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Abstract
When implemented in software (or hardware), a cryptographic protocol can leak sensitive information during its execution.
Side-channel attacks can use those leakages in order to reveal some information about the secret used by the algorithm.
The leaking side-channel information can take place in many time samples. Measurement appliances can cope with the
acquisition of multiple samples. From an adversarial point of view, it is therefore beneficial to attempt to make the most of
highly multivariate traces. On the one hand, template attacks have been introduced to deal with multivariate leakages, with as
few assumptions as possible on the leakagemodel. On the other hand, manyworks have underlined the need for dimensionality
reduction. In this paper, we clarify the relationship between template attacks in full space and in linear subspaces, in terms
of success rate. In particular, we exhibit a clear mathematical expression for template attacks, which enables an efficient
computation even on large dimensions such as several hundred of samples. It is noteworthy that both of PoI-based and
PCA-based template attacks can straightforwardly benefit from our approach. Furthermore, we extend the approach to the
masking-based protected implementations. Our approach is validated both by simulated and real-world traces.

Keywords Multivariate traces · Template attacks · Dimensionality reduction · Masking · Success rate · Signal-to-noise ratio ·
Spectral approach for computational speed improvement

1 Introduction

1.1 Context: the side channel threat

Side-channel traces collected from software code are
extremely rich, since a same variable can leak at different
places. Typically, leakage can spread over several samples
within one clock cycle, and in addition, software implementa-
tions typically move variables in several registers or memory
locations, causing leakage at many clock cycles.
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1.2 Problem: making themost of high
dimensionality

Modern oscilloscopes sample their input at a very high fre-
quency; hence, it is possible to get more than one leakage
sample per leaking sensitive variable. How to exploit such
abundance of leakage measurements? Few non-supervised
side-channel distinguishers manage such situation. Indeed,
the samples usually leak differently; therefore, it is complex
without prior knowledge to know how to best combine them
constructively.

1.3 State-of-the-art

Clearly, in the past, some strategies have been put forward.
For instance, Clavier et al. [11, §3] suggested (albeit in
another context, namely that of so-called shuffling counter-
measures) to take as monovariate signal the average of the
signal over the D samples. As another example, Hajra and
Mukhopadhyay [24] investigate non-profiling side-channel
analysis. However, for their analysis to work, some a priori
structure is injected in the model, which is learned online on
the attacking traces. However, in reality, the information con-
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tents of the whole trace are larger than that soaked from the
projection on one single support vector, but it depends on the
multivariate trace distribution. Notice that template attacks
(which are profiled attacks) achieve this goal. Template
attacks on multivariate data have been described accurately
as a “process” in state-of-the-art papers [30, §5.3.3]. How-
ever, those attacks are still perceived as a recipe (see Sec. 2.1
of [9]), so there is no (except from experimental cases) way
to study which parameters impact the success of a template
attack. Therefore, some folklore surrounds them. In particu-
lar, because the recipe is not formalized, some papers have
tried to clarify the different steps and assumptions, in partic-
ular Choudary and Kuhn [10] wrote on making many details
about template attacks more explicit, such as the notion
of “pooled covariance matrix.” The inversion of the traces
covariance matrixΣ is feared, and for this reason, a first pass
of dimensionality reduction has been suggested right away in
the seminal paper by [9]; the authors selected a few tens of so-
called points of interest (PoIs), resulting in a smallerΣ which
is easy to inverse. Still, we notice a theoretical contradiction,
because the data processing inequality states that applica-
tion of any function on the data reduces their informative
contents. Subsequently, many researches have been carried
out to improve on the heuristic method to identify PoIs in the
traces. Archambeau et al. motivated the usefulness of princi-
pal component analysis (PCA) in [1] in this respect. Bär et al.
improved on this PCA in [2] by actually hand-picking PoIs
within PCA vectors. Elaabid et al. [18] account for a method
to choose PoIs without the need of manual selection. Their
method is as follows: a PCA is computed on all the traces,
resulting in one “PCA trace”, and the PoIs are those samples
such that the PCA value is larger than a user-defined thresh-
old. The authors observed that this selection does retain most
informative samples while discarding noisy samples. Fan et
al. suggest to select PoIs as those where the noise is the most
Gaussian [20]. Still, even deciding which selection of PoIs is
optimal is questioned [45]. Zhang et al. noticed recently that
there is still margin for improvement in PoIs selection algo-
rithms [43]. So, to summarize, many papers have focused
on reducing the traces dimensionality while retaining in the
constructed subset most of the information, with a view to
optimize the success rate. A secondary objective is to keep
an acceptable computational load for the template attack.
Indeed, template attacks, as presented originally, include in
the attack phase the evaluation of computationally challeng-
ing functions, such as: exponential, matrix inversion, and
square roots (see Eqn. (1) in Sec. 2.1 of [9]).

Eventually, we notice thatmany papers study trace denois-
ing, using typically wavelets [16], independent component
analysis (ICA) [29], etc. In our work, we exploit traces “raw,”
so as to highlight the sole impact of multivariate analysis on
attack efficiency. But, it is noteworthy that both of PoI-based
and PCA-based template attacks [20] can also straightfor-

wardly benefit fromour approach, both in terms of processing
time and in terms of the needed space memory.

1.4 Contributions

In this paper, we analyze template attacks from a theoreti-
cal perspective, and derive the mathematical expressions for
template building and attack phases. In the context of mul-
tivariate normal noise, the two phases are easily simplified
(Algorithms 1 and 2) as mere linear operations. In particular,
there is no need for exponential and square roots, and only
one matrix inversion is required at the end of the template
building phase. These formal expressions allow us to drasti-
cally improveon the clarity of the actual computations carried
out by template attacks and as a result, the formal expression
also improves on the computational aspects related to tem-
plate attacks.

Our noteworthy contributions are detailed below:

– we factor code between training and matching algo-
rithms,

– we optimize further the computation and needed mem-
ory space by grouping traces by classes, resulting in a
computation on a so-called coalesced data,

– we have the training phase delivers only one matrix,
thereby saving repeated computations in the attack phase
(see Algorithms 3 and 4).

– As a consequence, we manage to perform template
attacks on highly multivariate traces. Contrary to belief,
we show that the more samples are taken (i.e., no dimen-
sionality reduction is needed), and the more successful is
the template attack. But our approach is also compatible
with reduced dimensionality data.

– Said differently, we are able to analyze full-width traces
without any preprocessing (which destroys information)
and show that this is the best attack strategy, in terms of
number of traces, to recover the key.

– in the sequel, we extend our approach to the masking-
based protected implementations.

– Finally, we highlight a spectral approach which allows
for a near exponential computational improvement in the
attack phase (an attack factor in 2n is reduced to n, where
n is the bitwidth of the sensitive variable).

Furthermore, those findings allow us to observe practically
the effect of the dimensionality (the number of samples in a
trace) on the success rate. Namely, we show that the suc-
cess rate increases when traces of higher dimensionality
are used. We also show that template attacks (without ini-
tial dimensionality reduction using PCA, for instance) are
more efficient than monovariate attacks (such as the correla-
tion power analysis, also known as CPA [5]) applied on the
first direction of the PCA leakage reduction. Such practical
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derivations are, to the best of our knowledge, new, and we
here provide some numerical values about the actual gain
conveyed by attacks of increased dimensionality.

