounter for place and route
(P & R). The routed netlist of the design, along with the
extracted parasitic components of the circuit, is the input to
the Synopsys PrimeTime tool for STA. As mentioned earlier,
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Fig. 3 Implemented datapath of AES S-box for simulating the effect
of timing-based fault attacks

Fig. 4 Design and simulation flow using standard EDA tools for static
and dynamic timing analysis of AES S-box for detecting vulnerability
to differential and biased fault analysis based on timing failure

the results of STA can be used to model the response of the
circuit to differential fault attacks.

The results of STA using Synopsys PrimeTime for the S-
box circuit of Fig. 3 implemented inTSMC65nm technology
at the nominal supply voltage of 1.2 V are shown in Table
1. The propagation delays in this table are measured from
the input of the S-box to the output bits of the state register.
The setup time and hold time of the corresponding registers
are also reported in the table. It is observed that the output
bit 3 experiences the longest delay which corresponds to the
critical path of the circuit. Further, the difference between the
longest and shortest delays is less than 38 ps. It implies that a
fault injection mechanism, such as clock/voltage glitch, tem-

Table 1 Results of STA for AES S-box with nominal supply voltage
of 1.2 V using Synopsys PrimeTime

Bit # Delay (ps) Setup time (ps) Hold time (ps)

0 907.5 46.5 10.3

1 929.2 46.5 10.2

2 929.5 46.5 16.7

3 937.9 46.5 10.3

4 937.4 46.5 16.7

5 933.8 46.5 16.7

6 927.0 46.5 16.7

7 937.0 46.5 16.7

perature variation or EM injection, should induce a timing
failure with a resolution of higher than 38 ps. One solution
to enable fault injections with lower intensity resolution, and
thus simpler fault attacks, is reducing the supply voltage. At
reduced voltage, the circuit experiences longer delays and
the required resolution of fault intensity is lower. In the fol-
lowing, we will use the reduced supply voltage of 0.9 V for
transient time simulations.

In order to simulate a timing-based biased fault attack,
we conduct a transient time analysis in the analog domain.
To obtain a transistor-level netlist of the design, we import
the routed layout and the Verilog netlist of the design, gener-
ated by Encounter, to Cadence Virtuoso. The physical layout
of the circuit is generated in Virtuoso, and the RC parasitic
components are extracted using Assura QRC. The Virtu-
oso Analog Design Environment (ADE) is used for running
a transient time simulation on the extracted netlist of the
design. The time-domain waveforms are analyzed for the
purpose of dynamic timing analysis. Examples of the time-
domain waveforms for two different data values at the S-box
input are shown in Fig. 5.

The propagation delay of every output bit for a given input
to the S-box is obtained by analyzing thewaveforms of Fig. 5.
The delay is calculated as the time offset from the rising edge
of the clock signal such that the output waveform is stabilized
at the final value plus the setup and hold times of the registers
as shown in Table 1. The output is considered stabilizedwhen
the waveform has no further variations larger than 10% of the
supply voltage.

The data dependency of delays is observed in Fig. 5.When
the input to the S-box is the value 0xFB, the longest delay
is 954 ps, corresponding to output bit 2. When the S-box
input takes the value 0xC5, the longest delay will be 1.22 ns
corresponding to the output bit 1. In this case, the propagation
delay of output bit 2 is around 1.16 ns, in contrast to the delay
of 954 ps with the input 0xFB. When the (glitched) clock
period is 1.2 ns, the S-box computation of 0xFB is carried
out without any error while the computation of 0xC5 is faulty
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Fig. 5 Waveform of the output bits during S-box computations for two
different inputs at supply voltage of 0.9 V; rising edge of the clock starts
at time = 0

Fig. 6 Propagation delay distribution for eight output bits of S-box
obtained from transient time analysis at a supply voltage of 0.9 V with
Monte Carlo simulation (mean of two components of bimodal GMM
shown in the table)

with the error in output bit 1 and most likely bit 2. Hence, the
distribution of correct values under a clock glitch with period
1.2 ns shows a high probability for the value 0xFB and low
probability for 0xC5 which implies a biased distribution.

The distributions of delays for the output bits of the S-box
over all input data, as extracted from transient time simula-
tions, are shown in Fig. 6. These results are obtained from
Monte Carlo simulation in Cadence ADE to account for pro-
cess variations. For clarity, a histogram of delays only for
output bit 3, with the longest delay, is plotted in the figure.
The curves are the probability density functions (pdf) of a
bimodal Gaussian mixture model (GMM). The mean of two
components of the GMM distribution, i.e., μ0 and μ1, for all
output bits is also shown in the figure.

The delay distributions of Fig. 6 reveal two significant
timing properties of the S-box circuit of importance to biased
fault analysis;

– The fact that the distributions are spread over a range
of values reflects data dependency of delays. Hence, a
biased fault analysis using timing failure can be con-
ducted successfully on this design.

– The delay distributions for different output bits are cen-
tered over different values. Consequently, by changing
fault intensity, error distribution also changes. This prop-
erty implies that variations in fault intensity might reveal
multiple features in data distribution that can be exploited
to conduct a more efficient fault attack.

3.3 Data dependency bias

In the previous section, it was shown empirically that data-
dependent timing failures (error induction) in a logic function
result in fault bias.We define fault bias as the deviation of the
distribution of an intermediate variable under fault injection
from the uniformdistribution. In this section,we demonstrate
that data dependency of error probability is the necessary
condition for fault bias. If the probability of an error is the
same for all input data to a bijective function, such as an
S-box, then data distribution under fault injection will be
uniform.

Assume the intermediate variable X , i.e., the output of the
S-box under attack in AES, takes the values X ′ as a result of
fault injection. The distribution of X , without fault injection,
in a cipher with random input plaintext is uniform. Denoting
the error induced by the fault injection as e, the faulty inter-
mediate value is X ′ = X ⊕ e. The distribution of the faulty
value can be obtained as

pX ′(x ′) =
∑

x

pE (X ⊕ e|X = x)pX (x)

= 1

28
∑

x

pE (X ⊕ e|X = x)
(1)

in which the 8-bit variable X at the output of a S-box is uni-
formly distributed. From this equation, we observe that if the
error is independent of the data X , we have pE (X ⊕ e|X =
x) = pE (x ⊕ e). As a result, the distribution of the inter-
mediate variable under attack, X ′, is uniform. Hence, when
a fault injection mechanism induces an error independent of
data, no bias is observed and the fault attack is unsuccess-
ful. In other words, for a successful biased fault analysis, the
induced error must be data dependent. This implies that the
error distribution must depend on data.

A simple model for the fault distribution in the literature
of biased fault analysis is random-AND. In this model, the
faulty values are represented by X ′ = X � u, in which the
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error mask u, as well as the intermediate variable X , is uni-
formly distributed. The random-AND model is a simplified
model of data-dependent error; it is equivalent to the special
case of bit-flip probabilities p1→0 = 0.5 and p0→1 = 0.
This is what the AND operation models; the AND operation
does not change a bit 0 (p0→1 = 0). However, for a bit 1,
when the error mask u is uniformly distributed, the bit flips
to 0 with a probability p1→0 = 0.5.

As discussed in Sect. 3.1, a random fault in the internal
operations of a nonlinear function might also result in biased
data distribution. This effect is again due to data-dependent
error probability. Take the simple example of an AND gate
c = a � b. If a = 0, the output of the gate is always the
correct value c = 0, irrespective of the value of b. In this
case, even if the value of b is faulty, the probability of error
under fault injection is 0. With the input a = 1, the output c
is faulty if b is faulty. In this case, if b experiences a random
fault, the output c is erroneous with a probability 0.5. Hence,
the probability of error depends on the input data.

In this paper, we focus on the data-dependent timing fail-
ure of hardware implementations to conduct a biased fault
analysis. In the next section, we develop a generic model
for fault distribution that reflects both data- and intensity-
dependent properties of fault injections. We point out that
the model is used for training the neural network key dis-
tinguishers in FIMA-NN attacks, while the actual simulated
faults to recover the secret key are modeled using the wave-
forms of transient time simulations.

4 Timing-based fault distribution

Most existing biased fault analysis techniques employ only a
few features of data distribution to identify the correct key.An
attack approach exploitingmultiple features can bypass most
countermeasures while still providing reasonable efficiency.
In this section, we demonstrate that data distribution under
varying fault intensities reveals multiple features of a correct
key that can be exploited to achieve an efficient attack with
a simple adversary model.

To develop a data-dependent fault model, we fit a Gen-
eralized Extreme Value (GEV) distribution on delays of the
8 bits at the output of the S-box for every input data. The
cumulative distribution function (CDF) of GEV distribution
is [9]

F(x;μ, σ, ξ) = exp

{
−

[
1 + ξ

( x − μ

σ

)]− 1
ξ

}
(2)

in whichμ ∈ R and σ > 0 are location and scale parameters,
respectively, and ξ ∈ R is the tail index which determines
the shape of the function.

Fig. 7 Data-dependent fault distribution for different input values at
S-box input

For every input d = 0, 1, . . . , 255 to the S-box, we obtain
a probability distribution function F(x;μd , σd , ξd) for the
propagation delays, with the function F() defined in (2). The
fitted distributions for a fewdifferent data values are shown in
Fig. 7. The value pd = F(T ∗;μd , σd , ξd) is the probability
that the delay of all output bits of the S-box is less than the
(glitched) clock period of T ∗ when the S-box input is the
value d. It is observed in Fig. 7 that when the clock period
is 2.42 ns, S-box computation for input data 0x63 is error-
free with a probability of more than 95%. When the S-box
input is 0x03 and 0xD3, the probability that the propagation
delays are within one clock period is less than 83% and 70%,
respectively. The probability of error-free output for S-box
inputs 0x24 and 0xB4 is around 88%.