1.5 Outline

In order to present our contributions, we follow the scientific
approach described hereafter. In Sect. 2, we present a math-
ematical modelization of the problem. In Sect. 3, we provide
our first contribution, namely the formalization of template
attacks. In Sect. 4, efficient algorithms to compute template
attacks are given. In Sect. 5, we validate our contributions
on real traces taken from an AES running on an ATMega
163 smart card. In particular, we exhibit a spectral approach
to speed up the computation of template attacks. Finally, in
Sect. 6, we conclude our study.

2 Mathematical modelization of the problem
and notations

2.1 Side-channel problem

We model the side-channel problem as follows:

T , k → Z → Y (Z) = Y → X = Y + N . (1)

In this equation, we have that:

– T is the digital part known by the attacker, typically some
text (either plaintext or ciphertext),

– k is the digital part unknown by the attacker, typically
some part of key, which is fixed and will be guessed,

– Z is an intermediate value within the targeted crypto-
graphic algorithm, e.g., Z = SubBytes(T ⊕k) in AES;
formally, Z is the sensitive variable which consists in a
vectorial Boolean function of T and k,

– Y is the leakage corresponding to Z — the link between
Y and Z is deterministic,

– X is the side-channel leakage measured by the attacker,
which consists in Y plus some independent noise N ,

– N is the noise.

We assume all those variables are measured many times
(Q times). Therefore, the random variables have a dimen-
sionality Q, with the particularity that k is the same for all
Q, and that noise random variables Nq are all i.i.d.

In addition, we assume that the measurements are multi-
dimensional of dimensionality D. This can represent the fact
that:

– oscilloscopes capturewindows of D samples, typically at
high sampling rates, resulting in traces of many samples
per clock period,

– simultaneous captures by various probes (e.g., power and
electromagnetic, or also multiple electromagnetic probes
placed at various locations).

2.2 Additional notations

We adopt the following notations:

– S: the cardinality of the space where Z belongs to, that
is if Z ∈ {0, 1}n , then S = 2n ; to ease notations, we
also assume (without loss of generality though) that the
number of T values is S. For instance, Z typically arises
from a bijective substitution box applied on T ⊕ k.

– Σ : the D × D covariance matrix of the noise, such that
Nq ∼ N (0,Σ) (0 ≤ q < Q).

Moreover, we will use the reordering trick put forward
in [28], which consists in trading

∑
q for

∑
t
∑

q:tq=t , where∑
q:tq=t is a shortcut notation for

∑
cq∈{1,...,Q},
such that: tq=t

.

Therefore, we have the following “types” for variables
defined in Sect. 2.1:

– T and k are bitvectors (of second dimension Q), not nec-
essarily of the same length,

– Z is a matrix of Booleans {0, 1}n × Q,
– Y and X are matrices of D × Q real numbers.

The peculiarity of Y is that we have Y (Zq) = Y (Zq ′) if
Tq = Tq ′ (under the same key k).

We introduce the notion of coalesced matrices. This
notion has been introduced in [28, §3.3], but was not named
there. Therefore, we qualify this notion (averaging traces cor-
responding to the same sensitive variable) as “coalescence.”
It arises from the fact that Y and X , random variables in (1),
depend only on values from Z (except from X which also
depends on the noise, which is independent from other ran-
domvariables), and therefore, theirmatrices can be coalesced
from size D × Q to D × S.

Definition 1 (Coalesced matrices) Coalesced model Ỹ (k) is
the D × S matrix

(
Ỹt=0,k, . . . , Ỹt=S−1,k

)
,

i.e., where t is enumerated in lexicographical order. This
matrix is a property of the leakage from the device under
test, i.e., it is not a random variable, but a constant value. For
any measurement q, we denote Yq = Ỹtq ,k .
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Coalesced measurement X̃ is the matrix

(
X̃0, . . . X̃ S−1

)
=

(∑
q:tq=0 Xq

∑
q:tq=0 1

, . . . ,

∑
q:tq=S−1 Xq

∑
q:tq=S−1 1

)

.

In this equation, we denote by nt the number of plaintexts
such that tq equals to t . If for some t the number nt it is equal
to zero, then by convention X̃t = 0. Alternatively, the empty
classes can be pruned. Both choices are equivalent.
The advantage of Definition 1 is twofold. First, as long as
Q ≥ #T = 2n , the matrix X (of size D × Q) is reduced to a
matrix X̃ (of size D × 2n). Second, when nt is not equal to
zero, X̃t as defined here is the empirical average ofE(X |T =
t) over nt values. Thus, for any t and q, Xq (for tq = t) and
X̃t have same expectation, but X̃t has an empirical standard
deviation divided by

√
nt relatively to that of Xq .

It shall also be noted that in ourmodel, the D×Qmatrix Y
(and the D×S coalesced matrix Ỹ ) are general. In particular,
we do not assume any structure, such as Ỹ being the product
of a D × 1 column by a 1 × S row, as done in [6,24].

Examples of Z functions are given hereafter:

– in the software case, T , k ∈ {0, 1}n , and Z = T ⊕ k;
– in the hardware case, for the case ofAES (n = 8) attacked

on the last round:

– T , k ∈ {0, 1}n , and Z = (InvSubBytes(T ⊕ k), T )

for the bytes of the first row, and
– T = (T1, T2) ∈ {0, 1}n × {0, 1}n ,
and Z = (InvSubBytes(T1 ⊕ k), T2) for the other
three rows.

Those two cases refer to the twomodels expressed in [14]:

– Only manipulated Data Leak (ODL): only the manipu-
lated value influences the leakage.

– Memory Transitions Leak (MTL): two values (the pre-
vious one and the new one) of a memory unit (e.g., a
register) influence the power consumption and also the
device leaks some combination of the two consecutively
manipulated values.

We also introduce other useful notations for matrices:

– Let A be a square matrix, then its trace is the sum of
elements along its diagonal tr(A) = ∑

i Ai,i ; let A and
B two rectangular matrices such that AB and BA are
square. Then, the trace has the property that tr(AB) =
tr(BA).

– Covariance matrices are symmetrical, and all their eigen-
values are positive. When some eigenvalues are zero, it
means that rows are redundant, and those are implic-
itly removed until all eigenvalues are strictly positive.
Alternatively, more measurements shall be captured.
Therefore, we will consider covariance matrices are
invertible. For example, the noise covariance matrix Σ

has an inverse, denoted Σ−1. We will also make use of
the notation Σ−1/2 for the (unique1) matrix such that
Σ−1/2Σ−1/2 = Σ−1.

Eventually, let us define the following operator:

Definition 2 (The kth trace operator trk) Let k ∈ F
n
2. The kth

trace operator trk of a 2n × 2n square matrix M is

trk(M) =
∑

t

Mt,t⊕k .

The regular trace of a square matrix M is simply tr = tr0.

2.3 Characterization of traces

The traces can be characterized according to their signal-
to-noise ratio (SNR) as defined in [30, § 4.3.2, page 73]).
Referring to Eqn. (1), themonovariate SNR is defined as the
SNR at each sample of the trace. Specifically, the monovari-
ate SNR trace is defined as:

Definition 3 (Monovariate SNR trace)

SNR = Var(E(X |T ))

E(Var(X |T ))
, (2)

where E denotes the expectation and Var the variance oper-
ators.

We notice that this notion of SNR is useful to predict the
approximated number of traces Q80% to recover the key, with
80% confidence. Indeed, Q80% is proportional to the inverse
of SNR, as demonstrated in [4].