To simulate a biased fault using the extracted distributions,
we first sort the S-box output bits in the order of descending
delays, according to the delays extracted in transient time
simulations (Fig. 6), denoted by s = (s0, s1, s2, . . . , s7). For
a clock period of T ∗ and input data d, we calculate the prob-
ability Pd = 1 − F(T ∗;μd , σd , ξd) that the output will be
faulty. Hence, Pd percent of the output bits, corresponding to
the largest delays, will be faulty. Considering that the value s
is the correct result of computations, the bits of faulty output
are obtained as

s∗
i = ri , i ≤ 	8 · Pd

s∗
i = si , i > 	8 · Pd
 + 1

s∗	8·Pd
+1 =
{
r , with prob. 8 · Pd − 	8 · Pd

s	8·Pd
+1, otherwise

(3)

in which r and ri ’s are uniformly distributed binary random
values.

We point out that when the result of an 8-bit S-box com-
putation is faulty under a timing failure, with a probability
Pd , it implies that a number of 8 · Pd output bits with the
largest delay will be erroneous. This is formulated in Eq. (3).
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Fig. 8 Sensitivity of data distribution to fault intensity variations; fault
intensity variations introduce larger variations to data distribution with
lower bias (incorrect key)

When a timing failure occurs, at low fault intensity, the setup
and hold time of the registers are violated. Hence, the regis-
ters fall into a meta-stability state in which case the sampled
output of the registers can be a random value. Further, out-
put bits of the S-box might change value multiple times until
becoming stable, according to the waveforms of Fig. 5. Thus,
at higher fault intensities, the sampled output bit might take
a random value. This is the reason why faulty values of the
output bits in Eq. (3) are considered random binary values.

4.1 Variation in distribution with intensity

The metric to measure the smooth variation in errors with
fault intensity exploited in DFIA is the Hamming Weight of
the faulty values which is valid only if the faulty values are
acquired for the same plaintext and initial conditions. FIMA
generalizes this idea by observing that the variation in data
distribution under fault injection is also smooth with fault
intensity for the correct key. In this section, we measure the
variations in data distribution with fault intensity by evalu-
ating the sensitivity of the distance between data distribution
and uniform distribution, as a reference, to fault bias varia-
tions.

Various distance metrics between probability distribu-
tions are defined in the literature of information theory and
statistics. The most common metric, used in statistical fault
analysis, is the Norm-2 distance which is commonly referred
to as Square Euclidean Imbalance (SEI) in the literature. The
common metrics in information theory include Kullback–
Leibler (K–L) divergence, or relative entropy, and Rényi
divergence. Other metrics include Norm-1 distance, called
total variation distance, and Norm-4 distance. It is shown
that relative entropy is a special case of Rényi divergence
[36]. In addition, total variation distance is also related to the
Rényi divergence. The variation in data distributionwith fault
intensity is shown in Fig. 8 with different distance metrics
plotted in logarithmic scale.

Fig. 9 Fault location on AES at the beginning of round 9; AND gate at
the output of S-box simulates a biased fault

It is observed in Fig. 8 that depending on the distance
metric used for evaluating the variations in data distribution,
the sensitivity can be different; higher-order norm distance
metrics exhibit larger sensitivity to fault intensity variations.
When data distribution is close to uniform, Rényi divergence
shows the lowest sensitivity. Further, the SEI metric and K–
L divergence exhibit similar sensitivity of the distribution.
Hence, to exploit the variation in data distribution to fault
intensity changes as a feature for identifying the correct key
with classical statistics, it is critical to employ the proper
distance metric to measure the variations. In our work, a
neural network is employed to learn the proper metric to
evaluate different features of the data distribution.

4.2 Fault image of AES

AES is a U.S. federal and principal worldwide standard for
secret key cryptography outlined in [1]. In particular, AES-
128 uses a 128-bit key and consists of 10 rounds and a
composition of four transformations: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. In this section, we inspect
the fault image of AES to identify the distinct features of data
calculated with a correct key candidate.

The distribution of an intermediate variable under fault
injection with varying intensities reveals multiple features of
fault injection, which are exploited in various statistical tech-
niques. Fault image, as defined in [26], is the 2-dimensional
map of data distribution versus fault intensity which con-
stitutes the data representation analyzed in FIMA-NN for
identifying the correct key.