In some cases, such as in software implementations, the
monovariate leakage can feature a strong SNR.However, this
gives no intuition regarding the proportion of signal which
is informative within the trace. Typically, could the SNR be
improved more by reducing further the noise? The normal-
ized inter-class variance (NICV [3]) allows to answer this
question. The NICV is the proportion of the traces variance
which can be explained by:

Definition 4 (Monovariate NICV trace)

NICV = Var(E(X |T ))

Var(X)
. (3)

1 Recall that Σ is a symmetric matrix. Therefore, there exists one
invertible matrix P such that Σ = PDP−1, where D is a diagonal
matrix whose diagonal coefficients are all positive. It is customary
to call the diagonal coefficients of D the eigenvalues of Σ and P
the matrix of eigen-vectors of Σ . Let us denote D1/2 the diagonal
matrix where diagonal coefficients are the square root of those of D.
Then, Σ1/2 := PD1/2P−1 matches the definition, since Σ1/2Σ1/2 =
PD1/2P−1PD1/2P−1 = PD1/2D1/2P−1 = PDP−1 = Σ .
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Owing to the law of total variance, that is

Var(X) = Var(E(X |T )) + E(Var(X |T )),

it can be seen that NICV is bounded between 0 and 1, and
that NICV = 1/(1 + 1/SNR). This implies that

∂ NICV

∂ SNR
= 1

(1 + SNR)2
> 0,

i.e., NICV is an increasing function of SNR. The attack suc-
cess rate is thus improved by increasing either the SNR or
the NICV.

3 Formalization of template attacks

In this section, we present our main result. We formal-
ize the two phases of the template attack, namely learning
and attacking. Their algorithms reveal a very simple mathe-
matical expression for building the template model and for
matching never seen traces (expression which happens to be
very similar). In particular, this leads us to simplify the com-
putation for the two phases: the mathematical expressions
involve only linear algebra (neither logarithms nor exponen-
tial functions need to be evaluated); only onematrix inversion
is required (namely once in the end of the profiling stage).
Moreover, we show that the Q traces used either for profil-
ing or matching can be regrouped in S = 2n classes. In the
sequel, we use 2n (e.g., 2n = 256 for the AES) in lieu of
S for the paper to be concrete. The attack two phases can in
turn be computed using 2n-dimensional vectors and matrices
of dimension 2n × 2n . We will say that the number of traces
Q is coalesced into 2n classes, which further simplifies the
computations.

We start by analyzing the classical template attacks (with-
out coalescence) in Sect. 3.1. We then see the gain of
considering template attacks with coalesced traces and mod-
els in Sect. 3.2. Eventually, we compare results with attacks
making use of dimensionality reduction in Sect. 3.3.

3.1 Template attack (without coalescence)

3.1.1 Template building = profiling stage

In the profiling stage, the attacker computes Ỹ , a D × 2n

matrix, and Σ . An experimental method to profile is the fol-
lowing:

– In the estimation of Ỹ , the attacker fixes Z to some all
possible values (the column index of Ỹ ), and averages
many measurements, so as cancel out the noise; in order
to explore all the possible values of Z , the attacker can

enumerate all values of T and k. However, due to sym-
metries, it might be possible that some values of Z be
encountered by many different pairs (T , k); hence, there
is an opportunity to save some profiling effort.

– Regarding the estimation of Σ , the attacker fixes Z to
an arbitrary value, say 0, and then estimates Σ as the
covariance matrix of the traces.

Therefore, in the sequel, we consider that the averages of the
traces (Ỹ ) and the noise covariance matrix (Σ) are known.
Notice that N ∼ N (0,Σ) has zero mean, because the data
(data = text and key) dependent part of the traces constitutes
the expectation of the noise.

Also notice that we implicitly opted for a leakage decom-
position basis known as the canonical basis [21]. However,
any other choice of bases suits perfectly, insofar as the change
to another basis is a multiplication by an invertible 2n × 2n

matrix,which can be applied on coalescedmatrices (the noise
is not impacted by the basis change, which concerns only the
data). Such basis change could be interesting if the leak-
age happens to be concentrated on a smaller basis than the
canonical one: The uninteresting dimensions can thus safely
be dropped, thereby simplifying the equations.

3.1.2 Template attack

After the identification stage (profiling, as described in
Sect. 3.1.1), the attacker can perform the exploitation stage.
We have the following result:

Theorem 1 (Theorem 1 of [7]) Template attacks guess the
key as:

k̂ = argmink tr((X − Yk)
TΣ−1(X − Yk)). (4)

3.1.3 Standardization of traces

Theorem 2 (Template attack with standardized traces) It is
possible to standardize the templates (and the traces), by
trading:

– Yk for Y ′
k = Σ−1/2Yk, and

– X for X ′ = Σ−1/2X.

Accordingly, the template attack simplifies as:

k̂ = argmink tr((X
′ − Y ′

k)
T
(X ′−Y ′

k)) = argmink ||X ′−Y ′
k ||2F ,

(5)

where || · ||2F is the square Frobenius norm of a matrix, that
is the sum of all its elements raised to the power two.
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Proof Notice that owing to the symmetry of Σ , one also has

the following property
(
Σ−1/2

)T = Σ−1/2. Hence,

(X − Yk)
TΣ−1(X − Yk) = (X − Yk)

TΣ−1/2Σ−1/2(X − Yk)

= (Σ−1/2(X − Yk))
T
Σ−1/2(X − Yk)

= (X ′ − Y ′
k)

T
(X ′ − Y ′

k).

Besides,

tr((X ′ − Y ′
k)

T
(X ′ − Y ′

k))

=
∑

q

(X ′
q − Y ′

q,k)
T
(X ′

q − Y ′
q,k)

=
∑

q

||X ′
q − Y ′

q,k ||22 (norm-2 of a D-dimensional vector)

= ||X ′ − Y ′
k ||2F (Frobenius norm of a D × Q matrix).


�
Notice that the standardized noise N ′ = Σ−1/2N has

distribution N (0, I ), where I is the D × D identity matrix.

Remark 1 In the expression of the template attack of Eq. (5),
the covariance matrix Σ disappears: It is hidden half in the
model (Y ′ is Σ−1/2Y ) and half in the matching traces (X ′
is Σ−1/2X ). Alternatively, we will show in Algorithm 3 that
Σ can be completely hidden in the templates, and that there
is no need to use Σ in the corresponding matching phase
(Algorithm 4). This way of using Σ allows to minimize the
computation time, in particular because Σ will need to be
inversed only once, namely when building the model.

3.2 Template attack (with coalescence)

The trace operator in Theorem 1 is applied to a Q×Q matrix
(resulted from the product of the raw matrices, without coa-
lescence), which poses a problem of scaling as the number of
traces grows. Therefore, we show that template attacks can
be rewritten in a coalesced form:

Proposition 1 (Coalesced template attack) Template attacks
(as per (4)) guess the key as:

k̂ = argmink
∑

t

nt (X̃t − Ỹt,k)
T
Σ−1(X̃t − Ỹt,k), (6)

where nt = ∑
q:tq=t 1 is the number of traces corresponding

to plaintext value t.