By injecting faults into the operation of S-box 0 at the
beginning of round 9 of AES, as shown in Fig. 9, byte 0 of
the state assumes a biased distribution. A fault image is con-
structed for this state byte as the intermediate variable. To
calculate this intermediate variable from the output cipher-
text, we need bytes (0, 7, 10, 13) of the ciphertext and 10th
round key (K 10).With a guess for these 4 bytes of the key, the
intermediate variable X can be calculated using the inverse
operations of the cipher. It is observed in Fig. 9 that to cal-
culate the output of a S-box at round 9, K 9 is also required.
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Fig. 10 Fault image of one state byte of AES with timing failure at the
beginning of round 9; a distribution of fault-free intermediate values
calculated with correct key, b distribution of all intermediate values
with correct key, c distribution of faulty intermediate values calculated
with correct key, d distribution of intermediate values calculated with
incorrect key; color map represents probability

However, K 9 effectively adds a constant to the value of X .
By denoting the state byte 0 as S0, the effect of K 9 can be
expressed as

S0 = X ⊕
(
14 · K 9

0 ⊕ 11 · K 9
1 ⊕ 13 · K 9

2 ⊕ 9 · K 9
3

)
(4)

in which multiplications by constants are performed over
Galois Field GF(28)modulo the polynomial x8+ x4+ x3+
x + 1. The term in parenthesis is an 8-bit constant. Addition
of this term is equivalent to a certain permutation of the prob-
ability mass function of X . Hence, most statistical features
of X and S0 are the same except for the specific values of the
variables that take a particular probability value.

By calculating the intermediate variable X with a guess for
4 bytes of the key during multiple faulted encryptions, a fault
image can be constructed as the distribution of X at different
fault intensities. We denote the fault image as pX (x, I ; K )

which represents the probability that for a fault intensity I ,
the variable X calculated with a key guess K takes the value
x .

The fault image of AES for one byte of the state under
attack is shown in Fig. 10. The distributions of values calcu-
latedwith all output ciphertexts, only correct outputs andonly
faulty outputs, using the correct key are shown in parts (a), (b)
and (c), respectively. Part (d) shows the distribution of data
calculated with an incorrect key candidate. It is observed that
the bias of only faulty values under a timing failure attack
is highest, with the bias decreasing with fault intensity. It
implies that an SFA technique which exploits only faulty
values achieves higher efficiency at lower fault intensities.
On the other hand, the bias of only correct values increases

with faulty intensity. Hence, in SIFA attacks, higher inten-
sities improve the efficiency. The distribution of all values
under timing failure is also biased with the lowest bias value.

The distinct features of the fault image corresponding to
a correct key candidate can be summarized as follows:

1. Fault Bias The most pronounced feature of the correct
fault image in Fig. 10 is the fault bias; particular values of
the intermediate variable take much higher probabilities.
However, different hardware implementations exhibit dif-
ferent levels of bias. Countermeasures can also reduce the
observed bias significantly.

2. Fault SensitivityWe generalize the definition of fault sen-
sitivity, as defined in [20], to the fault intensity atwhich the
probability of a particular value of the intermediate vari-
able deviates from the uniform distribution. It is observed
in Fig. 10 that fault sensitivity is data dependent.

3. Smooth Variations As shown in Fig. 8, the distance
betweendata distributions at close fault intensities is small
under the correct key assumption. However, it should be
noted that a proper distance metric is required to distin-
guish the variations under the correct and incorrect key
candidates, especially when the fault bias is small.

4. Intensity-dependent Distribution Although the data dis-
tribution is biased at different fault intensities, the set of
values with the highest/lowest probabilities changes at
different intensity values. This property originates from
intensity-dependent distribution of errors.

Although existing techniques exploit one or two of the
above features in data distribution, we introduce FIMA-NN
that employs deep learning to extract all statistical features.
As a result, the efficiency of the attack is improved and the
attack is successful even if countermeasures suppress part of
the features.

5 FIMAwith neural network

5.1 Fault model for attack on AES

In the fault model of a FIMA-NN attack on AES, we assume
that the attacker is able to inject faults into the AES state, at
the beginning of round 9, with varying intensities. The input
plaintexts and initial conditions for multiple encryptions can
be random. As a result of fault injection, any one of the fol-
lowing features may appear in the distribution of the variable
under attack: (1) The distribution of data is biased for a range
of fault intensities; (2) The data distribution is dependent on
the intensity; (3) The variation in the distribution with grad-
ual change of intensity is smooth; (4) The fault sensitivity is
data dependent.
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Fig. 11 Architecture of CNN, employed as the key distinguisher, con-
sisting of a convolutional layer, an inception and max pooling, fully
connected layer, and multi-class softmax output

The attacker has prior knowledge of which of the faulty
or correct values are biased, and can filter out the proper val-
ues. If all values are biased, FIMA-NN uses all data and the
attacker does not require differential encryptions to identify
faulty values. FIMA-NN can exploit multiple statistical fea-
tures to improve the efficiency. Countermeasures that detect
errors in the cipher operation cannot protect the implementa-
tion against FIMA-NN, but can reduce the attack efficiency.
The attacker does not need precise control over fault injec-
tions. Since the input plaintexts and initial conditions need
not to be known, FIMA-NN can successfully attack various
block cipher modes of operation.