Proof By developing the argument to minimize in Theo-
rem 1, there remain only two terms which depend on the
key k:

∑

q

Y T
tq ,kΣ

−1Xq = XT
qΣ

−1Ytq ,k (7)

and

∑

q

Y T
tq ,kΣ

−1Ytq ,k, (8)

because
∑

q XT
qΣ

−1Xq is independent from the key k.
Now,

∑

q

Y T
tq ,kΣ

−1Xq =
∑

t

∑

q:tq=t

Y T
tq ,kΣ

−1Xq

=
∑

t

⎛

⎝
∑

q:tq=t

Y T
tq ,kΣ

−1Xq

⎞

⎠

=
∑

t

⎛

⎝
∑

q:tq=t

Ỹ T
t,kΣ

−1Xq

⎞

⎠

=
∑

t

Ỹ T
t,kΣ

−1

⎛

⎝
∑

q:tq=t

Xq

⎞

⎠

=
∑

t

nt Ỹ
T
t,kΣ

−1

(∑
q:tq=t Xq

nt

)

=
∑

t

nt Ỹ
T
t,kΣ

−1 X̃t

and

∑

q

Y T
tq ,kΣ

−1Ytq ,k =
∑

t

∑

q:tq=t

Y T
tq ,kΣ

−1Ytq ,k

=
∑

t

∑

q:tq=t

Ỹ T
t,kΣ

−1Ỹt,k

=
∑

t

Ỹ T
t,kΣ

−1Ỹt,k

⎛

⎝
∑

q:tq=t

1

⎞

⎠

=
∑

t

nt Ỹ
T
t,kΣ

−1Ỹt,k .

All in one, up to a key-independent term
∑

t nt X̃
T
t Σ

−1 X̃t ,
we can rewrite the argument to minimize in Theorem 1 as:

∑

t

nt (X̃t − Ỹt,k)
T
Σ−1(X̃t − Ỹt,k).


�
Remark 2 Equation (6) reads as a trace on the plaintext space,
weighted by the values nt . Regarding nt , they are the empir-
ical estimators of QP(T = t).

Remark 3 The attack presented in Proposition 1 is exactly
the same as that of Theorem 1: It will succeed with the same
number of traces. However, the attack in Proposition 1 is
computationally more efficient than that of Theorem 1 as
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soon as the number of traces Q is larger than the number
of plaintexts involved in leakage model 2n (for 2n = 256
for AES). The gain holds both for training and matching
phases. However, we underline that training requires much
more traces than matching; hence, most of the gain of using
coalesced data arises from the template building phase.

3.3 State-of-the-art dimensionality reduction

It has been suggested in [1] that template attacks can bemade
more practical by:

1. first start with a dimensionality reduction,
2. then perform a template attack in a reduced space.

This approach deserves to be confronted with the innate
dimensionality reduction power of template attacks, as
expressed in Sect. 3.2 (where the complexity is related to
cryptographic parameter S = 2n and not to the traces dimen-
sionality D).

To be more accurate, two dimensionality reduction tech-
niques have been put forward: principal components analysis
(PCA [1]) and linear discriminant analysis (LDA [39]).

In this section, we contrast template attackswith andwith-
out such pre-processing (especially the PCA).

3.3.1 PCA

The PCA is a technique aiming at identifying linear pro-
jections which concentrate information in few directions,
namely principal directions. In this respect, it is already
pointed out in [1] that any set of training traces of high dimen-
sionality D can always be reduced to lower dimensionality
2n , as we also noted in Sect. 3.2.

The PCA appears in two variants: classical and class-
based, as tailored by Archambeau et al. in [1]. Both tech-
niques require the definition of a covariance matrix. We
analyze in the following lemmaboth techniques,which resort
to the concept of coalesced matrices (Definition 1):

Definition 5 (Variance of a vectorial random variable) The
varianceof X ∈ R

D is:Var(X) = E((X−EX)(X − EX)T).

Lemma 1 (Law of total variance)

Var(X) = E(Var(X |T )) + Var(E(X |T )).

Proof Adaptation of the law of total variance to the multi-
variate case. 
�

Applied to X = Y + N , where Y depends on T (but N
does not), we have:

Var(X) = Var(Y ) + Σ.

Besides, as Y |T is deterministic, we can apply Lemma 1:

Var(Y ) = Var(E(Y |T )).

Let us assume Y is centered, namely E(Y ) = 0. Hence,

Var(Y ) =
∑

t

P(T = t)E(Y |T )E(Y |T )T.

Lemma 2 (PCA) We resort to the law of large numbers
(LLN). The classical PCA is based on the estimation of the
following D × D covariance matrix:

1

Q

Q∑

q=1

⎛

⎝Xq − 1

Q

∑

q ′
Xq ′

⎞

⎠

⎛

⎝Xq − 1

Q

∑

q ′
Xq ′

⎞

⎠

T

LLN−−−−−→
Q→+∞ Var(Y ) + Σ. (9)

The PCA of Archambeau et al. is based on the estimation of
the following D × D covariance matrix:

1

Q

Q∑

q=1

⎛

⎝X̃q − 1

Q

∑

q ′
X̃q ′

⎞

⎠

⎛

⎝X̃q − 1

Q

∑

q ′
X̃q ′

⎞

⎠

T

LLN−−−−−→
Q→+∞ Var(Y ). (10)

Regarding the PCA, we only consider the second case. As
the traces are first averaged, the covariance arising from the
noise disappears; therefore, the only contribution is the intra-
class variability. As the matrix is a covariance matrix, it has
only positive eigenvalues.We consider the set of correspond-
ing eigen-vectors as a matrix V (matrix of eigen-vectors),
which is such that:

Ỹk(Ỹk)
T
V = VΔ,

where the matrix Δ = diag(λ1, λ2, . . . , λ2n ) is the diagonal
matrix of eigenvalues. Besides, it is known [25] that VV T =
I , the D × D identity matrix.

Lemma 3 Template attack with PCA is always less efficient
(in terms of success probability) than the template attack.

Proof The reason is simply because themaximum likelihood
is the best attack in terms of success probability. As the PCA
is a preprocessing, it is less efficient. 
�

Notice that in practice, it is hard to estimate models
and noise accurately; therefore, reducing the dimensional-
ity before attacking is awinning strategy. However, assuming
that a perfect profiling is possible, any preprocessing reduces
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the information (recall the “data processing theorem”); there-
fore, one may wonder how different efficiencies of template
attacks with and without PCA are.

In the case D < 2n , Ỹk(Ỹk)
T
is almost of full rank (with

very high probability). However, as traces are centered, there
is one relationship amongst all rows of Ỹk , namely their
sum is null. Hence, V is not invertible. There is actually
no dimensionality reduction: The projection on any eigen-
vector carries information.

The PCA therefore consists in transforming the traces the
following way:

– Ỹ becomes V TỸ and X becomes V TX (projection),
– the covariance matrix Σ becomes V TΣV . Indeed, the

covariance matrix of the projected (centered) noise is

E((V TN )(V TN )
T
) = E(V TNN TV ) = V T

E(NN T)V =
V TΣV .

The argument to maximize over k in the optimal distin-
guisher (4) becomes:

tr

(((
V TX − V TYk

)T (
V TΣV

)−1 (
V TX − V TYk

)))

=

tr

((

(X − Yk)
TV

(
V TΣV

)−1
V T (X − Yk)

))

=

tr

((

(X − Yk)
T
(

V
(
V TΣV

)−1
V T

)

(X − Yk)

))

. (11)

Assume that V is invertible. Using the property that
(AB)−1 = B−1A−1, one has:

V
(
V TΣV

)−1
V T = VV−1Σ−1(V T)−1V T = Σ−1,

which is the same covariance matrix as for the optimal dis-
tinguisher (matrix V disappears).

But V is not invertible, and therefore, Eq. (11) cannot be
simplified.

Finally, it is noticeable that all the improvements intro-
duced in the current paper are compatible with any dimen-
sionality reduction technique.

4 Efficiently computing templates with
coalescence

4.1 Simplification by the LLN

As will be shown, when a high number of traces are needed
(where SNR is less), an efficient computation of an LLN-
based approximation of the optimal template attack can be
carried out. Hence, when using the LLN the number of traces
to recover the key is generally more than the exact template

Fig. 1 Values of the distinguisher (Eq. (7)), where the Ỹ T
t,kΣ

−1Ỹt,k term
(Eq. (8)) is dropped

Table 1 Dimensions of traces andmodels, seen asmatrices in this paper

Raw Coalesced

Traces X : D × Q X̃ : D × 2n

Models Y : D × Q Ỹ : D × 2n

attack. But (i) this is less and less a concern in situations
where the SNR decreases (that is, the “real world” challeng-
ing scenarios) , (ii) we do not need an efficient computation
when number of traces is less (when the SNR is high).

In this section, we come back to genuine template attacks,
as described in Sect. 3.

Definition 6 (Equal Images under different Subkeys (EIS) [37,
Def. 2]) In this case, we have that for each pair (k, k′), k = k′,
there exists a pair (t, t ′), t = t ′, such that Yt,k = Yt ′,k′ .

In the case of the EIS, and in the specific case when Yt,k
depends only on t ⊕ k, we can drop the Ỹ T

t,kΣ
−1Ỹt,k term.

The effect is represented in Fig. 1: notwithstanding that the
value of the distinguisher (Eq. (7)) is always the largest for
the correct key k = k∗, one can see “oscillations” occurring
every 2n = 16 traces (here n = 4), where indeed the dropped
(Eq. (8)) term is the same for all key hypotheses. We recall
the dimension of matrices in Table 1.

The max-likelihood attack minimizes over k:

– either: tr
(
(X − Yk)TΣ−1(X − Yk)

)

– or equivalently
∑

t∈Fn2 nt (X̃t − Ỹt,k)
T
Σ−1(X̃t − Ỹt,k).

Using the law of large numbers, for large Q, we have:

1

Q

∑

t∈Fn2
nt (Ỹt,k)

T
Σ−1Ỹt,k −−−−−→

Q→+∞
∑

t

P(t)(Ỹt⊕k)
T
Σ−1Ỹt⊕k
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which does not depend on k if T is uniformly distributed,
that is P(t) = 2−n . This is a mathematical justification
for the observation made in Fig. 1. As already noted in
Sect. 3.2, there is therefore only one key-dependent term
which remains:

∑

t

nt X̃
T
t Σ

−1Ỹt⊕k = trk(X̃
T
Σ−1Ỹ ), (12)

where we recall that trk is the k-th trace operator introduced
in Definition 2.

The templates are estimated as represented inAlgorithm1.
In this formulation, it clearly appears that there is a unique
noise covariance matrix Σ , which justifies the technique of
“pooled covariance matrix” presented in [10]. Indeed, by the
law of large numbers, we have that for all t ∈ F

n
2:

lim
Q→+∞

1

Q

∑

q:tq=t

Xq = lim
Q→+∞

1

Q

∑

q:tq=t

Ỹtq

= lim
Q→+∞

1

Q

∑

q:tq=t

Ỹt

= lim
Q→+∞

Ỹt
Q

∑

q:tq=t

1

= lim
Q→+∞

nt
Q
Ỹt ≈ 1

2n
Ỹt ,

since nt ≈ Q/2n when Q is large. Besides, as Xq = Ỹtq +N ,
we have that:

Σ = 1

Q

Q∑

q=1

(Xq − Ỹtq )(Xq − Ỹtq )
T

= 1

Q

Q∑

q=1

Xq Xq
T

− 1

Q

Q∑

q=1

XqỸ
T
tq − 1

Q

Q∑

q=1

Ỹtq Xq
T + 1

Q

Q∑

q=1

Ỹtq Ỹ
T
tq

−−−−−→
Q→+∞

1

Q
XXT − 1

2n
Ỹ Ỹ T,

assuming nt/Q → 1/2n when Q → +∞ (plaintext unifor-
mity). This justifies line 9 of Algorithm 1.

4.2 Profiling and attack algorithms

The correct key is recovered using Algorithm 2. In this
algorithm, the matrices X̃ and Ỹ are, respectively, X̃ =
(x̃0, · · · , x̃2n−1) and Ỹ = (ỹ0, · · · , ỹ2n−1). Premise of for-
mal presentation of template attacks, including the notion of
Mahalanobis measure, is presented in a paper by Zhang et
al. [44].

Input : Set of training traces X and corresponding plaintexts
T for the estimation of the templates, for a known key k

Output : Templates:

• Ỹ , the matrix of the templates, and
• Σ , its homoscedastic covariance matrix.

1 for t ∈ F
n
2 do // Initialization

2 ỹt ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . , Q} do // Accumulation, as in [28]

5 ỹtq⊕k ← ỹtq⊕k + Xq

6 ntq⊕k ← ntq⊕k + 1

7 for t ∈ F
n
2 do // Normalization

8 ỹt ← ỹt/nt

9 return
(
Ỹ = (ỹ0, · · · , ỹ2n−1),Σ = 1

Q XXT − 1
2n Ỹ Ỹ

T
)

Algorithm 1: Estimation of templates.

When the templates (Ỹ ,Σ) are obtained from Algo-
rithm 1, then the attack is no longer optimal [15], but is
termed template attack. However, template attacks tend to
optimal attack when the profiling is carried out on a number
of traces which tends to infinity.

Input : Set of matching traces X , corresponding plaintexts T
and the templates (Ỹ ,Σ) obtained from Alg. 1

Output : Key guess k recovered by the optimal distinguisher

// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accumulation, as in lines 1-8 of Alg. 1

1 for t ∈ F
n
2 do // Initialization

2 x̃t ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . , Q} do // Accumulation

5 x̃tq ← x̃tq + Xq

6 ntq ← ntq + 1

7 for t ∈ F
n
2 do // Normalization

8 x̃t ← x̃t/nt
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attack proper

9 return argmaxk trk
(
X̃TΣ−1Ỹ

)
// Eqn. (12)

Algorithm2:Key recovery using optimal distinguisher, applied

on profiling generated by Alg. 1.

4.3 Improved profiling and attack algorithms

In practice the profiling (Algorithm 1) should be carried out
only once, whereas the matching (Algorithm 2) should be
carried out every time when the attack outcome is needed.
So the adversary can compute Σ−1Ỹ once in the end of the
first stage (Algorithm 3 instead of Algorithm 1), and he can
use this result every times the attack needs to be estimated
(Algorithm 4 instead ofAlgorithm 2). Finally, it is possible to
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regroup the accumulations (lines 1–8) of Algorithms 1, 2, 3
and 4 in the same function.