5.2 CNN key distinguisher

An important consideration in developing a neural network
(NN) key distinguisher is the different response of hard-
ware implementations to fault injections. Various hardware
platforms exhibit different levels of data and intensity depen-
dency of errors. As a result, the distinct features of data
distribution may appear at different locations of the fault
image. Hence, the spatial invariance of the neural network
is an important characteristic to identify the correct key.

We employ a convolutional neural network (CNN) to
extract the proper features of the fault image. The prominent
properties of CNNs that make them an interesting architec-
ture for deep neural networks (DNN) in various applications
are the parameter sharing and localized feature detection.
Each layer of a CNN consists of a set of small size kernel
functions that process the entire input data. Since the same
set of kernels process different locations of the input to the
layer, a CNN can learn the same feature at different locations
of the input data. This is due to the equivariance property of

Fig. 12 Inceptionmodule as the second layer of CNN key distinguisher
showing the number of feature maps generated by each component

CNNs [15] which is desirable to detect the features of fault
images from various hardware implementations.

The architecture of the CNN, employed in this work as
the key distinguisher, is shown in Fig. 11. It consists of one
convolutional layer, an inception module followed by a max
pooling, a fully connected layer, and a softmax output. The
convolutional layer comprises 16 kernels of size 2 × 2. The
stride of the kernels is 1, and the input image is processedwith
same padding. The activation function of each convolution
is the rectified linear unit (ReLU).

The size of kernels at each layer of CNN is important
in detecting features of different sizes in an image. We
refrain from using a fixed kernel size in the second layer
of the CNN key distinguisher. Instead, the second layer
consists of an inception module. GoogLeNet, often called
Inception network, first introduced inception modules to use
network parameters much more efficiently, hence, resulting
in a deeper network [34].

The special property of the inception module, desirable
for processing fault images, is a construction of kernels with
different sizes processing the input in parallel. As a result, the
inception layer is capable of learning more complex features
of different sizes in the fault images. The employed inception
module is shown in Fig. 12. All kernels use same padding
and ReLU activation function. Two sets of 1×1 kernels, each
with a size of 8 kernels, are used: One set processes the input
maps directly while the other set processes the maps after a
3× 3 max pooling layer. In addition, 4 kernels of sizes 3× 3
and 5 × 5 are used. The total number of feature maps at the
output of the inception layer is equal to 24.

The inception module is followed by a max pooling layer,
which is commonly used inCNNs and subsamples the feature
maps. This results in more efficient parameter usage in the
subsequent layers of the network. The max pooling layer in
the key distinguisher of Fig. 11 processes the input in blocks
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of 2× 2 with a stride of 2 in the vertical direction (values of
the intermediate variable) and a stride of 1 in the horizontal
direction (intensity values). The type of padding is valid; as a
result, the feature maps shrink by a factor of 2 in the vertical
direction and decreases by 1 unit in the horizontal direction.

The final layer of the key distinguisher, similar to most
CNNs, is a fully connected (FC) layer consisting of 1024 neu-
rons with ReLU activation. In order to prevent overfitting on
a specific data distribution, especially when the size of avail-
able training data is limited, we use dropout regularization
with a rate of 20% [33]. Overfitting can substantially reduce
the efficiency of FIMA-NN. If the training data do not include
the typical fault behavior of a particular hardware platform,
an overfitted network requires an unnecessarily large number
of data samples to identify the correct key.

The output layer of the NN key distinguisher is a softmax
functionwith 257 output classes. Thefirst class represents the
incorrect key and the remaining 256 classes are assigned to
256 possible permutations of the fault image for the correct
key, as explained in the next section. The softmax output
provides the probabilities that a given fault image belongs to
an incorrect key candidate or a given permutation of the fault
image calculated with the correct key. The loss function of
the network is the cross-entropy, and the Adam algorithm is
employed for optimizing the network parameters.

While the NN key distinguisher provides the probabilities
of correct/incorrect key candidates, one approach in identi-
fying the correct key is comparing the probabilities with a
threshold. The efficiency of this approach highly depends on
the training data. If the fault image from a given hardware
implementation has a large similarity with a subset of train-
ing data; then, the probability of the correct key can increase
beyond the threshold which will unnecessarily increase the
required number of fault injections to achieve a high prob-
ability. Instead, we use the relative probabilities of all key
candidates to identify the correct key.