Input : Set of training traces X and corresponding plaintexts
T for the estimation of the templates, for a known key k

Output : The matrix of templates left multiplied by the inverse
of the covariance matrix Ỹ = Σ−1Ỹ

1 for t ∈ F
n
2 do // Initialization

2 ỹt ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . , Q} do // Accumulation, as in [28]

5 ỹtq⊕k ← ỹtq⊕k + Xq

6 ntq⊕k ← ntq⊕k + 1

7 for t ∈ F
n
2 do // Normalization

8 ỹt ← ỹt/nt

9 Ỹ ← (ỹ0, · · · , ỹ2n−1) // Same as in Alg. 1

10 Σ ← 1
Q XXT − 1

2n Ỹ Ỹ
T // Same as in Alg. 1

11 Ỹ ← Σ−1Ỹ // Costly operation, factored here for all subsequent uses in

Alg. 4

12 return Ỹ

Algorithm 3: Estimation of templates, improved by caching

matrix Σ inversion at the end.

Input : Set of matching traces X , corresponding plaintexts T
and the templates (Ỹ = Σ−1Ỹ ) obtained from Alg. 3

Output : Key guess k recovered by the optimal distinguisher

// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accumulation, as in lines 1-8 of Alg. 3

1 for t ∈ F
n
2 do // Initialization

2 x̃t ← 0 // Mean trace per class

3 nt ← 0 // Number of traces per class

4 for q ∈ {1, . . . , Q} do // Accumulation

5 x̃tq ← x̃tq + Xq

6 ntq ← ntq + 1

7 for t ∈ F
n
2 do // Normalization

8 x̃t ← x̃t/nt
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attack proper

9 return argmaxk trk
(
X̃T

Ỹ

)
// Eqn. (12)

Algorithm 4: Improved key recovery using optimal distin-

guisher, applied on profiling as obtained from Alg. 3.

4.4 Extension of our approach tomasked
implementations

Let d be a strictly positive integer. The protection by a mask-
ing of order d consists in dividing each sensitive variable Z
into (d+1) shares Z (0), . . ., Z (d). In order to reveal this secret
value, an adversary must carry out a so-called high-order
SCA. It consists in combining the leakage corresponding to

all the (d+1) shares. For such high-order attack, we leverage
same notations as in Sect. 2, with the following extensions:

– (X (i))0≤i≤d denote the measured leakage corresponding,
respectively, to the (d + 1) shares;

– (Y (i))0≤i≤d denote the leakage model corresponding,
respectively, to the (d + 1) shares.

4.4.1 State-of-the-art of high-order attacks

Let us first review the high-order attacks state of the art
in the case where the adversary uses only one time-sample
per share during the attack. To conduct higher-order attacks,
many combination functions were proposed in the literature,
such as product combination [38], absolute difference com-
bination (possibly raised to some power) [26] and sine-based
combination [35]. According to [40], even if the combination
functions loose the information, this loss vanishes in prac-
tice for high noise. In such case, the second-order CPA with
the normalized product function becomes (nearly) equiva-
lent to the maximum likelihood distinguisher applied to the
joint distribution. According to [36] the optimal combination
technique against the first-order Boolean masking is the nor-
malized product ((X (0) − E(X (0)))(X (1) − E(X (1)))). The
authors of this paper ( [36]) show that this combination func-
tion should be accompanied with E[(Y (0) −E(Y (0)))(Y (1) −
E(Y (1)))|Z ] as an optimal model. A high-order optimal dis-
tinguisher is introduced in [8]. This paper proves that the
CPA with normalized product combination is optimal for
high noise, independently from the masking technique and
its order (whether d = 1, 2, . . .). Let us now show how we
can use these results in order to consider several time-sample
per share.

4.4.2 Extension of our approach to higher-order masking

To extend our template approach to masking-based protected
implementations, we take as a starting point the normalized
product combination [36]. In fact one can see the measured
trace as a set of (d + 1) sub-traces, such that each sub-trace
corresponds to one of the (d + 1) shares. According to [36],
an adversary which combines (d+1) relevant PoIs (one from
each sub-trace) should be successful in his attack by carrying
out a normalized product combination and by accompanying
it with E[Πd

i=0(Y
(i) − E(Y (i))) |Z ] as an optimal model. In

fact, for combining, the adversary can choose any relevant
PoI of the first share, with any relevant PoI of the second
share... with any relevant PoI of the (d + 1)th share.

Following this idea, to extend the template attack on a
masked implementation, one can construct an artificial trace,
such that any sample in the artificial trace is a normalized
product combination of (d + 1) PoIs (one from each sub-
trace). This is illustrated in Fig. 2a. In this figure, only one
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1 D0· · ·

1 D· · ·

1 D· · · 1 D· · · 1 D· · ·

Dd1 · · ·1D1· · ·

(b) Same window case:

(a) General case:

Real
sub-traces:

Artificial
trace:

Real
sub-traces:

Artificial
trace:

Fig. 2 Differentmethods to combine samples from (d+1) sub-traces, in
the case of dth-order masking countermeasure. Attack is carried out on
the multivariate combination shown in the artificial trace. Each sample
amongst the D making up the artificial trace is a centered product of
(d + 1) samples taken each from a different sub-trace

PoI is selected from the first sub-trace, and it is combined to
samples of the other d sub-traces, using evaluator’s expertise
to get the best choice.

A simple way of combining is to take the same number of
PoIs from each sub-trace and combine them in the same order
(i.e., the i th sample, for 1 ≤ i ≤ D, of the artificial trace is
the combination of all the PoI of the sub-traces that are in the
i th position). Figure 2b describes the combination to create
the artificial trace by such concatenation of D normalized
products between (d + 1) sub-traces. Finally, the adversary
can profile the leakage model of this artificial leakage and
carry out the template attack by matching the combination
of current leakage (also by the normalized product) to the
profiled model.

Thanks to this combination idea, one can carry out the
template attack against high-order masking schemes, in the
general way or following our particular approach (coales-
cence followed by the spectral approach in order to be
significantly more efficient both in terms of processing time
and of memory space complexities). One can see the experi-
mental results of this technique, against a first-order Boolean
masking [31], in the Sect. 5.5 (at scenarios 3 and 4).

4.4.3 Extension of our approach to disaligned traces

In fact the traces could not be aligned at the begging, due
to random delays (jittering) or any other raison [13]. The
impact of this countermeasure in performance has already
been quantified in a formal framework for the evaluation of
waveform resynchronization algorithms [22]. To carry out
a template attack using such disaligned traces, one can use
several techniques to first realign them [17,19,34,41]. All
these techniques shall be applied before coalescence.

4.5 Computational performance analysis

4.5.1 Straightforward complexity analysis

Let us comment on the complexity of the algorithms. The
body of Algorithm 1, that is lines 1–8, operates on vectors of
size D. The same remark applies to the body, that is lines 1-8,
of Algorithm 2. Hence, the overall complexity of these parts
of the algorithm is D × Q additions.

The complex part of Algorithm 1, namely line 9, is com-
puted only once. The overall complexity of this part equals
to that of XXT computation. So, that is equals to D2 × Q
multiplications.

The complex part of Algorithm 2, namely line 9, is also
computed only once. Firstly, since the profiling stage should
be doneonly one time,we can computeΣ−1Ỹ once, as shown
in Algorithm 3. The overall complexity of this multiplication
equals D2 × 2n . For inverting Σ efficiently one can use the
optimized Coppersmith–Winograd-like algorithm that has a
complexity of O(d2.373) [42].

Another advantage of our template analysis is that the
overall complexity of the attack phase, namely Algorithm 4,
does not depend on Q, no matter how large Q is. Indeed,
the overall complexity of X̃T

(
Σ−1Ỹ

)
computation is equal

to 22n × D multiplications. Table 2 shows the computing
time of Algorithm 3 according to D. It can be seen that com-
pute matrix produces to derive Σ takes more time than to
the inverse of Σ . Since the time computation of Algorithm 3
depends only to lines 10 and 11 (asymptotically), we pro-
vide its duration in Table 2. Of course the overall time of
Algorithm 3 is about the sum of that of lines 10 and 11.

In order to save memory space, we compute Σ in line 10
of Algorithm 3 from X and Ỹ without using any temporary
matrix. Finally, we can factor the code of lines 1–8 of Algo-
rithms 1, 2, 3 and 4 in the same function.

4.5.2 Complexity improvement with spectral analysis

We improve the complexity of the template attack using

results from [23]. To compute trk
(
X̃T

(
Σ−1Ỹ

))
more effi-

ciently, let us first denote
(
Σ−1Ỹ

)
as Ỹ, such that:

trk
(
X̃T(Σ−1Ỹ

)) = trk
(
X̃T

Ỹ

)
.

Recall the dimension of X̃T is 2n × D and that of Ỹ is
D × 2n . The (i, j) element of the matrix X̃T

Ỹ is thus:

X̃T
Ỹ[i][ j] =

D−1∑

l=0

X̃T[i][l]Ỹ[l][ j].
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Table 2 Computing time (in
seconds) of Algorithm 3
according to D

100 200 300 400 500 600 700 800 900 1000

Line 10 0.252 0.869 1.904 3.354 5.197 7.488 10.147 13.259 16.769 20.740

Line 11 0.031 0.177 0.528 1.155 2.103 3.486 5.362 7.794 10.903 16.021

Inversion (Σ−1) 0.012 0.093 0.314 0.751 1.472 2.575 4.133 6.183 8.814 12.112

Product (Σ−1Ỹ ) 0.019 0.084 0.214 0.404 0.631 0.911 1.229 1.611 2.089 3.909

Consequently,

trk
(
X̃T

Ỹ

)

=
2n−1∑

i=0

D−1∑

l=0

X̃T[i][l]Ỹ[l][i ⊕ k]

=
D−1∑

l=0

2n−1∑

i=0

X̃T[i][l]Ỹ[l][i ⊕ k]

=
D−1∑

l=0

X̃T[.][l] ⊗ Ỹ[l][.](k)

=
D−1∑

l=0

WHT−1
(
WHT

(
X̃T[.][l]) • WHT

(
Ỹ[l][.])

)
(k)

So,

trk
(
X̃T

Ỹ

)
=

WHT−1
( D−1∑

l=0

WHT
(
X̃T[.][l]) • WHT

(
Ỹ[l][.])

)
(k),

(13)

– X̃T[.][l] denotes the lth column of the matrix X̃T,
– Ỹ[l][.] denotes the lth line of the matrix Ỹ, and
– ⊗ denotes the convolution product between them.
– • denotes the coordinate wise product between them.

Thanks to the (normalized) Walsh–Hadamard transform
(WHT) that allows us to compute, for all l = 0, . . . , D − 1,
the convolution product X̃T[.][l] ⊗ Ỹ[l][.] with a complex-
ity of n2n instead of 22n . Thereby the overall complexity of

trk
(
X̃T

(
Σ−1Ỹ

))
computation becomes n2n × D instead of

22n ×D. In applications such as key extraction from the AES
(n = 8), the computation time of the attack phase is indeed
divided by 2n/n = 32, which is a significant gain. Table 3
shows the computing time of the line 9 of the Algorithm 4
according to D, with and without the spectral analysis (resp.
Eqs. 13 and 12).

Is noteworthy that this result that assume the group oper-
ation ⊕ over the set {0, 1}n (i.e., Z = F(t ⊕ k)) hold
true for any other group operation � as long as Walsh-
HadamardTransform is replacedbyFourierTransform (FFT)

on this group ({0, 1}n,�). For example, since in TEA (a Tiny
Encryption Algorithm) and several AES candidates [12], the
operation is +( mod (2n)), so cyclical Fourier transform
must replace Walsh–Hadamard transform (WHT).

5 Experiments

In this section,we assess the efficiencyof this template attack.
We first analyze its success rate with variable numbers of
samples per trace. We compare it with the success rate of
the traditional CPA. In the sequel a comparison between this
template attack and the monovariate CPA attack over PCA
is done.

5.1 Traces used for the case study

AnATMega 163 smart card, involving an 8-bitAVR type pro-
cessor, has been programmed to process a softwareAES. The
analysis consists in measuring the power consumption of the
smart card, when the AES is running. The power measure-
ments are done with a PicoScope 3204A on the first round.
The sampling rate equals 256 MSamples/second.

We first characterize the traces managed in the following
experiments. The average trace, SNR (Definition 3), NICV
(Definition 4), and the principal direction of PCA (recall
Sect. 3.3.1) are computed in all possible samples of these
traces. Figure 3 shows those characterizations over D = 700
samples.

In the following template attacks, a set of traces is col-
lected for templates building, whilst another set is collected
for the attack phase. As the two sets of traces are measured
from the same smart card, the results are optimistic in termsof
attacker potential.We analyze the success rate of the template
attack according to the size of a chosen samples window.

5.2 Template attacks with windows of increasing
size

We analyzed the success rate with different numbers of sam-
ples (from D = 1 to D = 700 samples). The samples are
selected around a chosen central point I0. This point is the
sample time where the traditional CPA yields the highest
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Table 3 Computing time (in seconds) of the line 9 of Algorithm 4 according to D, with and without the spectral analysis (WHT)

100 200 300 400 500 600 700 800 900 1000

Without WHT 0.0619 0.1242 0.2030 0.2858 0.3447 0.4126 0.4763 0.5453 0.6151 0.6854

With WHT 0.0022 0.0042 0.0065 0.0091 0.0116 0.0135 0.0154 0.0165 0.0176 0.0201

Improvement (ratio) 28.625 29.752 30.969 31.373 29.652 30.534 30.849 32.969 34.891 34.183

Fig. 3 Average trace, SNR, NICV and first principal direction of PCA,
according to the index of samples

peak. Thewindowof growing size D gathers samples belong-
ing to the interval [I0 − D/2, I0 + D/2).

Figure 4 shows the success rate according to the num-
ber of measurements for different sizes of the window (from
D = 200 to D = 700). From these results, one can deduce
that the larger the dimensionality, the fewer the number of
traces to recover the secret key.Asymptotically, for very large
dimensionalities D → +∞, only a limited few number of
traces suffices to extract the key.

For reference, Fig. 4 also shows the success rate of uni-
variate CPA (which corresponds to the maximum value of

Fig. 4 Values of success rate, according to the number of samples

Fig. 5 Number of measurements at 80% of success rate, according to
the number of samples (zoom for D > 300)

the correlation coefficient along all D = 700 samples). The
CPAusesHammingweightmodel. It can be seen that (model-
agnostic) template attack becomes more efficient than CPA
starting from about D ∈ [250, 300], and keeps being better
for larger dimensionality.