6 Training set generation

The training data set has a large impact on the efficiency
of FIMA-NN. If the NN key distinguisher is overfitted on
fault images constructed with a large size of data samples, its
ability to distinguish the correct key with a limited data size
is degraded. In this section, we provide guidelines to gener-
ate a proper training set for FIMA-NN. Before proceeding,
we discuss a challenge in training the key distinguisher for
learning the features of the fault image in AES.

As shown in Eq. (4), the effect of K 9 in the fault images
appears as a particular permutation of the rows in the image.
An immediate solution to incorporate the effect of K 9 is
to include all 256 possible permutations of the correct fault
image and label them as the correct key. However, this

approach does not result in awell-trained network. The effect
of K 9 is not a simple spatial translation of the features in the
fault image. Instead, the value of the K 9 scrambles the fault
image such that it would be difficult for the network to learn
all possible features, at least in a network with few layers.

A simple solution to the problem of unknown K 9 in AES
is proposed in [25], in which a CNN key distinguisher clas-
sifies fault images into two classes of correct/incorrect key,
and all 256 permutations of a given fault image are tested by
the CNN. In this work, we employ a CNN with 257 output
classes, as shown in Fig. 11, in which one class corresponds
to the fault image of an incorrect key and 256 classes rep-
resent different permutations of a fault image for the correct
key. The key candidate that has a fault image with the low-
est probability of classifying as incorrect is selected as the
correct key.

The proper fault images for training theCNNof Fig. 11 are
generated using the statistical model introduced in Sect. 4.
According to Figs. 6 and 7, errors start to appear at the output
of the S-boxwhen the clock period (timing stress) starts from
around 3.5 ns. When the clock period is reduced to around
2.5 ns, at least one output bit of the S-box, thus the result of S-
box computation, will be faulty for every input data. Hence,
in generating the training fault images, we change the fault
intensity from 3.5 to 2.5 ns with equidistant intensity values.

We point out that further reducing the clock period beyond
2.5 ns does not favor FIMA-NN as it (indirectly) inspects
the variations in the probability that an error appears at the
output; it is shown in Sect. 3.3 that fault bias is a result of data-
dependent probability of error. However, differential fault
attacks, such as DFIA, might benefit from reducing the fault
intensity further: Although the probability of error does not
change by reducing the intensity beyond 2.5 ns, the distri-
bution of the error (specific values of the errors) changes.
Hence, differential fault attacks which inspect the values of
the errors can exploit the variations in the error distribution
as an observable to find the correct key. Biased techniques,
such as SIFA and FIMA-NN, inspect the values of the inter-
mediate variable under fault injection rather than the values
of the errors.

The number of fault intensities in the range of low (3.5 ns)
to high (2.5 ns) values is another parameter of FIMA-NN to
be selected by the attacker. More intensity values provide a
finer sampling of fault distribution. However, two important
limitations for larger number of fault intensities include: (1)
the attacker requires a fine control over fault intensity and
(2) larger number of faulted encryptions are required since
sufficient data should be collected at every intensity to obtain
a decent estimate of data distribution.We select 5 equidistant
fault intensities in the range [2.5, 3.5] ns, with a resolution of
200 ps. It is observed in Fig. 7 that changing the intensity by
200 ps results in less than 10% change in the probability of
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error for the steepest curve. Hence, 5 intensity values provide
a decent sampling of fault distribution.

In generating the training fault images, we also add clock
jitter in injecting fault into the S-box operation. This is sim-
ilar to data augmentation in which, given a limited size of
training set, an extra data set is generated by adding noise to
the available data. Data augmentation helps prevent overfit-
ting in deep neural networks [4]. Considering that for a fault
injection mechanism with a timing resolution of 200 ps, as
explained above, the clock jitter is much less than 200 ps. To
prevent overfitting, we select a pessimistic estimate of 100
ps for the clock jitter in generating the training images.

In this work, the training set for the CNNkey distinguisher
is generated according to the above considerations. In order to
prevent overfitting on a specific data distribution and improve
the success of the network even with a limited data size,
the following considerations are important in generating the
training set:

1. In order to learn all features of the fault distribution, the
training data should include fault images constructedwith
a sufficient amount of data. Also, to prevent overfitting on
the most obvious features of fault image, the training set
should also include fault images with a limited size of
data samples.

2. The training set should include fault images representing
the distribution of only correct values in addition to those
images that include unfiltered correct/faulty values. The
trained neural network can be used to analyze a given
fault image without having a prior knowledge on whether
faulty and correct values are filtered.

3. The fault images in the presence of infective counter-
measures should be included in the training set. Infective
countermeasures usually replace the faulty values with
random numbers. This type of fault image can also model
the effect of noisy fault injections.

4. As discussed earlier in this section, different permutations
of a fault image for the correct key are assigned to differ-
ent classes. Hence, the training set must include all 256
permutations corresponding to different values of K 9.

We emphasize that the statistical model of Sect. 4 is only
used to generate fault images for training the CNN key dis-
tinguisher. The actual FIMA-NN attack is deployed using
the analog waveforms from transient time simulations, as
explained in the next section. We randomly choose one itera-
tionof aMonteCarlo simulation as an actual timingmodel for
a particular ASIC implementation. For every clock period,
the output of the S-box under attack is read from the analog
values of the waveforms.

Fig. 13 Accuracy of the CNN key distinguisher during training (last
batch accuracy) and test

7 Results

We use a physical layout of an AES S-box, after RC par-
asitic extraction, implemented in TSMC 65 nm technology
with nominal threshold voltage, and Cadence Virtuoso ADE
transient time analysis for simulating a timing failure fault
injection. We use FIMA-NN to recover K 10 when the simu-
lated fault injection occurs during S-box computations at the
beginning of round 9 of AES. The neural network key distin-
guisher is trained using the statistical fault model described
in Sect. 4.

To find output bits of the S-box under timing failure
attack, we read the value of the corresponding analog voltage
obtained with transient time simulations in Virtuoso ADE. If
the voltage value is stable at a 0/1 logic value, during the
time window around the clock edge that satisfies the hold
and setup time conditions of the registers, we take the value
0/1 as the S-box output bit; otherwise, we take a random
binary value. The voltage value is stable at 0/1 if it shows
variations less than 10% of the supply voltage. To simulate
an infective countermeasure, faulty ciphertexts under attack
are replaced by random numbers.

The CNN key distinguisher was implemented in Tensor-
Flow, and executed on a PC with Intel Core-i7 CPU, 16 GB
RAM, and Nvidia GeForce GTX 1080 GPU. Processing the
fault images with the CNN key distinguisher for all key can-
didates required 5.2 hours.

7.1 Training CNN key distinguisher

The CNN key distinguisher in Fig. 11 is trained with a
simulated training set generated according to the guideline
presented in Sect. 6. The size of generated data is 32,000, of
which 10% are chosen randomly for test. The fault images
in the training set are generated for a random secret key for
5 equidistant (timing) intensity values in T ∗ ∈ [2.5, 3.5] ns.

The CNN is trained using the adaptive moment estima-
tion (Adam) algorithm and batch normalization. The batches
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have a size of 64 samples and are chosen randomly from the
training set. The training and test accuracy of the neural net-
work at different epochs of training is shown in Fig. 13. We
observe that test accuracy is saturated at a level of around
95%. We stop the training after 10 training epochs. Since the
relative probabilities of the key distinguisher are used as the
metric to rank the key candidates, the accuracy of Fig. 13 is
sufficient to achieve a highly efficient attack.

7.2 Key recovery using all data

Faulty values of the intermediate variable under timing fail-
ure attack exhibit the highest bias, as shown inFig. 10.Hence,
if all outputs are available, in an unprotected cipher, the most
efficient attack is obtained using only faulty values. How-
ever, filtering the faulty values is a limitation as the attacker
requires a prior knowledge on the expected correct output of
the cipher. We demonstrate that even if the faulty and cor-
rect values are not separated, FIMA-NN is a highly efficient
attack.

The rank of the correct key candidate under a timing fault
injection using all output values is compared in Fig. 14 with
the maximum rank of incorrect keys versus the size of data
samples. The data are collected at 5 different equidistant tim-
ing intensity values in the range T ∗ ∈ [2.5, 3.5] ns with a
simulated clock jitter equal to 100 ps.We define timing inten-
sity as the period of time available for the S-box output bits
to stabilize at their correct value. For comparison, the rank
of key candidates in part (a) is calculated according to the
classical SEI metric while part (b) shows the probabilities
assigned to them by the CNN key distinguisher.

We observe in Fig. 14 that the classical SEImetric requires
at least 12,150 ciphertexts to detect the correct key. How-
ever, the CNN distinguisher assigns the highest probability
to the correct key after collecting only 960 output cipher-
texts. Hence, FIMA-NN is 12.6 times more efficient than
classical biased-based techniques using all faulty/fault-free
ciphertexts. Additionally, although the probability assigned
to the correct key by the CNN is relatively small, i.e., 40%
at higher intensities, all other incorrect key candidates are
assigned with smaller probabilities.

One consideration in comparing FIMA-NN with bias-
alone fault analysis techniques is that the collected data
experience faults with different intensities. Higher intensity
values favor classical biased-based techniques, as data at low
intensities exhibit smaller bias. As observed in Fig. 10, the
distribution of intermediate variable using all output cipher-
texts under attack has the lowest bias compared to only
correct or faulty values. However, with a higher fault bias,
e.g., by increasing fault intensity or using data values with
larger bias, the efficiency of bias-alone techniques could
improve.