Indeed, as shown in Fig. 5, this monotony of the success
rate is approximately respected above D = 300 sam-
ples/trace. But, as shown in Fig. 6, this monotony in not
respected below D = 300. One can deduce that in this inter-
val the success rate depends of the signal wave form; in the
interval D ∈ [1, 300], it can happen that when increasing the
window size, more noise than signal is injected in the tem-
plate attack, thereby making it less efficient. In order to lead
this attack more efficiently one can choose only the samples
where the curve in Fig. 6 decreases, because these samples
really depend on T ⊕ k contrary to the samples where the
curve increases.

As shown in Fig. 4, from around 280 samples/trace this
multivariate analysis will be more efficient than the tradi-
tional CPA. So one can conclude that there is a venue to
capture more information using part or all of the samples
rather than conducting a monovariate attack.

In order to validate our study independently from the tar-
geted device, the same experiment is carried out on a more
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Fig. 6 Number of measurements at 80% of success rate, according to
the number of samples (full scale, that is D ∈ [1, 700])

Fig. 7 Number of measurements at 80% of success rate, according
to the number of samples (full scale, that is D ∈ [1, 700]) for the TI
MSP430G2553 card

recent smartcard, namely TIMSP430G2553. Figure 7 shows
similar results on this device, comparing to the right part of
Fig. 6 (D ≥ 300). One can see that the more samples are
taken into account, the faster the attack. This figure shows
also that it is very important to choose the relevant PoIs, and
that template attacks benefit from the great multiplicity of
PoI. The gain is huge: more than 100× less traces to recover
the key when using D = 1 vs D = 700.

It is noticeable that the using sampling frequency dur-
ing the MSP430G2553’s (resp. the Atmega163’s) attack is
512MHz (resp. 256MHz), where the operating frequency is
16MHz (resp. 8MHz). So the two campaigns are compa-
rable in terms of number of samples per clock cycle. The
difference is in the noise, since the two circuits have not
been designed in the same technology and the side-channel
acquisition system differ (MSP430 LaunchPad and Smart-
card reader, respectively).

It is also noteworthy that both of PoI-based and PCA-
based template attacks [20] can straightforwardly benefit
from our approach.

5.3 Comparison with PCA

In order to compare the efficiency of this method with other
multivariate analyses, the PCA analysis is carried out on the
same device with the same number of samples (700 sam-
ples/trace). Figure 8 shows that the template attack is more

Fig. 8 Values of success rate, according to the number of samples

Fig. 9 PCAwith multiple directions (from 1 to 2n −1 directions). Top:
scree plot of eigenvalues (log scale). Bottom: number of measurements
at 80% of success rate (log scale)

efficient in practice than both the PCA and the traditional
CPA. Recall that Fig. 3 shows the average trace, SNR, NICV
and the first principal direction of PCA, according to the
index of samples.

5.4 Template attack after dimensionality reduction
(over first eigen-components)

In this stage we assess the effect of PCA over the success rate
of our template attack. Instead of assessing the efficiency of
our attack according to the number of samples per trace it
is assessed according to the number of directions of PCA
ordered by decreasing eigenvalue. Figure 9 shows the num-
ber of measurements required to reach 80% of success rate,
according to the number of eigen-components considered per
measurement. This figure shows also the ordered eigenval-
ues according to their corresponding eigen-components. It
is clear that a quasi-linear relation exists between them: the
success rate increases about as fast as the cumulative eigen-
values.

5.5 Study of our approach with simulated traces

In order to do a fair comparison under different aspects (PoIs,
noise levels and masking) one can resort to simulated traces.
In this paper we present four scenarios with different noise
levels. In each scenario we increase a window size around a
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central PoI and we show the number of the required traces to
reach 80% of success rate. So, we carry out, at once, a study
with different PoI numbers, different noise levels and using
the masking technique or not. The four scenarios are:

1. In the first scenario, we simulate a leakage that follows
a half cycle of a sine function, during 700 samples (or
equivalently any 700 PoIs that follows the same law).
More exactly, if the sensitive variable is Z , then the leak-
age at the sth time sample is:

Xz(s) = wH (z) sin
(
2π

s

2 × 700

) + N ,

such that N denotes a Gaussian noise and the leakage
model is Yz(s) = wH (z) sin

(
2π s

2×700

)
. In those equa-

tions, wH (z) is the Hamming weight of z ∈ F
n
2, that is

wH (z) = ∑n
i=1 zi . We used such leakage simulation in

order to be close to the real leakage (for example, see the
real leakage of a smart card as shown in [33, Fig.4]). Dur-
ing this experiment we vary the window size around the
central PoI (s = 350). Figure 10 shows the number of the
required traces to reach 80% of success rate according to
the number of samples, for different standard deviations
(σ ) of the noise, in the first scenario.

2. In the second scenario, we simulate a leakage that follows
the same leakage function as the first scenario but only
for the even values of s. For the odd values of s we simu-
late non-relevant points (non-informative points [27]) by
random values. Figure 11 shows the number of required
traces to reach 80% of success rate according to the num-
ber of samples, for different noise standard deviations
(σ ), in the second scenario. One can show the inconve-
nient of considering non-relevant points as PoIs.

3. In the third scenario, we simulate the leakage of a pro-
tected device by first-order Boolean masking [32, §4].
For each share (masked sensitive value and the mask) the
leakage is simulated by a sine function as in the first sce-
nario. Before carrying out our approach, we combine the
sub-traces in one artificial trace as described in Sect. 4.4.
Figure 12 shows the number of required traces to reach
80% of success rate according to the number of samples,
for two different standard deviations (σ ) of the noise,
in the third scenario. One can see that it is possible to
reveal the secret by applying our approach even against
masking.

4. In the fourth scenario, we simulate a leakage that fol-
lows the same leakage function than the third scenario
but only for the even values of s. For the odd values of s
we simulate non-relevant points (non-informative points)
by random values. This alternation between relevant and
dummy samples holds for both shares. Figure 13 shows
the number of the required traces to reach 80% of suc-

Fig. 10 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 1

Fig. 11 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 2

Fig. 12 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 3

cess rate according to the number of samples, for two
different standard deviations (σ ) of the noise, in the last
scenario. This figure shows the same trend as Fig. 12. The
convergence rate with respect to dimensionality (#sam-
ples) is similar. But the asymptotic value (#samples to
recover the key with 80% of success) is of course higher,
especially for high noise.
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Fig. 13 Number of measurements at 80% of success rate (log scale),
according to the number of samples, in scenario 4

6 Conclusion and perspectives

In this paper, we have provided an analytical formula for the
template attack in a multivariate Gaussian setting. We have
applied it to highly multivariate traces, and we have shown
that template attacks outperform state-of-the-art heuristics,
such as traces dimensionality reduction followed by mono-
variate distinguishers. Template attacks without prior dimen-
sionality reduction can be applied to traces of dimensionality
D of several hundreds without any effectiveness loss: The
success rate increases as D increases. Therefore, this study
reveals that the high sampling rate of oscilloscopes can help
increase the success rate of the attacks.

Furthermore, we extend the approach to the masking-
based protected implementations. We also exhibit a spectral
approach for template attack which allows an exponential
computational improvement in the attack phase (with respect
to data bitwidth), which turns out to be a speed-up by 32×
in the case of AES. Recall that both of PoI-based and PCA-
based template attacks can straightforwardly benefit from
our approach, both in terms of processing time and in term
of the needed space memory. Our approach is validated both
by simulated and real-world traces.
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