We point out that in a real-world attack, the fault intensity
to achieve a given bias in data distribution is unknown. All
existing fault injection analysis techniques, including SFA
and SIFA, assume that the proper intensity to obtain a pro-
nounced feature is known. The amount of data required in
a profiling step to identify the proper intensity is typically
not reported in the literature to evaluate the efficiency of the
attack. However, FIMA-NN has a great advantage in that
such a profiling step is not required. All data at different
intensities are exploited efficiently by FIMA-NN to identify
the correct key.

7.3 Key recovery using correct data

In a cipher protected with error detection countermeasures
that suppress faulty outputs, the efficiency of bias-alone fault
analysis techniques can be substantially less than techniques
that exploit only faulty values, as the bias of correct val-
ues under ineffective fault induction is smaller than faulty
values (Fig. 10). The rank of key candidates using only
correct values is shown in Fig. 15 for fault intensities in
T ∗ ∈ [1.0, 1.3] ns and a clock jitter of 100 ps. The amount of
correct ciphertexts required to identify the correct key using
the SEI metric, shown in part (a), is at least 4810, which is
smaller than the value of 12,150 in Fig. 14 when all values
are also used to measure the bias.

As observed in Fig. 10, the bias of correct values increases
with fault intensity. Error detection countermeasures can
make the attack even more difficult since the probability of
ineffective faults is small, especially at higher intensities.
While at low intensities, most of the outputs are correct,
the data distribution exhibits small bias. By increasing the
intensity, the bias of correct values increases; however, most
outputs are faulty. Thus, in order to collect a sufficient amount
of correct ciphertexts, a much larger number of faulted
encryptions are required. FIMA-NN does not rely on the bias
alone. As observed in Fig. 15b, the CNN key distinguisher
can identify the correct key with only 1000 correct cipher-
texts, i.e., an improvement in efficiency by a factor of 4.8
compared to bias-alone techniques.

7.4 Key recovery with infective countermeasures

Infective countermeasures detect errors in the cipher opera-
tion and replace the faulty state with a random value. Similar
to error detection countermeasures, the bias of faulty values
are diminished, and the observed bias in data distribution is
only due to the correct values under ineffective fault induc-
tions. The advantage of infective countermeasures over error
detection is that the attacker requires differential encryptions
to identify whether the fault induced an error into the cipher
operations. The use of differential encryptions is a limitation
in ciphers using certain modes of operation (e.g., nonces)
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Fig. 14 Rank of key candidates for fault injections with 5 equidistant clock period in the range T ∗ ∈ [2.5, 3.5] ns, and using all faulty/fault-free
values; a classical SEI metric, b neural network

Fig. 15 Rank of key candidates for 5 equidistant clock period in the range T ∗ ∈ [2.5, 3.5] ns, and using only correct values; a classical SEI metric,
b neural network

Fig. 16 Rank of key candidates for 5 equidistant clock period in the range T ∗ ∈ [2.5, 3.5] ns, with infective countermeasure; a classical SEI metric,
b neural network

and requires a profiling step to identify the correct ciphertext
corresponding to every input plaintext.

The rank of key candidates in the presence of infective
countermeasures is shown in Fig. 16. In this figure, all data,
including the randomized faulty ciphertexts, are used to cal-

culate the distribution of the intermediate variable. As shown
in part (a) of the figure, with the SEI metric, at least 13,650
ciphertexts are required to identify the correct key candidate.
However, as part (b) shows, the CNN key distinguisher iden-
tifies the correct key with only 2,690 faulted encryptions.
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The efficiency of FIMA-NN is thus around 5 times better
than bias-alone techniques.

8 Conclusions

We developed a generic fault model based on timing failure
attacks that can reveal the vulnerability of hardware imple-
mentations using simulations with standard EDA tools. We
augmented fault intensity map analysis (FIMA) with a con-
volutional neural network, called FIMA-NN, with a training
set generated from the proposed fault model. We demon-
strated that FIMA-NN is successful even in the presence of
most existing countermeasures, although some countermea-
sures can degrade the efficiency of the attack. Using transient
time analysis on a physical layout of an AES S-box in TSMC
65 nm technology for simulating timing failure attacks, we
showed that fault injection analysis techniques which rely on
bias alone require 12.6×moredata thanFIMA-NNto recover
the 10th round key K 10 using unfiltered output ciphertexts.
Using only fault-free output ciphertexts, FIMA-NN is 4.8×
more efficient than the biased-based techniques. Also, in
the presence of infective countermeasures, FIMA-NN is 5×
more efficient.
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